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Band structures and Z2 invariants of two-dimensional transition metal dichalcogenide monolayers
from fully relativistic Dirac-Kohn-Sham theory using Gaussian-type orbitals
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Two-dimensional (2D) materials exhibit a wide range of remarkable phenomena, many of which owe
their existence to the relativistic spin-orbit coupling (SOC) effects. To understand and predict properties of
materials containing heavy elements, such as the transition-metal dichalcogenides (TMDs), relativistic effects
must be taken into account in first-principles calculations. We present an all-electron method based on the
four-component Dirac Hamiltonian and Gaussian-type orbitals (GTOs) that overcomes complications associated
with linear dependencies and ill-conditioned matrices that arise when diffuse functions are included in the basis.
Until now, there has been no systematic study of the convergence of GTO basis sets for periodic solids either at
the nonrelativistic or the relativistic level. Here we provide such a study of relativistic band structures of the 2D
TMDs in the hexagonal (2H), tetragonal (1T), and distorted tetragonal (1T’) structures, along with a discussion
of their SOC-driven properties (Rashba splitting and Z2 topological invariants). We demonstrate the viability
of our approach even when large basis sets with multiple basis functions involving various valence orbitals
(denoted triple- and quadruple-ζ ) are used in the relativistic regime. Our method does not require the use of
pseudopotentials and provides access to all electronic states within the same framework. Our study paves the
way for direct studies of material properties, such as the parameters in spin Hamiltonians, that depend heavily
on the electron density near atomic nuclei where relativistic and SOC effects are the strongest.
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I. INTRODUCTION

Two-dimensional (2D) materials [1,2] are solids in which
atoms or compounds are bound together by strong bonds (e.g.,
covalent or ionic) along two spatial dimensions, confining
electron transport to a plane. In the out-of-plane dimension,
weaker (van der Waals) forces enable the synthesis of mate-
rials with thicknesses of only a few atomic layers [3–6]. 2D
materials have recently become very attractive as they exhibit
remarkable transport [7,8], topological [9–11], thermoelectric
[12], and optoelectronic [13] properties that can be exploited
to develop novel devices for quantum computing [14,15],
field-effect transistors [16,17], low-power logic devices [18],
and strain-controllable light-emitting devices [19]. Advan-
tages of 2D materials over conventional solids stem from
their thin surfaces which enable considerable manipulation
of their properties that can be controlled using defects,
adatoms, and electric-field gating [20–22]. In addition, atom-
ically thin materials can be manually assembled to form
multilayered heterostructures [11,17,23,24] to combine func-
tionalities of individual layers [25].

*marius.kadek@uit.no

Monolayers of transition-metal dichalcogenides (TMDs)
[26] are 2D materials of type MX 2, where M is a transition-
metal atom (Mo, W,...), and X is a chalcogen atom (S,
Se, Te), and constitute basic building blocks for many het-
erostructures. TMDs host many exotic physical phenomena,
such as the quantum spin Hall (QSH) [11] and nonlinear
anomalous Hall [27] effects, higher-order topology [28], gi-
ant Rashba spin-splittings of valence bands [29], as well as
various correlated phases, e.g., charge density waves [30,31],
superconductivity and ferromagnetism [32]. TMDs typically
contain elements from the lower part of the periodic table,
where the relativistic theory of electrons is unavoidable. Many
interesting properties of the TMDs owe their existence to the
relativistic link between the spin and orbital degrees of free-
dom, i.e., the spin-orbit coupling (SOC) effects. The ability
to control and tune SOC in TMDs opens new possibilities for
spintronics and valleytronics devices based on nonmagnetic
materials, where spin is manipulated by electrical means only
[33–36]. Furthermore, SOC generates opposite effective Zee-
man fields at the K and K ′ valleys of the TMDs, which enables
formation of Cooper pairs and opens the possibility of ob-
serving topological superconductivity and Majorana fermions
[37,38]. Recently, antisite defects in TMDs were proposed
to be suitable for hosting solid-state spin qubits, where SOC
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enables transitions between different spin configurations re-
quired for qubit operations [39].

First-principles computational approaches enable system-
atic, parameter-free, material-specific predictions in novel
materials. However, due to the presence of heavy elements in
the TMDs, it is important that relativistic and SOC effects are
accounted for in the theoretical framework. In this connection,
the four-component (4c) Dirac Hamiltonian [40–42]

Ĥ =
(

V (r) cσ · π

cσ · π V (r) − 2c2

)
(1)

is the commonly accepted gold standard, which is exact
in the limit of noninteracting relativistic electrons. Here, σ

are the Pauli matrices, π ≡ −i∇ + A is the canonical mo-
mentum operator of the electron, c is the speed of light, and
atomic units (e = h̄ = me = 1) are used. The scalar and vector
potentials V and A, respectively, describe the interaction of
the electron with external electromagnetic fields, where V
typically contains interactions with the nuclear charges. The
lower components of the Dirac bispinor wave functions are
associated with the negative-energy states and various strate-
gies for their elimination lead to a number of approximate
two-component (2c) schemes [43,44].

The multiple wave-function components needed in rela-
tivistic simulations significantly increase the computational
cost as larger matrix and vector dimensions are involved.
Kohn-Sham (KS) density functional theory (DFT) [45,46]
brings relativistic calculations to an affordable level and re-
mains the method of choice for large solid-state systems
containing heavy elements. However, we note the work of
Yeh et al. [47] on the self-consistent GW method at the
relativistic 2c level of theory. In KS theory, the potential
in Eq. (1) also contains terms that depend on the electron
density and its gradient: the mean-field Coulomb potential
generated by other electrons, and the exchange-correlation
potential [41,48–51]. The relativistic corrections to the in-
stantaneous electron-electron Coulomb interactions are here
neglected. If SOC is treated self-consistently, expensive KS
Hamiltonian matrix constructions must be carried out in the
multicomponent regime. As a consequence, most internal
parts of quantum mechanical codes must be reconsidered and
adapted. A transparent theoretical formalism that isolates the
SOC terms, reduces computational cost, and simplifies the
implementation of fully relativistic theories can be achieved
using quaternion algebra [52–55].

The most commonly applied strategies incorporate SOC
in relativistic pseudopotentials and the related projector-
augmented wave methods [56–60], where the oscillating wave
function with complicated nodal structure in the core region
close to the nuclei is replaced by a smooth pseudo-wave-
function. However, all-electron approaches are necessary to
describe Rashba-like spin-splitting induced by distortions of
the wave function close to the nucleus [61], where nuclear
spins interact with the electrons [62], or in situations where
high accuracy is desired [63,64]. Linearized augmented plane-
wave (LAPW) [65–67] and full-potential linear muffin-tin
orbital (LMTO) [68–70] methods enable all-electron calcu-
lations by constructing muffin-tin spheres around all atoms
and expressing the all-electron wave functions using orbitals
inside these spheres and plane waves in the interstitial region.

In such cases, treatment of SOC must be handled separately in
the two distinct regions and is sometimes neglected outside of
the muffin-tin spheres. An alternative all-electron approach to
LAPW and LMTO can be formulated using a finite-element
basis set [71] or by expanding the Bloch wave functions
ψn(k; r) using linear combinations of atom-centered real-
space basis functions χμ(r). Techniques that employ various
choices for χμ, such as the numerical [72–74], Slater-type
[75,76], or Gaussian-type basis set [54,77], have been devel-
oped for periodic systems at the 4c [54,72,73] as well as the
approximate relativistic [74–77] levels of the theory.

In the 4c theory, the basis functions χμ(r) need to represent
Dirac bispinors, and the basis expansion of the 4c Bloch wave
functions ψn(k; r) takes the form

ψn(k; r) = 1√|K|
∑
R,μ

eik·Rχμ(r − R)cμ
n (k), (2)

where n is the band index, k is the reciprocal-space vector
(quasi-momentum), R denotes the Bravais lattice vector of
the respective unit cell in the translationally invariant system
(R = 0 is the reference unit cell), index μ runs over the scalar
basis functions in the unit cell, and the normalization constant
is the inverse square root of the volume of the primitive recip-
rocal unit cell |K|. The expansion coefficients cμ

n (k) and the
ground-state electronic structure are obtained by solving the
matrix form of the reciprocal-space Dirac-Kohn-Sham (DKS)
generalized eigenvalue equation

H (k)c(k) = S(k)c(k)ε(k), (3)

where ε(k) is the diagonal matrix of eigenvalues (band en-
ergies), and H (k) and S(k) are the reciprocal-space DKS
Hamiltonian and overlap matrices, respectively, with the
elements:

Hμμ′ (k) =
∑

R

eik·R
∫
R3

χ†
μ(r)Ĥχμ′ (r − R)d3r, (4a)

Sμμ′ (k) =
∑

R

eik·R
∫
R3

χ†
μ(r)χμ′ (r − R)d3r. (4b)

Due to the dependence of H (k) on the electron density and its
gradient that are determined from c(k), Eq. (3) must be solved
self-consistently, though the SOC terms are often neglected in
the self-consistency procedure and only included a posteriori
as a perturbation to save computational cost [78].

Our goal here is to provide an all-electron approach
for modeling heavy-element-containing 2D materials based
on the self-consistent treatment of SOC and Gaussian-type
orbitals (GTOs) commonly used in quantum chemistry cal-
culations of properties, electronic structures, and electron
correlations in molecules. The use of GTOs for solids offers
several advantages. For instance, a unified representation of
wave functions in a variety of systems (molecules, polymers,
2D materials, crystals) allows for building on the existing
quantum chemistry approaches, such as the accurate treatment
of correlation [79–82], reduced cost of evaluating the exact
exchange [83], and efficient algorithms that scale linearly
with system size [84,85]. In 2D materials that are only a
few atomic layers thick, Bloch functions are straightforwardly
constructed to satisfy the Bloch theorem only across the
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two periodic dimensions by explicitly restricting R and k in
Eq. (2) to 2D lattice vectors. As a consequence, the system is
not artificially replicated in the nonperiodic dimension. For
comparison with calculations employing plane waves, this
situation would correspond to the limit of infinitely large
vacuum layers (or zero hopping) between the replicated im-
ages. Finally, explicit self-consistent treatment of SOC for
all electronic states on an equal footing without adopting
the muffin-tin or pseudopotential approximations provides
a pathway for modeling x-ray absorption spectroscopy [86]
and magnetic response properties associated with nuclear
spins [87,88].

Modelling solid-state systems with GTOs in the non-
relativistic framework was pioneered by Pisani and Dovesi
[89–91], later joined by several other groups [84,85,92]. How-
ever, standard GTO basis sets are constructed by optimizing
calculations on atoms and thus contain basis functions with
small exponents to describe the asymptotic behavior of the
atomic wave functions. These diffuse functions severely ham-
per the application of GTOs to solids and cause numerical
instabilities [84,93–95]. The numerical issues can be circum-
vented by removing the most diffuse basis functions at the
start of the calculation [96–98] or by constructing system-
specific basis sets using reoptimized Gaussian exponents and
contraction coefficients [94,99]. The former strategy risks pro-
ducing low quality results [54,100] whereas the latter strategy
sacrifices the transferability of the so-constructed basis sets
and requires availability of advanced code features (basis set
optimization). Preoptimized all-electron basis sets are also not
available for heavy elements [94]. The importance of numer-
ical stability is even more pronounced in relativistic theories
where the additional wave-function components increase the
variational freedom, and the restricted kinetic balance (RKB)
condition [101] must be satisfied to prevent the collapse of the
spectral gap between the positive- and negative-energy states.

In this paper, we demonstrate that accurate and converged
results can be obtained for 2D TMD monolayers in various
structural phases using commonly available all-electron va-
lence triple-ζ basis sets in the fully relativistic framework
without the need for modifying or reoptimizing the basis
functions. Our approach builds on the quaternion algebra-
based theory [54] implemented here with careful numerical
considerations to ensure robustness of the implementation
and the resolution-of-the-identity (RI) approximation for the
Coulomb four-center integrals [102–104] that reduces the
computational cost of otherwise time-consuming calculations
by more than three orders of magnitude. We show how the
canonical orthogonalization can be used to construct numeri-
cally well-behaved orthonormal bases in momentum space in
the 4c setting and derive a criterion for assessing the quality
of the RKB condition in such bases. We discuss a parallel al-
gorithm for the electronic structure solver exhibiting minimal
input/output (IO) disk communication and memory overhead
that is applicable to unit cells with several thousand basis
functions and thousands of k points. The method presented
here is implemented in the RESPECT code [55] and used to
calculate the band structures of the hexagonal (2H), tetragonal
(1T), and distorted tetragonal (1T’) phases of selected TMDs.
For the 1T’ phase, we evaluate the Z2 invariant within our
real-space GTO-based scheme and confirm the findings of

Qian et al. [11] that the 1T’ phase of MX 2 is topologically
nontrivial.

II. METHODS

A. Construction of orthonormal momentum-space basis

Throughout this section, we assume Einstein’s implicit
summation over doubly repeating indices.

In order to avoid variational collapse associated with an in-
complete basis representation of the lower components of the
wave function [105] and to obtain the correct nonrelativistic
limit of the kinetic energy operator in a finite basis, we impose
the RKB condition [101] for the basis bispinors χμ(r) in real
space. Hence, we require that [43,49,53,55,106,107]

χμ(r) ≡
(
I2 02

02
1
2c σ · p

)
gμ(r − Aμ), (5)

where I2 is the 2 × 2 identity matrix, p ≡ −i∇ is the elec-
tron momentum operator, and gμ are scalar basis functions
centered on atomic positions Aμ. Due to the multicomponent
structure of Ĥ and χμ, Hμμ′ and Sμμ′ in Eq. (4) are 4 × 4
complex matrices for each pair μ,μ′ and for each k. For the
functions gμ, we choose the primitive spherical GTOs

gμ(r) ≡ NYlm(ϑ, ϕ)e−αr2
, (6)

where N is the normalization constant, α is the Gaussian ex-
ponent, and Ylm(ϑ, ϕ) are the spherical harmonics. The GTO
basis is commonly implemented in many quantum chemistry
codes [91,92,108–112]. For computational reasons, integrals
in Eqs. (4) are evaluated analytically by solving recurrence
relations [113] formulated in terms of the Cartesian GTOs
[114]. The resulting integrals are then transformed to spherical
GTOs.

To construct an orthonormal basis in momentum space, let
us first define a nonorthogonal basis from χμR(r) ≡ χμ(r −
R) as

χμ(k) = 1√|K|
∑

R

eik·RχμR. (7)

A new basis is obtained using the transformation:

ϕp(k) = χμ(k)Bμ
p (k). (8)

From here, for clarity, we drop the dependence of all matrices
on k. The matrix B can be chosen so that ϕp are orthonormal,
i.e., B†SB = I. We perform the canonical orthogonalization,

B = Us−1/2	, (9)

where U is the unitary matrix of eigenvectors and s is the di-
agonal matrix of eigenvalues, both obtained by diagonalizing
the overlap matrix S. 	 is a rectangular matrix consisting of
the square identity matrix and zero rows that correspond to the
basis functions that are projected out. In case no projections
are required, 	 is simply the identity matrix.

In the relativistic 4c theory, χμ take the bispinor form of
Eq. (5), and the Bμ

p become 4 × 4 matrices for each μ, p.
However, let us now consider a general basis set of bispinors
χμ with χL

μ and χS
μ denoting the 2 × 2 large (upper) and

small (lower) components of the basis, respectively. Similarly,
let ϕL

p ≡ χL
μX μ

p and ϕS
p ≡ χS

μY μ
p denote the transformed (e.g.,
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orthonormalized) large and small components of the basis,
respectively, X and Y forming a block-diagonal matrix B in
Eq. (8). The DKS Hamiltonian takes the matrix form:

H =
(

VLL c
LS

c
SL VSS − 2c2SSS

)
, (10)

where VLL, VSS, 
LS, and 
SL are the matrix representations
of their respective operators in the χμ basis, and SSS is the
overlap matrix for the small-component basis. Ensuring nu-
merical stability requires projecting out basis functions ϕL

p and
ϕS

p corresponding to the smallest eigenvalues of the 4c overlap
matrix. At the same time, removing ϕS

p functions degrades the
RKB condition that is no longer satisfied exactly in the new
basis, which can lead to the emergence of artificial in-gap
states. Here, we proceed by showing how we numerically
track this basis truncation error. First, we express the RKB
condition in the matrix form using the arbitrary basis χμ. If we
write the 4c eigenvalue problem with the Hamiltonian matrix
in Eq. (10) and eliminate the small-component wave-function
coefficients, we obtain[

VLL + 1
2
LSB−1

SS (ε)
SL
]
cL = εSLLcL, (11)

where

BSS (ε) = SSS + εSSS − VSS

2c2
, (12)

cL are the coefficients of the large component of the wave
function, and ε is the one-electron energy. Imposing the re-
quirement that the nonrelativistic Hamiltonian is recovered in
the limit c → ∞ gives the following condition:

TLL = 1
2
LSS−1

SS 
SL, (13)

where TLL is the nonrelativistic kinetic energy matrix in the
basis of the large component. We note that the choice of
bispinors χμ, as in Eq. (5), satisfies Eq. (13) analytically, since

LS = 
SL = 1

c TLL and SSS = 1
2c2 TLL. In the transformed ba-

sis ϕp, Eq. (13) reads

X †TLLX = 1
2 X †
LSY (Y †SSSY )−1Y †
SLX. (14)

This RKB condition remains valid as long as two conditions
are met: the former basis χμ satisfies Eq. (13), and the inverse
Y −1 exists, i.e., the new basis spans the same space as the
original one. By requiring that the new basis is orthonormal
(Y †SSSY = I), this condition simplifies to

X †TLLX = 1
2 X †
LSYY †
SLX, (15)

and the existence of Y −1 implies that S−1
SS = YY †. However,

orthonormalization procedures that involve removing eigen-
vectors in the orthonormal basis of ϕS

p by using a rectangular
	 in Eq. (9) do not generally preserve the RKB condition.
Hence, in the 4c framework, improving the conditioning of
matrices by projecting out redundant basis functions can sac-
rifice the RKB between the L and S components.

To assess the quality of the orthonormal basis for the lower
components of the wave function, we calculate how much of
the RKB condition is lost by the transformation to the reduced
orthonormal basis. To this end, we evaluate

e = max

[
X †

(
1

2c2
TLLYY †TLL − TLL

)
X

]
, (16)

for each k. Here, max indicates the largest matrix element.
We found that large values of e (>10−5) could be associated
with the emergence of artificial states in the band structure.
To keep the error in the RKB small, for every ϕS

p function
that is projected out, we also remove the corresponding ϕL

p
function regardless of how large the eigenvalue of the overlap
matrix SLL is for this function. This means that the ϕL

p must
be removed even if it is not causing overcompleteness of
the large-component subspace. We note that these measures
are necessary for moderately sized (triple-ζ and quadruple-ζ )
basis sets, but the numerical issues are not observed in case
the smaller double-ζ basis are used. Finally, the process of or-
thonormalization and removal of redundant functions heavily
depends on k, so the implementation of the electronic struc-
ture solver must have the flexibility to account for matrices
with different sizes for each k.

B. Parallel electronic structure solver

Construction of the ground-state one-electron wave func-
tions within the self-consistent field (SCF) theory consists
of two distinct steps that are iterated repeatedly until self-
consistency is reached. The DKS Hamiltonian and overlap
matrices in Eqs. (4) are first assembled in real space using the
GTO basis. These are then transformed to reciprocal space,
and Eq. (3) is solved in the orthonormal basis using matrix
algebra (multiplications and diagonalizations). Large-scale
or high-throughput calculations of band structures of solids
require efficient algorithms that offer good (ideally linear)
scaling with respect to the number of computer cores used
as well as the size of the unit cell. This must be accomplished
for both of the SCF solver steps. The demand for efficiency
is especially important for all-electron 4c calculations, where
the matrix sizes are much larger and even otherwise negligible
matrix operations become time consuming.

Evaluation of the DKS Hamiltonian matrix elements is
dominated by the electron-electron Coulomb contributions
for DFT simulations with pure exchange-correlation func-
tionals. We adopt the resolution-of-the-identity (RI) approach
[102–104] (also known as the density fitting procedure) com-
bined with multipole expansions [85,115] to significantly
reduce the overall cost of computing the Coulomb terms.
The RI method approximates the electron density by a linear
combination of auxiliary basis functions centered on atoms,
as opposed to the exact treatment of the four-center Coulomb
integrals where the orbital products that constitute the den-
sity are expanded individually. Our RI implementation differs
from earlier work [85,116]. The theoretical challenges associ-
ated with the divergent terms in the Coulomb metric matrix of
periodic systems together with details of our RI method will
be presented elsewhere.

Once the real-space matrix elements are calculated,
the remaining steps—transformation to reciprocal space,
orthonormalization procedure, matrix diagonalization—is
performed independently for each k. We exploit factorization
of the reciprocal-space tasks by employing message-passing-
interface (MPI) directives which allow high level of paral-
lelization to be achieved due to almost no communication
needed among various MPI processes. Each process utilizes
multiple OpenMP threads when calling internally parallelized

064001-4



BAND STRUCTURES AND Z2 INVARIANTS … PHYSICAL REVIEW MATERIALS 7, 064001 (2023)

matrix libraries. However, in order to construct the electron
density,

ρ(r) =
∑

n

∫
K

fn(k)ψ†
n (k; r)ψn(k; r)d3k, (17)

where fn(k) is the occupation number of the n-th band and
ψn(k; r) are the Bloch functions defined in Eq. (2). Band ener-
gies εn(k), from which the occupations are determined, must
be known for all k. Hence, the evaluation of the electron den-
sity (needed for subsequent SCF iterations) occurs after all the
wave-function coefficients cμ

n (k) and energies are found. In
the all-electron 4c framework, the coefficient matrices are too
large to be stored in memory for all k and storing the matrices
on disk hampers the MPI parallelization due to significantly
increased I/O communication. To this end, we partition the
electron density into two terms:

ρ(r) = ρc(r) + ρv(r), (18)

where for ρc, we restrict the sum
∑

n in Eq. (17) to contain
only those bands that are assumed to be fully filled ( fn(k) = 1)
during the entire SCF procedure. ρc contains contributions to
the electron density from the majority of bands—these terms
are evaluated on-the-fly after diagonalization independently
for each k point without the need to store the full coefficient
matrices. The remaining terms in the density are incorporated
in ρv and calculated in a separate loop over k after all εn(k)
and fn(k) are known, which allows for a small number of
partially filled bands [ fn(k) to be varied across k]. The coef-
ficients cμ

n (k) needed for ρv can be stored in memory as they
form narrow rectangular matrices with only one dimension
increasing with the system size. In addition, each MPI process
only needs to keep the coefficients for the subset of k points
that the process handles, which is advantageous for multinode
calculations within the distributed-memory architectures since
the coefficients do not need to be shared or communicated
among nodes. The parallel scheme described here enables
seamless all-electron fully relativistic 4c calculations of band
structures and density-of-states with a large number of k
points using thousands of cores.

C. Evaluation of Z2 invariant

The QSH phase of 2D materials with time-reversal sym-
metry is characterized by a nontrivial topological order
associated with a nonzero Z2 index [117]. Identification
of topological materials from numerical simulations is not
straightforward [118]. However, for systems with inversion
symmetry, the calculation of the Z2 invariant can be simplified
using Fu and Kane’s method [119] based on the knowledge of
the parity of the Bloch wave functions of the bulk crystal at
the time-reversal invariant momenta (TRIM) of the Brillouin
zone. In this section, we describe how the Z2 invariant is
calculated in the 4c real-space GTO basis.

First, we discuss the construction of the momentum-space
parity operator Pμμ′ (k). Let I denote the space-inversion op-
erator with the inversion center at G, defined by its action
on a scalar function f as I f (r) ≡ f (2G − r). From the re-
quirement that the parity-transformed bispinor wave function
ψ (r, t ) satisfies the same Dirac equation, it is possible to

identify the form of the 4c parity operator P̂ as

P̂ψ (r, t ) = ηβψ (2G − r, t ) ≡ ηβIψ (r, t ), (19)

where β = diag(I2,−I2) and η is an arbitrary phase factor
(|η| = 1) that can be introduced by the parity transformation.
Neglecting the phase gives P̂ = βI. The 4c matrix form of the
parity operator is obtained by realizing that IpI† = −p and
letting P̂ act on the RKB basis in Eq. (5), i.e.,

P̂χμ ≡ P̂

(
I2 02

02
1
2c σ · p

)
gμ =

(
I2 02

02
1
2c σ · p

)
Igμ. (20)

It follows that the parity matrix Pμμ′ (k) can be obtained using
Eq. (4b) for the overlap matrix with an additional application
of the inversion I on the scalar basis function gμ′ . For an
orbital from Eq. (6) with angular momentum number l that
is centered at A (which here denotes the position of an atom
Aμ in a unit cell R), this inversion gives

Igμ(r − A) = (−1)l gμ(r + A − 2G). (21)

Finally, the Z2 invariant is calculated using the eigenvalues
ξ2m of the parity Pμμ′ (k) as [119]

(−1)ν =
4∏

i=1

N∏
m=1

ξ2m(�i), (22)

where N is the number of occupied Kramers pairs, and �i

labels the four TRIM points in 2D.
We conclude this section by noting a few considerations re-

quired for a numerically stable and reliable calculation of the
parity matrix and its eigenvalues when using the method de-
scribed above. First, the sparse matrix storage scheme outlined
in Sec. II A based on the locality of basis function products
χ†

μ(r)χμ′ (r − R) needs to be modified to respect the nonlocal
nature of the inversion operator. Specifically, the list of signif-
icant elements of the inversion matrix is not the same as for
the overlap matrix but it is related via a reflection. Likewise,
it must be ensured that the atomic basis set chosen for the
inversion-equivalent atoms is the same. Finally, it is not auto-
matically guaranteed that the Bloch functions in Eq. (2) that
are solutions of the DKS equation are also eigenfunctions of
the parity operator for Bloch states with degenerate energies.
Parity eigenvalues can be obtained by diagonalizing the sub-
blocks of the parity matrix that correspond to these degenerate
energy levels. However, in numerical simulations, energy val-
ues obtained from diagonalization routines are not necessarily
exactly degenerate, but rather appear as near-degenerate. At
the same time, eigenvectors corresponding to these near-
degenerate levels are not uniquely defined, so an energy
threshold must be introduced to identify the degeneracies.

III. RESULTS AND DISCUSSION

We calculated the electronic band structures of six TMDs
(MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2) in the 2H, 1T, and
1T’ structural phases using our 4c all-electron GTO method.
We compared our 2H and 1T results with the correspond-
ing band structures presented in Ref. [6] obtained from the
method of Te Velde and Baerends [120]. For the 1T’ phase,
we used the VASP program package [121] to investigate how
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our all-electron method performs compared to the pseudopo-
tential approximation. Due to the presence of heavy atoms,
all TMDs considered exhibit significant scalar relativistic and
SOC effects. We investigated three different levels of theory:
nonrelativistic (nr) with infinite speed of light, Dirac-based
4c scalar relativistic (sr) without SOC, and the Dirac-based
4c fully relativistic (fr) with SOC included. In all our cal-
culations, we employed the nonrelativistic GGA-type XC
functional PBE [122]. For the 4c calculations, the Gaussian
finite nucleus model of Visscher and Dyall [123] was used
instead of the point nuclei in order to regularize the singularity
of the lower components of the wave function evaluated at
the atomic centers. All electronic structure optimizations were
performed using the relaxed unit cell geometries taken from
Refs. [6] (2H and 1T phases) and [11] (1T’ phase). For the
momentum-space Brillouin zone integrations, we used the
�-centered mesh of k points of 11 × 11 for the 2H and 1T’
phases and 33 × 33 for the metallic 1T phase. When compar-
ing the band structures ε(1)

n (k) and ε(2)
n (k) obtained by using

two different methods or computational settings, we evaluate
the maximum difference between the energy eigenvalues as
well as the root-mean-square deviation (“band delta”) [78],

�b(W ) =
√√√√√√

1

NE

∑
k,n

ε(1)
n (k)∈W

ε(2)
n (k)∈W

(
ε

(1)
n (k) − ε

(2)
n (k)

)2
, (23)

where W = [εl, εu] is an energy window chosen for compar-
ison, the summations run over all energy states along a path
of k points for which both ε(1)

n (k) and ε(2)
n (k) lie inside the

window W , and NE is the total number of such states.

A. Numerical and basis-set accuracy

Numerical instabilities in simulations involving periodic
systems with GTOs originate from two distinct, albeit re-
lated, reasons [84,93]. First, the numerical accuracy of the KS
Hamiltonian matrix can be insufficient when various approx-
imations necessary for solid-state simulations are introduced
for basis sets with diffuse functions. Diffuse basis functions
can extend over a very large number of unit cells, and the
overlaps between such functions exhibit a much slower de-
cay than their more localized counterparts. If these overlaps
are neglected too early in calculations, the summations in
Eqs. (4) are not converged, causing the overlap matrix Sμμ′ (k)
to be indefinite, i.e., having negative eigenvalues. This prob-
lem can be mitigated by including a large number of basis
function products χ†

μ(r)χμ′ (r − R), which in turn increases
the memory requirements for storage of matrices. To this end,
in the periodic module of RESPECT, we implemented sparse
data structures in real space in combination with quaternion
algebra to efficiently handle spin-orbit-coupled wave-function
components. This versatile approach allows us to retain the
accuracy necessary for numerical robustness with a very small
additional memory footprint.

The second problem is associated with overcompleteness
(linear dependencies) of the basis that causes matrices in
Eq. (3) to be ill-conditioned and introduces errors and instabil-
ities in matrix operations. This occurs when the eigenvalues of
the momentum-space overlap matrix drop below 10−7, which

is often the case for larger basis sets. For instance, the smallest
eigenvalue of the overlap matrix of WTe2 in the 1T’ phase is
10−11, while the remaining eigenvalues span over 12 orders of
magnitude. As a result, very large elements ∼108 accumulate
in the density matrix, which prohibits the successful comple-
tion of the ground-state convergence procedure. To avoid such
errors, we construct an orthonormal basis so that the redun-
dant basis functions are projected out. However, we found that
truncating the space spanned by orthonormal basis functions
used for describing the lower wave-function components leads
to the formation of artificial states inside the band gap for
some k points in the band structure. This can be understood by
realizing that the RKB condition is violated by the truncation
process. To numerically control how much of the RKB is lost,
we derived the matrix form of the RKB condition in a general
basis and the expression for the truncation error. More details
on the process of constructing the orthonormal basis in the 4c
framework is described in Sec. II A.

For all atoms, we employed the relativistic triple-ζ (TZ)
basis sets developed by Dyall for d [124–126] and p ele-
ments [127,128]. The basis sets used were uncontracted and
contained high-angular momentum correlating functions for
several outer shells and functions for dipole polarization of
the valence shells. Our initial tests using the smaller double-ζ
(DZ) basis from the same family yielded results with incon-
sistent quality across k points, for instance, the band energy
at the M point of 2H MoS2 was improved by 20 meV when
the TZ basis was used, while for other k points, this difference
was only about 6 meV. Similarly, the differences in the band
structures of 2H WS2 (including the band gap) between the
DZ and TZ basis sets were 20-30 meV. Hence, to ensure that
our results are well-converged for all k points and that the tar-
get accuracy is sufficient for reliable comparisons with other
methods, we chose the TZ basis in all calculations reported
here.

The basis sets employed contained very diffuse functions
with several exponents of <10−2 a.u. The extent of the most
diffuse function on Mo and W was 18.2 and 17.2 Å, re-
spectively, causing the basis function to span more than a
hundred unit cells of the 2D film. This in turn results in
several hundred thousand charge distributions interacting with
themselves and their periodic replicas when the four-center
Coulomb integrals are evaluated. Such calculations are cur-
rently unfeasible on common supercomputers as they can
consume a notable portion of allocated resources. However,
within the RI approximation, the charge distributions only
interact with the electron density that is expanded using an
atom-centered auxiliary basis. Since the number of the three-
center terms needed is smaller than the number of four-center
terms typically by three orders of magnitude, the evaluation
of the Coulomb operator becomes affordable. Tests that we
performed on various systems including selected 2H and 1T’
structures studied here in both the nr and fr settings indicate
that the maximum error introduced by the RI approximation
is very small—only a few tens of μeV.

Our implementation allowed us to explore the validity of
removing diffuse functions from the GTO basis sets before
starting the electronic-structure optimization—an approach
that is commonly employed for accelerating and numeri-
cally stabilizing calculations of periodic systems using GTOs
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FIG. 1. Relative total energy of the 1T’ phase of TMD mono-
layers per MX 2 calculated with respect to the 2H phase. The results
were obtained for nr, sr, and fr Hamiltonians and show the relativistic
effects on the structural stability.

[96–98]. From the TZ basis sets, we deleted all exponents
< 0.1 which for most atoms meant removing one to two
functions in each of the s, p, d , and f shells. Even though
this modification reduced the computational cost by a factor
between five and six in case of the nr theory and a factor of
four in case of the 4c theory, we observed lowered accuracy
of the eigenenergies of some bands and k points. For instance,
the difference between the energy of the � point of the valence
band of 2H WTe2 obtained from the calculations using the
truncated and full basis sets was 0.1 eV. The virtual bands
located 2.5 eV above the Fermi level were, in general, poorly
described with the truncated basis set. Hence, our results in-
dicate that removing the diffuse functions in the start of the
calculation is neither justified nor necessary.

B. Stability of phases

Before inspecting individual structural phases and validat-
ing our approach, we compare the total energies of each phase.
Our results confirm the findings of Qian et al. [11]—for all
systems except WTe2, the 2H phase was found to be the
ground-state structure with the lowest energy, followed by
the higher-energy 1T’ phase. The metallic 1T phase is ther-
modynamically unstable and the systems undergo Jahn-Teller
distortion, relaxing to the 1T’ phase [11]. In the case of WTe2,
the energy of the 1T’ phase is below the 2H phase, which
makes 1T’ the most stable phase.

Our study allows for a uniform treatment of relativistic
effects for all atoms and all electrons, as opposed to the calcu-
lations employing pseudopotentials, which offer less control
over how relativity is handled for light and heavy elements.
We found that it is the inclusion of the scalar relativistic effects
that decreases the energy of the 1T’ phase with respect to the
2H phase. Including the SOC further lowers the energy of the
1T’ phase. For the heaviest system, WTe2, this energy lower-
ing becomes sufficient to change the ground-state phase from
2H to 1T’. Figure 1 summarizes our results for all systems at
the nr, sr, and fr levels of theory and shows the relative energy
differences between the 1T’ and 2H phases. Hence, without

relativistic effects, the ground-state structure of all six systems
would be 2H.

C. 2H and 1T phases

The 2H and 1T phases of the TMDs both contain three
atoms (one metal and two chalcogens) in the primitive unit
cell. However, the structural differences between the two
phases lead to their distinct electronic properties. Whereas
the 1T phase is space-inversion-symmetric with a metallic
electronic structure, the 2H systems are semiconductors with
broken space inversion. In combination with the strong SOC,
this broken inversion symmetry leads to “giant” spin-orbit-
induced Rashba splittings in 2H MX 2 [29].

To validate the approach presented in this work, we calcu-
lated the band structures at the nr, sr, and fr levels of theory
using all-electron bases. The resulting band diagrams travers-
ing high symmetry k points obtained with and without SOC
can be found in Figs. S1 (2H) and S2 (1T) in Ref. [130]. The
nonrelativistic results differ significantly from those obtained
from the relativistic theories and are not shown. For the 2H
and 1T phases, sr band structures are available in the 2D
materials Atlas of Miró, Audiffred, and Heine [6] that we used
for comparison. We conclude that our results agree very well
at the sr level with the Atlas results.

In the MoTe2 and WTe2 band structures of the 1T phase
shown in Fig. S2 [130], it is possible to see very small SOC-
induced “Rashba-like” spin splittings of the order of tens of
meV. However, such splittings should not be present for the
inversion-symmetric 1T phase, and all the bands should be
strictly doubly degenerate. We found that this observation can
be attributed to small deviations (about 0.04 Å) in the unit cell
geometry of MoTe2 and WTe2 from the tetragonal lattice, that
is, the 1T structure used does not exhibit exact inversion sym-
metry. The geometries of the other systems do not show any
deviations from 1T, and we observed exact double degeneracy
of bands. Finally, we note that including the SOC in the com-
putational framework lifted the degeneracy at the intersection
points of the overlapping valence and conduction bands of the
metallic 1T phase. The values of the SOC-induced vertical
gaps at the K point are reported in Table SI of Ref. [130].

Table I contains the values of the nr, sr, and fr band gaps of
the 2H phase, as well as the Rashba splittings of the valence
band at the K point. We attribute the small discrepancies
between the results obtained with the method presented here
and the Atlas approach to differences in the methodologies.
In the Atlas work, the relativistic effects are treated with the
zeroth-order regular approximation (ZORA) [131], which is a
2c technique that requires numerical integration schemes due
to the appearance of the potential in the denominator of the
Hamiltonian. In contrast, the Hamiltonian used here is 4c with
most of the integrals evaluated analytically. The basis sets
employed should not cause any significant deviations, since
both sets of calculations were carried out with TZ quality
bases with several polarization functions. Finally, we note that
the Atlas results included empirical D3 treatment of London
dispersion interactions [132] that we did not consider in this
work. The fact that no larger differences between the two ap-
proaches were observed even when the dispersion corrections
were omitted indicates that the band gaps in thin monolayers
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TABLE I. Band gaps and SOC-induced (Rashba) splitting of the
valence band at the K point of TMD monolayers in the 2H phase
calculated for nr, sr, and fr Hamiltonians. The values in the round
and square brackets are taken from Refs. [6] and [129], respectively.

Band gap (Eg, eV) Rashba splitting (eV)

nr sr fr fr

MoS2 1.820 1.812 1.734 0.146
(1.82) (1.74) [0.147]

MoSe2 1.560 1.550 1.442 0.185
(1.56) (1.45) [0.186]

MoTe2 1.171 1.154 1.018 0.218
(1.15) (1.01)

WS2 2.060 1.984 1.628 0.416
(1.98) (1.64) [0.433]

WSe2 1.741 1.630 1.300 0.460
(1.63) (1.33) [0.463]

WTe2 1.332 1.194 0.863 0.479
(1.18) (0.87)

are dominated by covalent bonds, which are well described
without these corrections. However, the dispersion forces are
important when multiple layers of 2D materials are held to-
gether by van der Waals forces as, for example, in bilayers
and heterostructures [133]. In the case of WSe2, for which we
observed the largest difference of 30 meV in the fr setting,
we further benchmarked against a calculation with a larger
quadruple-ζ (QZ) basis set. The band energies improved only
marginally, i.e., by units of meV. Hence, we believe that our
band structures are well converged with respect to the basis
set as well as the relativistic Hamiltonian and should serve as
the reference results for these systems for the PBE functional.

D. 1T’ phase

The 1T’ phase of MX 2 is formed from the 1T struc-
ture by a spontaneous lattice distortion in which the
unit cell period is doubled along one in-plane direc-
tion, which creates zigzag chains along the perpendic-
ular in-plane direction [135] (see Fig. 2). The TMDs
were shown to host the QSH effect in the 1T’ struc-
ture, i.e., the existence of time-reversal-symmetry protected
edge states that enable conduction of electrical currents on
the surface of the material [11]. From a computational view-
point, the 1T’ phase has not been studied in the literature
to the same extent as the 2H and 1T counterparts. Here, we
calculated the electronic band structures of the 1T’ MX 2 using
the all-electron 4c method presented in this work as well

FIG. 2. Structure of the 1T’ phase of monolayer TMDs.

TABLE II. Root-mean-square deviation between the band struc-
tures of TMD monolayers obtained from the RESPECT and VASP

codes at the fr level of theory (including SOC) using Eq. (23). The
valence region Wval ranges from −10 to 0 eV (shifted to the Fermi
level) and the conduction region Wcon ranges from 0 to 5 eV.

Band delta (meV)
MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

�b(Wval ) 12.0 8.4 11.7 34.6 25.6 20.2
�b(Wcon) 40.5 28.4 32.8 26.2 23.4 42.0

as the pseudopotential method as implemented in the VASP

package [121]. For the VASP calculations, we used an energy
cutoff of 500 eV and the Brillouin zone k-point sampling
of 11 × 15 × 1. We also tested a denser mesh of k points
without observing significant differences. To avoid artificial
interactions between the periodic images of the MX 2 layers
that appear when 2D systems are studied using plane waves
with periodic boundary conditions, a vacuum region of 20 Å
was applied in the direction perpendicular to the 2D film.

The band structures obtained from the RESPECT and VASP

codes with SOC are presented in Fig. 3. The values of the
band delta differences between the two codes are shown in
Table II, evaluated separately for the occupied (valence) and
virtual (conduction) energy regions. In general, the differences
are of the order of tens of meV and are larger in the virtual
region. The biggest discrepancies close to the Fermi level are
seen in WS2, while the overall largest band delta values are
found in MoS2 and WTe2. For comparison, we performed
tests of the numerical convergence of the GTO method by
tuning various parameters of the RESPECT code. In particular,
we modified the number of removed momentum-space basis
functions in the orthonormal basis (see Sec. II A), tightened
the lattice-sum convergence thresholds, as well as turned off
the RI approximation of the Coulomb integrals. Such modifi-
cations had a negligible effect on our GTO results; the band
delta values between the higher accuracy calculations and the
results shown here reached tens of μeV. Bigger differences
were observed only when we benchmarked the WS2 TZ cal-
culation against the QZ basis set. Still, the energies of the
bands close to the Fermi level changed by 1–6 meV, and the
values of the band deltas for the intervals −10 to 0 eV and 0
to 5 eV were �b(Wval ) ≈ 4 meV and �b(Wcon) ≈ 10 meV,
respectively. To conclude, despite the minor improvements
to the band structure that are possible when larger basis sets
are employed, our TZ results can be considered as the ref-
erence for benchmarking performance of other approximate
methods, for instance, for studying the accuracy of various
pseudopotentials.

We explored the topological nature of the 1T’ phase of the
MX 2 systems by first verifying that the band-gap opening is
due to the SOC. Fig. S3 in Ref. [130] shows that energy de-
generacies occurring at points where the valence band crosses
the conduction band are lifted when SOC is included. A band
gap opens in all systems except MoTe2 and WTe2 that remain
metallic despite the band inversion. The lattice distortion in
the 1T’ phase of the 2D TMDs does not break the inversion
symmetry. Hence, we used the parity of the Bloch states eval-
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FIG. 3. Comparison of band structures of MX 2 monolayers in the 1T’ phase obtained from the RESPECT (dashed lines) and VASP (full lines)
codes at the relativistic level of theory including SOC. From the top left to bottom right: MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2. The
horizontal dashed black line marks the Fermi level. The path traversing high-symmetry k points in the reciprocal-space unit cell was chosen
according to Ref. [134].

uated at the TRIM points to calculate the Z2 invariant [119].
Our results for the parities of the individual Kramers pairs
agree with those obtained by Qian et al. [11], which yields
(−1)ν = 1 for all six TMDs and confirms the existence of the
surface edge states hallmarking the quantum spin Hall phase.

IV. CONCLUSION AND OUTLOOK

2D TMDs are attracting high current interest for hosting
exotic phenomena that promise applications in spintronic de-
vices and quantum computing. Theoretical predictions and
understanding of such applications relies on accurate descrip-
tion of the relativistic effects driven by the presence of heavy
atoms in these materials. Accordingly, we have presented here
an all-electron approach that builds on the most widely used
basis sets in quantum chemistry to obtain a scheme that can
accurately capture relativistic effects as well as the proper-
ties of electron wave functions close to the nuclei within a
uniform theoretical framework applicable to both solids and
molecules.

GTOs provide a convenient link between the finite and
periodic or extended systems, yet their use for solids has been
met with many technical difficulties that sparked skepticism in
the community; it has even been suggested that GTOs should
be avoided altogether for condensed matter calculations [100].
However, in this work, we show how the common limitations
associated with GTOs can be overcome, and that the con-
vergence with respect to the basis-set limit is possible even
in the fully relativistic 4c setting. To mitigate numerical and
performance issues, our method is based on the quaternion al-
gebra, linear-scaling data structures, RI approximation of the
Coulomb integrals, orthonormal momentum-space bases that

sufficiently preserve the RKB condition, and a parallel elec-
tronic structure solver with minimal required IO operations.
Our in-depth analysis of the 2H, 1T, and 1T’ phases of 2D
TMDs indicates that our all-electron 4c results can serve as the
reference for developing pseudopotentials or approximate 2c
relativistic techniques. We confirm the existence of the quan-
tum spin Hall effect in the 1T’ phase of MX 2 by evaluating
the Z2 invariant within our real-space formulation. Finally, we
attribute the origin of the lower ground-state energy of WTe2

in the 1T’ compared to the 2H phase to (scalar) relativistic
effects.

Despite the good agreement between our band structures
for the 2H and 1T phases and those obtained by using the 2c
ZORA method [6], our 4c approach offers several advantages.
The exact Dirac Hamiltonian contains the mass-velocity term
that is missing in the ZORA approximation [43], but it is
important for an accurate description of relativistic effects in
heavy elements and for evaluating properties in the presence
of external magnetic fields [136]. Also, the 4c DKS equa-
tion does not contain the potential in the denominator, so that
complicated numerical integration of most integrals involved
can be avoided.

Our study is important for opening a pathway for further
developments that leverage quantum chemistry methods for
exploring properties that are strongly affected by the relativis-
tic effects without sacrificing access to the core regions of the
electron charge and spin densities. For instance, accurate rel-
ativistic first-principles calculations of the spin Hamiltonian
parameters (e.g., hyperfine coupling constants, Zeeman inter-
actions, or zero-field splittings) are needed for determining
spin dynamical properties of spin defects in semiconductors
[62] to help find viable qubit hosting materials. Our all-
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electron method can also be used for generating accurate
pseudopotentials, particularly for systems that contain heavy
elements in high oxidation states.

The data presented in this study as well as the scripts
used for pre- and postprocessing of the input and output files
are available in the ZENODO public repository [137]. The
RESPECT code used in this study is available upon a reasonable
request free of charge, see Ref. [138].
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