Show simple item record

dc.contributor.authorAkhtar, Jabranen_GB
dc.date.accessioned2021-11-18T10:20:29Z
dc.date.accessioned2022-01-28T14:04:17Z
dc.date.available2021-11-18T10:20:29Z
dc.date.available2022-01-28T14:04:17Z
dc.date.issued2021-09-17
dc.identifier.citationAkhtar. A neural network framework for binary classification of radar detections.. EURASIP Journal on Advances in Signal Processing. 2021en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/2973
dc.descriptionAkhtar, Jabran. A neural network framework for binary classification of radar detections.. EURASIP Journal on Advances in Signal Processing 2021en_GB
dc.description.abstractA desired objective in radar target detection is to satisfy two very contradictory requirements: offer a high probability of detection with a low false alarm rate. In this paper, we propose the utilization of artificial neural networks for binary classification of targets detected by a depreciated detection process. It is shown that trained neural networks are capable of identifying false detections with considerable accuracy and can to this extent utilize information present in guard cells and Doppler profiles. This allows for a reduction in the false alarm rate with only moderate loss in the probability of detection. With an appropriately designed neural network, an overall improved system performance can be achieved when compared against traditional constant false alarm rate (CFAR) detectors for the specific trained scenarios.en_GB
dc.language.isoenen_GB
dc.subjectNevrale nettverken_GB
dc.subjectRadaren_GB
dc.titleA neural network framework for binary classification of radar detections.en_GB
dc.typeArticleen_GB
dc.date.updated2021-11-18T10:20:28Z
dc.identifier.cristinID1948205
dc.identifier.doi10.1186/s13634-021-00801-y
dc.source.issn1687-6172
dc.source.issn1687-6180
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Simulering, visualisering, signalbehandling, bildeanalyse: 429
dc.subject.nsiVDP::Mathematics and natural scienses: 400::Information and communication science: 420::Simulation, visualisation, signal processing, image analysis: 429
dc.type.documentJournal article
dc.relation.journalEURASIP Journal on Advances in Signal Processing


Files in this item

This item appears in the following Collection(s)

Show simple item record