Show simple item record

dc.contributor.authorBryan, Oscaren_GB
dc.contributor.authorHansen, Roy Edgaren_GB
dc.contributor.authorHaines, Tom S. F.en_GB
dc.contributor.authorWarakagoda, Narada Dilpen_GB
dc.contributor.authorHunter, Alan Josephen_GB
dc.date.accessioned2022-09-06T06:57:10Z
dc.date.accessioned2022-09-13T07:36:11Z
dc.date.available2022-09-06T06:57:10Z
dc.date.available2022-09-13T07:36:11Z
dc.date.issued2022-05-31
dc.identifier.citationBryan, Hansen RE, Haines, Warakagoda, Hunter AJ. Challenges of Labelling Unknown Seabed Munition Dumpsites from Acoustic and Optical Surveys: A Case Study at Skagerrak. Remote Sensing. 2022;14(11)en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3060
dc.descriptionBryan, Oscar; Hansen, Roy Edgar; Haines, Tom S. F.; Warakagoda, Narada Dilp; Hunter, Alan Joseph. Challenges of Labelling Unknown Seabed Munition Dumpsites from Acoustic and Optical Surveys: A Case Study at Skagerrak. Remote Sensing 2022 ;Volum 14.(11)en_GB
dc.description.abstractThe disposal of unexploded ordnance (UXOs) at sea is a global problem. The mapping and remediation of historic UXOs can be assisted by autonomous underwater vehicles (AUVs) carrying sensor payloads such as synthetic aperture sonar (SAS) and optical cameras. AUVs can image large areas of the seafloor in high resolution, motivating an automated approach to UXO detection. Modern methods commonly use supervised machine learning which requires labelled examples from which to learn. This work investigates the often-overlooked labelling process and resulting dataset using an example historic UXO dumpsite at Skagerrak. A counterintuitive finding of this work is that optical images cannot be relied on for ground truth as a significant number of UXOs visible in SAS images are not in optical images, presumed buried. Given the lack of ground truth, we use an ordinal labelling scheme to incorporate a measure of labeller uncertainty. We validate this labelling regime by quantifying label accuracy compared to optical labels with high confidence. Using this approach, we explore different taxonomies and conclude that grouping objects into shells, bombs, debris, and natural gave the best trade-off between accuracy and discrimination.en_GB
dc.language.isoenen_GB
dc.subjectEksplosiveren_GB
dc.subjectMaskinlæringen_GB
dc.subjectSyntetisk apertur-sonaren_GB
dc.titleChallenges of Labelling Unknown Seabed Munition Dumpsites from Acoustic and Optical Surveys: A Case Study at Skagerraken_GB
dc.typeArticleen_GB
dc.date.updated2022-09-06T06:57:10Z
dc.identifier.cristinID2046721
dc.identifier.doi10.3390/rs14112619
dc.source.issn2072-4292
dc.type.documentJournal article
dc.relation.journalRemote Sensing


Files in this item

This item appears in the following Collection(s)

Show simple item record