• Login
    View Item 
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Laminar burning velocity of gases vented from failed Li-ion batteries

    View/Open
    1921602.pdf (4.174Mb)
    Date
    2021-06-10
    Author
    Henriksen, Mathias
    Vaagsaether, K.
    Lundberg, Joachim
    Forseth, Sissel
    Bjerketvedt, D.
    Metadata
    Show full item record
    Abstract
    In the last decade, several fires and explosions caused by Li-ion batteries (LIBs) have been reported. This can be attributed to the thermal runaway and catastrophic failures of LIBs that release combustible gases, which when mixed with air can lead to explosions and fires. To address this explosion hazard, we determine the laminar burning velocity (LBV) of three gas compositions associated with Li-ion failure and a pseudo (simplified) gas in a 20-L explosion sphere at 300 K and 100 kPa. This simplified gas avoids toxic gases in experiments and represent the desired explosion characteristics. The LBVs in the case of gas compositions range from approximately 300 to 1050 mm s −1. Additionally, four different reaction models are used to estimate the LBVs of these gas compositions. We compare the theoretical and experimental results to determine the prediction accuracy of the reaction models. All reaction models over- or under-predicted the LBV for the different gas compositions. A recommendation for choosing reaction models is given to predict LBV for various gas compositions. This study's results are intended as input to computational fluid dynamic simulations but can be used directly in safety engineering models.
    URI
    http://hdl.handle.net/20.500.12242/2924
    DOI
    10.1016/j.jpowsour.2021.230141
    Description
    Henriksen, Mathias; Vaagsaether, K.; Lundberg, Joachim; Forseth, Sissel; Bjerketvedt, D.. Laminar burning velocity of gases vented from failed Li-ion batteries. Journal of Power Sources 2021 ;Volum 506. s. 1-11
    Collections
    • Articles

    Browse

    All of FFI PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

    My Account

    Login

    CONTACT US

    • FFI Kjeller
      FFI, PO Box 25, 2027 Kjeller
    • Office Address: Instituttvn 20,
      Phone 63 80 70 00
    • biblioteket@ffi.no

    HELPFUL

    • About FFI
    • Career
    • Reports

    Sitemap

    • About cookies (cookies)
    • Newsletter
    • Sitemap

    FOLLOW US

     

     

    © Copyright Norwegian Defence Research Establishment
    Powered by KnowledgeArc