• Login
    View Item 
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Rapidly Exploring Random Tree Funnel Algorithm

    View/Open
    2011626.pdf (1.564Mb)
    Date
    2022-03-17
    Author
    Orhagen, Ole Petter
    Thoresen, Marius
    Mathiassen, Kim
    Metadata
    Show full item record
    Abstract
    This paper shows the feasibility of combining robust motion primitives generated through the Sums Of Squares programming theory with a discrete Rapidly exploring Random Tree algorithm. The generated robust motion primitives, referred to as funnels, are then employed as local motion primitives, each with its locally valid Linear Quadratic Regulator (LQR) controller, which is verified through a Lyapunov function found through a Sum Of Squares (SOS) search in the function space. These funnels are then combined together at execution time by the Rapidly-exploring-Random-Tree (RRT) planner, and is shown to provide provably robust traversal of a simulated forest environment. The experiments benchmark the RRT-Funnel algorithm against an RRT algorithm which employs a maximum distance to the nearest obstacle heuristic in order to avoid collisions, as opposed to explicitly handling uncertainty. The results show that employing funnels as robust motion primitives outperform the heuristic planner in the experiments run on both algorithms, where the RRT-Funnel algorithm does not collide a single time, and creates shorter solution paths than the benchmark planner overall, although it takes a significantly longer time to find a solution.
    URI
    http://hdl.handle.net/20.500.12242/3015
    DOI
    10.1109/ICMRE54455.2022.9734089
    Description
    Orhagen, Ole Petter; Thoresen, Marius; Mathiassen, Kim. The Rapidly Exploring Random Tree Funnel Algorithm. I: The 8th International Conference on Mechatronics and Robotics Engineering (ICMRE). IEEE 2022 ISBN 978-1-6654-8377-3.
    Collections
    • Articles

    Browse

    All of FFI PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

    My Account

    Login

    CONTACT US

    • FFI Kjeller
      FFI, PO Box 25, 2027 Kjeller
    • Office Address: Instituttvn 20,
      Phone 63 80 70 00
    • biblioteket@ffi.no

    HELPFUL

    • About FFI
    • Career
    • Reports

    Sitemap

    • About cookies (cookies)
    • Newsletter
    • Sitemap

    FOLLOW US

     

     

    © Copyright Norwegian Defence Research Establishment
    Powered by KnowledgeArc