Show simple item record

dc.contributor.authorKadek, Mariusen_GB
dc.contributor.authorWang, Baokaien_GB
dc.contributor.authorJoosten, Marcen_GB
dc.contributor.authorChiu, Wei-Chien_GB
dc.contributor.authorMairesse, Francoisen_GB
dc.contributor.authorRepisky, Michalen_GB
dc.contributor.authorRuud, Kennethen_GB
dc.contributor.authorBansil, Arunen_GB
dc.date.accessioned2023-06-07T07:57:21Z
dc.date.accessioned2024-02-29T07:19:15Z
dc.date.available2023-06-07T07:57:21Z
dc.date.available2024-02-29T07:19:15Z
dc.date.issued2023-06-02
dc.identifier.citationKadek M, Wang, Joosten M, Chiu, Mairesse, Repisky M, Ruud K, Bansil A. Band structures and Z2 invariants of two-dimensional transition metal dichalcogenide monolayers from fully relativistic Dirac-Kohn-Sham theory using Gaussian-type orbitals. PHYSICAL REVIEW MATERIALS. 2023;7:064001en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3268
dc.descriptionKadek, Marius; Wang, Baokai; Joosten, Marc; Chiu, Wei-Chi; Mairesse, Francois; Repisky, Michal; Ruud, Kenneth; Bansil, Arun. Band structures and Z2 invariants of two-dimensional transition metal dichalcogenide monolayers from fully relativistic Dirac-Kohn-Sham theory using Gaussian-type orbitals. PHYSICAL REVIEW MATERIALS 2023 ;Volum 7en_GB
dc.description.abstractTwo-dimensional (2D) materials exhibit a wide range of remarkable phenomena, many of which owe their existence to the relativistic spin-orbit coupling (SOC) effects. To understand and predict properties of materials containing heavy elements, such as the transition-metal dichalcogenides (TMDs), relativistic effects must be taken into account in first-principles calculations. We present an all-electron method based on the four-component Dirac Hamiltonian and Gaussian-type orbitals (GTOs) that overcomes complications associated with linear dependencies and ill-conditioned matrices that arise when diffuse functions are included in the basis. Until now, there has been no systematic study of the convergence of GTO basis sets for periodic solids either at the nonrelativistic or the relativistic level. Here we provide such a study of relativistic band structures of the 2D TMDs in the hexagonal (2H), tetragonal (1T), and distorted tetragonal (1T') structures, along with a discussion of their SOC-driven properties (Rashba splitting and Z 2 topological invariants). We demonstrate the viability of our approach even when large basis sets with multiple basis functions involving various valence orbitals (denoted triple- and quadruple- ζ ) are used in the relativistic regime. Our method does not require the use of pseudopotentials and provides access to all electronic states within the same framework. Our study paves the way for direct studies of material properties, such as the parameters in spin Hamiltonians, that depend heavily on the electron density near atomic nuclei where relativistic and SOC effects are the strongest.en_GB
dc.language.isoenen_GB
dc.subjectKvantekjemien_GB
dc.subjectKjemien_GB
dc.titleBand structures and Z2 invariants of two-dimensional transition metal dichalcogenide monolayers from fully relativistic Dirac-Kohn-Sham theory using Gaussian-type orbitalsen_GB
dc.date.updated2023-06-07T07:57:21Z
dc.identifier.cristinID2152472
dc.identifier.doi10.1103/PhysRevMaterials.7.064001
dc.relation.projectIDNorges forskningsråd: 262695
dc.relation.projectIDEC/H2020: 945478
dc.relation.projectIDNorges forskningsråd: 301864
dc.relation.projectIDNorges forskningsråd: 315822
dc.relation.projectIDSigma2: NN4654K
dc.source.issn2475-9953
dc.type.documentJournal article
dc.relation.journalPHYSICAL REVIEW MATERIALS


Files in this item

This item appears in the following Collection(s)

Show simple item record