Show simple item record

dc.contributor.authorAkhtar, Jabranen_GB
dc.date.accessioned2021-02-02T13:22:30Z
dc.date.accessioned2021-02-09T09:07:45Z
dc.date.available2021-02-02T13:22:30Z
dc.date.available2021-02-09T09:07:45Z
dc.date.issued2020-06-11
dc.identifier.citationAkhtar. Sparse range-Doppler image construction with neural networks. IEEE International Conference on Radar. 2020en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/2830
dc.descriptionAkhtar, Jabran. Sparse range-Doppler image construction with neural networks. IEEE International Conference on Radar 2020en_GB
dc.description.abstractThe principles outlined by compressed sensing can permit a sensor to collect reduced amount of data and still reconstruct an exact outcome. This can for example be used to generate super-resolution sparse range-Doppler radar images while emitting a reduced number of pulses within a coherent processing interval. In this paper, we investigate the use of neural networks as a mean to solve the sparse reconstruction problem with specific emphasis towards range-Doppler images. The neural networks are trained to generate a sparse Doppler profile from incomplete time domain data in line with traditional sparse L1- norm minimization. We show that this approach is viable through fully connected feed forwarding networks and the results closely mimic sparse recovered range-Doppler maps.en_GB
dc.language.isoenen_GB
dc.subjectRadaren_GB
dc.subjectDeteksjonen_GB
dc.subjectMaskinlæringen_GB
dc.titleSparse range-Doppler image construction with neural networksen_GB
dc.typeArticleen_GB
dc.date.updated2021-02-02T13:22:30Z
dc.identifier.cristinID1813091
dc.identifier.doi10.1109/RADAR42522.2020.9114808
dc.source.issn1097-5764
dc.source.issn2640-7736
dc.type.documentJournal article
dc.relation.journalIEEE International Conference on Radar


Files in this item

This item appears in the following Collection(s)

Show simple item record