• Login
    View Item 
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Multivariate Normal Inverse Gaussian distribution: EM-estimation and analysis of synthetic aperture sonar data

    View/Open
    1462781.pdf (294.9Kb)
    Date
    2015
    Author
    Øigård, Tor Arne
    Hanssen, Alfred
    Hansen, Roy Edgar
    Metadata
    Show full item record
    Abstract
    The heavy-tailed Multivariate Normal Inverse Gaussian (MNIG) distribution is a recent variance-mean mixture of a multivariate Gaussian with a univariate inverse Gaussian distribution. Due to the complexity of the likelihood function, parameter estimation by direct maximization is exceedingly difficult. To overcome this problem, we propose a fast and accurate multivariate ExpectationMaximization (EM) algorithm for maximum likelihood estimation of the scalar, vector, and matrix parameters of the MNIG distribution. Important fundamental and attractive properties of the MNIG as a modeling tool for multivariate heavy-tailed processes are discussed. The modeling strength of the MNIG, and the feasibility of the proposed EM parameter estimation algorithm, are demonstrated by fitting the MNIG to real world wideband synthetic aperture sonar data.
    URI
    http://hdl.handle.net/20.500.12242/658
    https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/658
    Description
    Øigård, Tor Arne; Hanssen, Alfred; Hansen, Roy Edgar. The Multivariate Normal Inverse Gaussian distribution: EM-estimation and analysis of synthetic aperture sonar data. European Signal Processing Conference 2015 ;Volum 06-10-September-2004. s. 1433-1436
    Collections
    • Articles

    Browse

    All of FFI PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

    My Account

    Login

    CONTACT US

    • FFI Kjeller
      FFI, PO Box 25, 2027 Kjeller
    • Office Address: Instituttvn 20,
      Phone 63 80 70 00
    • biblioteket@ffi.no

    HELPFUL

    • About FFI
    • Career
    • Reports

    Sitemap

    • About cookies (cookies)
    • Newsletter
    • Sitemap

    FOLLOW US

     

     

    © Copyright Norwegian Defence Research Establishment
    Powered by KnowledgeArc