Tensor analysis applied to the equations of contiuum mechanics I
Abstract
The Navier-Stokes equations, the Euler equations, the equations of elasticity and expressions
derived from those, are in most cases treated in Cartesian coordinates. In some cases it can
necessary to handle those equations in other coordinate systems. In the cases of cylindrical
coordinates, for example in the description of the flow around acoustic antennas, it is natural
to use cylinder coordinates. In this report, we present the formalism necessary to handle the
mentioned equations and related expressions in generalized coordinates. The formalism include
tensor analysis, developed during 1850-1900 by Gregorio Ricci Kurbastro, Tullio Levi-Civita,
Sophus Lie and others. Albert Einstein used tensor analysis as the mathematical basis for the
General Theory of Relativity. In this report we will limit our self to describe the classical fluid
equations in generalized coordinates.
The tensor-theory can appear to be difficult and one can ask if it is necessary to go through
all these complicated calculations. Can’t they be found at the web or in standard collections
of formulas? We have looked for expressions, for example ∇ · (∇(ρT)), where T is the momentum
flux density tensor that appears in Lighthill’s equation. We could not find this derived
in cylinder coordinates and it was necessary to calculate it by hand to achieve our goals. In
the analysis of flow around an acoustic antenna, various tensors appear, for example the strain
rate tensor, structural tensors and tensorial expressions involved in the RANS equations, it was
necessary to follow the formalism of tensor analysis in detail.
With data given in cylinder coordinates, it is natural to do the analysis also in cylinder coordinates.
Physical components of both vectors and tensors are used in the physical interpretations
of the data.
Although the treatment in cylinder coordinates addressed in this report only is directly applicable
to a limited number of applications, the concept of tensor analysis is fundamental in
practically all applications of continuum mechanics. Navier-Stokes ligninger, Euler ligningene og elastisitets ligningene og uttrykk avledet av disse håndteres oftest i Cartesiske koordinater. Det kan likevel være avgjørende å kunne håndtere disse ligningene i andre koordinatsystemer, for eksempel i sylinder-koordinater i tilfellet strømning omkring eller i cylindriske rør, for eksempel strømning rundt akustiske antenner. I dene rapporten presenterer vi formalismen som må til for å uttrykke de nevnte ligningene i generaliserte koordinater. Formalismen omfatter tensoranalyse, som ble utviklet i tidsrommet 1850-1900 av Gregorio Ricci Kurbastro, Tullio Levi-Civita, Sophus Lie og andre. Albert Einstein benyttet tensor analysen som som matematisk fundament for generell relativitetsteori. I denne rapporten vil vi begrense oss til å beskrive de klassiske fluid ligningene i generaliserte koordinater. Tensor-teorien kan virke tung og vanskelig og en kan spørre seg om det er nødvendig å gjennomgå alle disse kompliserte regningene, at det ikke bare er å søke på “webben” eller i en standard formesamling etter nødvendige uttrykk. Vi har lett etter uttrykk som ∇ · (∇(ρT)), her er T er momentum-fluks-tetthets-tensoren. Uttrykket forekommer i Lighthill’s ligning. Vi fant ikke dette uttrykket i sylinderkoordinater og for å nå målet var det nødvendig å følge tensor analysens prosedyrer til punkt og prikke. I analysen av strøning omkring en akustisk antenne så inngår flere tensorer som for eksempel deformasjonsrate tensoren, struktur tensorer og tensorielle uttrykk som forekommer i RANS ligningene. Med data gitt i sylinder koordinater er det naturlig å gjennomføre analysen i sylinder koordinater. Fysikalske komponenter beregnes både for vektor og tensor under den fysiske tolkningen av dataene. Selv om behandlingen av cylinder koordianter i denne rapporten kun har begrenset anvendelse, er konseptene i tensor analyse av fundamental betydning i praktisk talt alle anvendelser av kontinumsmekanikk.