Show simple item record

dc.contributor.authorPalm, Hans Christian
dc.contributor.authorHaavardsholm, Trym Vegard
dc.contributor.authorAjer, Halvor
dc.contributor.authorJensen, Cathrine V.
dc.date.accessioned2017-10-31T08:48:59Z
dc.date.accessioned2017-11-01T09:00:13Z
dc.date.available2017-10-31T08:48:59Z
dc.date.available2017-11-01T09:00:13Z
dc.date.issued2013
dc.identifier.citationPalm HC, Haavardsholm TV, Ajer H, Jensen CV. Extraction and classification of vehicles in LADAR imagery. Proceedings of SPIE, the International Society for Optical Engineering. 2013;8731en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/767
dc.identifier.urihttps://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/767
dc.descriptionPalm, Hans Christian; Haavardsholm, Trym Vegard; Ajer, Halvor; Jensen, Cathrine V.. Extraction and classification of vehicles in LADAR imagery. Proceedings of SPIE, the International Society for Optical Engineering 2013 ;Volum 8731. s. -en_GB
dc.description.abstractThe work presented in this paper is based on a dataset recorded with an airborne sensor. It comprises targets like M-60, M-47, M-113, bridge layers, tank retrievers, and trucks in various types of scenes. The background-object segmentation consists of first estimating the ground level everywhere in the scene, and then for each sample simply subtracting the measured height and ground level height. No assumptions concerning flat terrain etc. are made. Samples with height above ground level higher than a certain threshold are clustered by utilizing a straightforward agglomerative clustering algorithm. Around each cluster the bounding box with minimum volume is determined. Based on these bounding boxes, too small as well as too large clusters can easily be removed. However, vehicle-sized clutter will not be removed. Clutter detection is based on estimating the normal vector for a plane approximation around each sample. This approach is based on the fact that the surface normals of a vehicle is more “modulo 90°” distributed than clutter. The aim of the classification has been to classify main battle tanks (MBTs) Two types of algorithms have been studied, one based on Dempster Shafer fusion theory, and one model based. Our dataset comprises clusters of 269 vehicles (among them 131 MBTs), and 253 clutter objects (i.e. in practice vehiclesized bushes). The experiments we have carried out show that the segmentation extracts all vehicles, the clutter detection removes 90% of the clutter, and the classification finds more than 95% of the MBTs as well as removes half of the remaining clutter.en_GB
dc.language.isoenen_GB
dc.titleExtraction and classification of vehicles in LADAR imageryen_GB
dc.typeArticleen_GB
dc.date.updated2017-10-31T08:48:59Z
dc.identifier.cristinID1063110
dc.identifier.cristinID1063110
dc.identifier.doi10.1117/12.2015363
dc.source.issn0277-786X
dc.source.issn1996-756X
dc.type.documentJournal article
dc.relation.journalProceedings of SPIE, the International Society for Optical Engineering


Files in this item

This item appears in the following Collection(s)

Show simple item record