Show simple item record

dc.contributor.authorSundnes, Joakim
dc.contributor.authorWall, Samuel Thomas
dc.contributor.authorOsnes, Harald
dc.contributor.authorThorvaldsen, Tom
dc.contributor.authorMcCulloch, Andrew
dc.date.accessioned2014-03-18T12:48:00Z
dc.date.accessioned2016-05-04T11:51:50Z
dc.date.available2014-03-18T12:48:00Z
dc.date.available2016-05-04T11:51:50Z
dc.date.issued2012
dc.identifier.citationComputer Methods in Biomechanics and Biomedical Engineering 2012en_GB
dc.identifier.urihttps://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/444
dc.descriptionSundnes, Joakim; Wall, Samuel Thomas; Osnes, Harald; Thorvaldsen, Tom; McCulloch, Andrew. Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations. Computer Methods in Biomechanics and Biomedical Engineering 2014 ;Volum 17.(6) s. 604-615en_GB
dc.description.abstractMathematical models of cardiac electro-mechanics typically consist of three tightly coupled parts: systems of ordinary differential equations describing electro-chemical reactions and cross-bridge dynamics in the muscle cells, a system of partial differential equations modelling the propagation of the electrical activation through the tissue and a nonlinear elasticity problem describing the mechanical deformations of the heart muscle. The complexity of the mathematical model motivates numerical methods based on operator splitting, but simple explicit splitting schemes have been shown to give severe stability problems for realistic models of cardiac electro-mechanical coupling. The stability may be improved by adopting semi-implicit schemes, but these give rise to challenges in updating and linearising the active tension. In this paper we present an operator splitting framework for strongly coupled electro-mechanical simulations and discuss alternative strategies for updating and linearising the active stress component. Numerical experiments demonstrate considerable performance increases from an update method based on a generalised Rush–Larsen scheme and a consistent linearisation of active stress based on the first elasticity tensor.en_GB
dc.language.isoenen_GB
dc.subjectTermsetEmneord::Differensialligninger
dc.subjectTermsetEmneord::Elektromekanikk
dc.subjectTermsetEmneord::Biomekanikk
dc.titleImproved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulationsen_GB
dc.typeArticleen_GB
dc.date.updated2014-03-18T12:48:01Z
dc.identifier.cristinID977057
dc.identifier.doi10.1080/10255842.2012.704368
dc.relation.projectIDNorges forskningsråd: 179578
dc.source.issn1025-5842
dc.type.documentJournal article


Files in this item

This item appears in the following Collection(s)

Show simple item record