Show simple item record

dc.contributor.authorØigård, Tor Arne
dc.contributor.authorHanssen, Alfred
dc.contributor.authorHansen, Roy Edgar
dc.date.accessioned2017-09-29T12:10:10Z
dc.date.accessioned2017-10-02T09:07:08Z
dc.date.available2017-09-29T12:10:10Z
dc.date.available2017-10-02T09:07:08Z
dc.date.issued2015
dc.identifier.citationØigård TA, Hanssen A, Hansen RE. The Multivariate Normal Inverse Gaussian distribution: EM-estimation and analysis of synthetic aperture sonar data. European Signal Processing Conference. 2015;06-10-September-2004:1433-1436en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/658
dc.identifier.urihttps://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/658
dc.descriptionØigård, Tor Arne; Hanssen, Alfred; Hansen, Roy Edgar. The Multivariate Normal Inverse Gaussian distribution: EM-estimation and analysis of synthetic aperture sonar data. European Signal Processing Conference 2015 ;Volum 06-10-September-2004. s. 1433-1436en_GB
dc.description.abstractThe heavy-tailed Multivariate Normal Inverse Gaussian (MNIG) distribution is a recent variance-mean mixture of a multivariate Gaussian with a univariate inverse Gaussian distribution. Due to the complexity of the likelihood function, parameter estimation by direct maximization is exceedingly difficult. To overcome this problem, we propose a fast and accurate multivariate ExpectationMaximization (EM) algorithm for maximum likelihood estimation of the scalar, vector, and matrix parameters of the MNIG distribution. Important fundamental and attractive properties of the MNIG as a modeling tool for multivariate heavy-tailed processes are discussed. The modeling strength of the MNIG, and the feasibility of the proposed EM parameter estimation algorithm, are demonstrated by fitting the MNIG to real world wideband synthetic aperture sonar data.en_GB
dc.language.isoenen_GB
dc.titleThe Multivariate Normal Inverse Gaussian distribution: EM-estimation and analysis of synthetic aperture sonar dataen_GB
dc.typeArticleen_GB
dc.date.updated2017-09-29T12:10:10Z
dc.identifier.cristinID1462781
dc.identifier.cristinID1462781
dc.source.issn2219-5491
dc.type.documentJournal article
dc.relation.journalEuropean Signal Processing Conference


Files in this item

This item appears in the following Collection(s)

Show simple item record