Show simple item record

dc.contributor.authorJoosten, Marcen_GB
dc.contributor.authorRepisky, Michalen_GB
dc.contributor.authorKadek, Mariusen_GB
dc.contributor.authorPyykkö, Pekkaen_GB
dc.contributor.authorRuud, Kennethen_GB
dc.date.accessioned2024-10-09T14:00:20Z
dc.date.accessioned2024-11-27T08:31:14Z
dc.date.available2024-10-09T14:00:20Z
dc.date.available2024-11-27T08:31:14Z
dc.date.issued2024-07-23
dc.identifier.citationJoosten, Repisky, Kadek, Pyykkö, Ruud. Electric field gradients at the nuclei from all-electron four-component relativistic density functional theory using Gaussian-type orbitals. Physical review B (PRB). 2024;110en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3381
dc.descriptionJoosten, Marc; Repisky, Michal; Kadek, Marius; Pyykkö, Pekka; Ruud, Kenneth. Electric field gradients at the nuclei from all-electron four-component relativistic density functional theory using Gaussian-type orbitals. Physical review B (PRB) 2024 ;Volum 110.en_GB
dc.description.abstractWe present an all-electron, four-component relativistic implementation of electric field gradients (EFGs) at the nuclei using Gaussian-type orbitals and periodic boundary conditions. This allows us to include relativistic effects variationally, which is important for compounds containing heavy elements and for a property dependent on the electronic structure close to the nuclei. The all-electron approach ensures an accurate treatment of both core and valence orbitals, as both are important in the evaluation of EFGs. Computational efficiency is achieved through the use of a recent implementation of density fitting in combination with quaternion algebra and restricted kinetic balance. We use the relativistic approach to calculate the EFGs in different arsenic, antimony, and bismuth halides and oxyhalides, and explore the importance of relativistic effects on EFGs in solids and compare these with results obtained for molecular species. Our calculations contribute to establishing a reliable estimate for the nuclear quadrupole moment of 209 Bi , for which our best estimate is −428⁢(17) mb, in excellent agreement both with molecular data and a recent reevaluation of the nuclear quadrupole moment obtained from atomic data and ab initio calculations. Our results suggest that there is a need to revisit the experimental data for the EFGs of several bismuth oxyhalides.en_GB
dc.language.isoenen_GB
dc.subjectTetthetsfunksjonalteorien_GB
dc.subjectKjernefysikken_GB
dc.titleElectric field gradients at the nuclei from all-electron four-component relativistic density functional theory using Gaussian-type orbitalsen_GB
dc.date.updated2024-10-09T14:00:20Z
dc.identifier.cristinID2285782
dc.identifier.doi10.1103/PhysRevB.110.045141
dc.relation.projectIDNorges forskningsråd: 301864
dc.relation.projectIDNorges forskningsråd: 315822
dc.relation.projectIDNorges forskningsråd: 262695
dc.relation.projectIDSigma2: NN14654K
dc.source.issn2469-9950
dc.source.issn2469-9969
dc.type.documentJournal article
dc.relation.journalPhysical review B (PRB)


Files in this item

This item appears in the following Collection(s)

Show simple item record