Show simple item record

dc.contributor.authorHammer, Hugo Lewi
dc.contributor.authorKongsgård, Kyrre Wahl
dc.contributor.authorYazidi, Anis
dc.contributor.authorBai, Aleksander
dc.contributor.authorNordbotten, Nils Agne
dc.contributor.authorEngelstad, Paal E.
dc.date.accessioned2016-01-27T10:45:46Z
dc.date.accessioned2016-06-01T13:15:52Z
dc.date.available2016-01-27T10:45:46Z
dc.date.available2016-06-01T13:15:52Z
dc.date.issued2015
dc.identifier.citationH. Hammer, K. W. Kongsgård, A. Bai, A. Yazidi, N. A. Nordbotten and P. E. Engelstad, "Automatic security classification by machine learning for cross-domain information exchange," Military Communications Conference, MILCOM 2015 - 2015 IEEE, Tampa, FL, 2015, pp. 1590-1595.en_GB
dc.identifier.urihttps://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/494
dc.descriptionHammer, Hugo Lewi; Kongsgård, Kyrre Wahl; Bai, Aleksander; Yazidi, Anis; Nordbotten, Nils Agne; Engelstad, Paal E.. Automatic Security Classification by Machine Learning for Cross-Domain Information Exchange. MILCOM IEEE Military Communications Conference 2015 s. 1590-1595en_GB
dc.description.abstractCross-domain information exchange is necessary to obtain information superiority in the military domain, and should be based on assigning appropriate security labels to the information objects. Most of the data found in a defense network is unlabeled, and usually new unlabeled information is produced every day. Humans find that doing the security labeling of such information is labor-intensive and time consuming. At the same time there is an information explosion observed where more and more unlabeled information is generated year by year. This calls for tools that can do advanced content inspection, and automatically determine the security label of an information object correspondingly. This paper presents a machine learning approach to this problem. To the best of our knowledge, machine learning has hardly been analyzed for this problem, and the analysis on topical classification presented here provides new knowledge and a basis for further work within this area. Presented results are promising and demonstrates that machine learning can become a useful tool to assist humans in determining the appropriate security label of an information object.en_GB
dc.language.isoenen_GB
dc.titleAutomatic Security Classification by Machine Learning for Cross-Domain Information Exchangeen_GB
dc.typeArticleen_GB
dc.date.updated2016-01-27T10:45:46Z
dc.identifier.cristinID1294371
dc.identifier.cristinID1294371
dc.identifier.cristinID1294371
dc.identifier.cristinID1294371
dc.identifier.cristinID1294371
dc.identifier.cristinID1294371
dc.identifier.cristinID1294371
dc.identifier.cristinID1294371
dc.identifier.doi10.1109/MILCOM.2015.7357672
dc.source.issn2155-7586
dc.type.documentJournal article


Files in this item

This item appears in the following Collection(s)

Show simple item record