• Login
    View Item 
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unimolecular Decomposition Reactions of Picric Acid and its Methylated Derivatives — A DFT Study

    View/Open
    2016810.pdf (2.019Mb)
    Date
    2022-04-26
    Author
    Wiik, Kristine
    Høyvik, Ida-Marie
    Unneberg, Erik
    Jensen, Tomas Lunde
    Swang, Ole
    Metadata
    Show full item record
    Abstract
    To handle energetic materials safely, it is important to have knowledge about their sensitivity. Density functional theory (DFT) has proven a valuable tool in the study of energetic materials, and in the current work, DFT is employed study the thermal unimolecular decomposition of 2,4,6-trinitrophenol (picric acid, PA), 3-methyl-2,4,6-trinitrophenol (methyl picric acid, mPA), and 3,5-dimethyl-2,4,6-trinitrophenol (dimethyl picric acid, dmPA). These compounds have similar molecular structures, but according to the literature, mPA is far less sensitive to impact than the other two compounds. Three pathways believed important for the initiation reactions are investigated at 0 K and 298.15 K. We compare the computed energetics of the reaction pathways with the objective of rationalizing the unexpected sensitivity behavior. Our results reveal few if any significant differences in the energetics of the three molecules, and thus do not reflect the sensitivity deviations observed in experiments. These findings point towards the potential importance of crystal structure, crystal morphology, bimolecular reactions, or combinations thereof on the impact sensitivity of nitroaromatics.
    URI
    http://hdl.handle.net/20.500.12242/3032
    DOI
    10.1021/acs.jpca.1c10770
    Description
    Journal of Physical Chemistry A 2022 ;Volum 126. s. 2645-2657
    Collections
    • Articles

    Browse

    All of FFI PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

    My Account

    Login

    CONTACT US

    • FFI Kjeller
      FFI, PO Box 25, 2027 Kjeller
    • Office Address: Instituttvn 20,
      Phone 63 80 70 00
    • biblioteket@ffi.no

    HELPFUL

    • About FFI
    • Career
    • Reports

    Sitemap

    • About cookies (cookies)
    • Newsletter
    • Sitemap

    FOLLOW US

     

     

    © Copyright Norwegian Defence Research Establishment
    Powered by KnowledgeArc