Show simple item record

dc.contributor.authorAkhtar, Jabranen_GB
dc.date.accessioned2022-12-05T13:41:54Z
dc.date.accessioned2022-12-06T06:50:13Z
dc.date.available2022-12-05T13:41:54Z
dc.date.available2022-12-06T06:50:13Z
dc.date.issued2021-12-10
dc.identifier.citationAkhtar J. Discrete Fourier Transform with Neural Networks. IEEE Vehicular Technology Conference (VTC). 2021en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3103
dc.descriptionAkhtar, Jabran. Discrete Fourier Transform with Neural Networks. IEEE Vehicular Technology Conference (VTC) 2021en_GB
dc.description.abstractThe discrete Fourier transform is an important computational tool to retrieve the frequency distribution of a sampled signal. Recent years have also witnessed considerable research activity in neural networks as a mean to solve various signal processing problems. Despite this, it has been an open issue whether a neural network can be trained to return the discrete Fourier transform of its inputs. This paper presents a training methodology for neural networks with non-linear activation functions to replicate and approximate the discrete Fourier transform.en_GB
dc.language.isoenen_GB
dc.subjectFourier-transformasjoneren_GB
dc.subjectNevrale nettverken_GB
dc.titleDiscrete Fourier Transform with Neural Networksen_GB
dc.date.updated2022-12-05T13:41:54Z
dc.identifier.cristinID1969011
dc.identifier.doi10.1109/VTC2021-Fall52928.2021.9625247
dc.source.issn1090-3038
dc.source.issn2577-2465
dc.type.documentJournal article
dc.relation.journalIEEE Vehicular Technology Conference (VTC)


Files in this item

This item appears in the following Collection(s)

Show simple item record