Bluetooth security and threats
Abstract
English Summary
Since its birth in 1994, Bluetooth has gained increasingly higher popularity and acceptance. The
technology has now become a de facto standard for short range wireless communication, and
Bluetooth is applied in a diversity of devices including consumer electronics, health care,
transportation and in industry. Bluetooth is also anticipated to be used in military applications,
e.g. as a wireless link between a personal digital assistant (PDA) and a Harris long range radio.
The proliferation of the technology has naturally led to increased focus on the security as
information is transmitted over the unsecure wireless medium, and hence is vulnerable for a
variety of attacks including eavesdropping and denial-of-service (DoS) attacks. Due to the
popularity, the security in Bluetooth plays a very important role, first of all in public society, and
also, in a long term perspective, for the Armed Forces. This study gives an in-depth overview of
the security architecture and mechanisms of Bluetooth, as well as its weaknesses and
vulnerabilities.
Bluetooth has evolved over time in terms of capability and security. This is reflected through the
different Bluetooth specification versions: Bluetooth Classic, also referred to as Basic Rate/
Enhanced Data Rate (BR/EDR), Alternate MAC/PHY (AMP), and Low Energy (LE). In parallel,
the security in Bluetooth has gradually evolved in three phases, referred to as Legacy Security,
Secure Simple Pairing (SSP), and Secure Connections. In Legacy Security, the link key is derived
from the PIN code, which provides low entropy and hence vulnerability to exhaustive search
attacks. In SSP, important changes have been made in the security architecture in order to
improve the weaknesses seen in Legacy Security. Elliptic Curve Diffie-Hellman (ECDH) and
association models have been introduced (among others), which provide enhanced security,
increased user friendliness, and stronger protection against exhaustive attacks. The latest security
architecture, Secure Connections, is based on SSP. The difference is that Secure Connections
utilizes even stronger and more secure cryptographic algorithms compared to SSP. Additionally,
it also supports integrity protection.
A number of security breaches and threats have been discovered over the years. In the most
severe cases, an attacker may gain access to restricted data, or even worse, take complete control
of the target Bluetooth device, e.g. a mobile phone. These security threats are due to either
weaknesses in the security architecture (especially in earlier versions of the Bluetooth
specification), side-effects of design features, improper implementations by the manufacturers or
improper use by the user.
Most of the security threats and vulnerabilities discovered are probably obsolete since the
introduction of SSP. However, even though the security has been improved, there are still
weaknesses in the Bluetooth security architecture as documented in several publications. This is
due to the fact that it is very difficult to design a security architecture that is secure and user
friendly at the same time. Often, a compromise is made between security and usability. This is
also the case for Bluetooth. From a user point of view, it is important to be aware of the potential
risk and learn how to protect the Bluetooth device. Sammendrag
Siden unnfangelsen i 1994 har blåtann gradvis blitt mer populær og utbredt, og teknologien er nå
en de facto standard for trådløs kommunikasjon over kort rekkevidde. Blåtann anvendes i et
mangfold av innretninger innen områder som forbrukerelektronikk, helse, transport og industri.
Også i militær sammenheng ser en for seg mange ulike anvendelser. Et eksempel er bruken av
blåtann som trådløs forbindelse mellom en personlig digital assistent (PDA) og en Harris radio.
Utbredelsen av teknologien medfører større fokus på sikkerheten ettersom informasjon overføres
via et usikret trådløst medium som dermed er potensielt utsatt for ulike former for angrep, for
eksempel avlytting og tjenestenektangrep. Populariteten til blåtann gjør at sikkerheten spiller en
svært viktig rolle, først og fremst for det sivile samfunnet, men på sikt også for Forsvaret. Denne
studien tar for seg sikkerhetsarkitekturen og sikkerhetsmekanismer i blåtann samt dens svakheter
og sårbarheter.
Blåtann har utviklet seg over tid både med tanke på kapabilitet og sikkerhet. Dette gjenspeiles i de
ulike blåtannversjonene som finnes: Basic Rate/ Enhanced Data Rate (BR/EDR), Alternate
MAC/PHY (AMP) og Low Energy (LE). Parallelt har sikkerheten i blåtann utviklet seg gradvis i
tre faser, omtalt i spesifikasjonen som Legacy Security, Secure Simple Pairing (SSP) og Secure
Connections. I Legacy Security blir linknøkkelen utledet direkte fra pinkoden, hvilket resulterer i
lav entropi og sårbarhet for angrep basert på uttømmende søk. I SSP er det gjort viktige endringer
i sikkerhetsarkitekturen for å forbedre svakhetene i Legacy Security. Det er blant annet innført
Elliptic Curve Diffie-Hellman (ECDH) og assosiasjonsmodeller som gir bedre sikkerhet, økt
brukervennlighet og bedre beskyttelse mot angrep basert på uttømmende søk. Secure Connections
er i bunn basert på SSP. Forskjellen er at Secure Connections bruker enda sterkere og sikrere
kryptografiske algoritmer og i tillegg har støtte for integritetsbeskyttelse.
Sikkerhetsbrudd og -trusler har blitt oppdaget. I de mest alvorlige tilfellene kan en angriper
aksessere begrenset data eller ta fullstendig kontroll over blåtanninnretningen, eksempelvis en
mobiltelefon. Disse sikkerhetsbruddene og truslene har oppstått på grunn av svakheter i
sikkerhetsarkitekturen (spesielt i tidligere versjoner), bieffekter av design, feilimplementasjon fra
produsent og brukerfeil.
De fleste avdekkede sikkerhetssvakhetene i blåtann er trolig foreldet etter introduksjonen av SSP,
men til tross for vesentlige forbedringer er det fortsatt sårbarheter i sikkerhetsarkitekturen, noe
som er dokumentert i flere publikasjoner. Dette skyldes i hovedsak at det er svært vanskelig å
designe en sikkerhetsarkitektur som også er brukervennlig. I praksis blir det ofte et kompromiss
mellom sikkerhet og brukervennlighet, noe som også er tilfellet for blåtannteknologien. Sett fra et
brukerperspektiv er det derfor viktig å være klar over risikoen og lære hvordan en kan beskytte
enheter som kommuniserer via blåtann.