Show simple item record

dc.contributor.authorLarsen, Martin Vonheimen_GB
dc.contributor.authorRolfsjord, Sigmund Johannes Ljosvollen_GB
dc.contributor.authorGusland, Danielen_GB
dc.contributor.authorAhlberg, Jörgenen_GB
dc.contributor.authorMathiassen, Kimen_GB
dc.date.accessioned2024-03-13T13:44:05Z
dc.date.accessioned2024-11-28T10:03:39Z
dc.date.available2024-03-13T13:44:05Z
dc.date.available2024-11-28T10:03:39Z
dc.date.issued2024
dc.identifier.citationLarsen, Rolfsjord, Gusland, Ahlberg, Mathiassen. BASE: Probably a Better Approach to Visual Multi-Object Tracking. VISIGRAPP. 2024;4:110-121en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3386
dc.descriptionLarsen, Martin Vonheim; Rolfsjord, Sigmund Johannes Ljosvoll; Gusland, Daniel; Ahlberg, Jörgen; Mathiassen, Kim. BASE: Probably a Better Approach to Visual Multi-Object Tracking. VISIGRAPP 2024 ;Volum 4. s. 110-121en_GB
dc.description.abstractThe field of visual object tracking is dominated by methods that combine simple tracking algorithms and ad hoc schemes. Probabilistic tracking algorithms, which are leading in other fields, are surprisingly absent from the leaderboards. We found that accounting for distance in target kinematics, exploiting detector confidence and modelling non-uniform clutter characteristics is critical for a probabilistic tracker to work in visual tracking. Previous probabilistic methods fail to address most or all these aspects, which we believe is why they fall so far behind current state-of-the-art (SOTA) methods (there are no probabilistic trackers in the MOT17 top 100). To rekindle progress among probabilistic approaches, we propose a set of pragmatic models addressing these challenges, and demonstrate how they can be incorporated into a probabilistic framework. We present BASE (Bayesian Approximation Single-hypothesis Estimator), a simple, performant and easily extendible visual tracker, achie (More)en_GB
dc.language.isoenen_GB
dc.subjectVisuell målsøkingen_GB
dc.subjectMålsøkingen_GB
dc.titleBASE: Probably a Better Approach to Visual Multi-Object Trackingen_GB
dc.date.updated2024-03-13T13:44:05Z
dc.identifier.cristinID2253368
dc.identifier.doi10.5220/0012386600003660
dc.source.issn2184-5921
dc.source.issn2184-4321
dc.type.documentJournal article
dc.relation.journalVISIGRAPP


Files in this item

This item appears in the following Collection(s)

Show simple item record