An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging
Abstract
Coregistration errors in multi- and hyperspectral imaging sensors arise when the spatial sensitivity pattern differs between bands or when the spectral response varies across the field of view, potentially leading to large errors in the recorded image data. In imaging spectrometers, spectral and spatial offset errors are customarily specified as “smile” and “keystone” distortions. However these characteristics do not account for errors resulting from variations in point spread function shape or spectral bandwidth. This paper proposes improved metrics for coregistration error both in the spatial and spectral dimensions. The metrics are essentially the integrated difference between point spread functions. It is shown that these metrics correspond to an upper bound on the error in image data. The metrics enable estimation of actual data errors for a given image, and can be used as part of the merit function in optical design optimization, as well as for benchmarking of spectral image sensors.
URI
http://hdl.handle.net/20.500.12242/15https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/15
Description
Skauli, Torbjørn.
An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging. Optics Express 2012 ;Volum 20.(2) s. 918-933