• Login
    View Item 
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    •   FFI Publications Home
    • Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Three-dimensional signal decomposition of infrared image sequences and large-scale non-uniformity analysis

    View/Open
    1855706.pdf (2.895Mb)
    Date
    2020-09-20
    Author
    Thomassen, Jan Brede
    Rheenen, Arthur Dirk van
    Metadata
    Show full item record
    Abstract
    The three-dimensional noise model is a methodology to analyse the noise of a thermal imaging sensor, such as an infrared (IR) camera. This allows us to decompose a noisy signal into components and quantify properties such as noise equivalent temperature difference (NETD), temporal noise, rain, streaks, or various types of fixed pattern noise. As part of this analysis, it is necessary to identify trends in order to split the data into signal and noise. In this paper we discuss methods to perform this split. We then show that not only the noise, but also the trends contain interesting information and can be used to quantify large-scale non-uniformities in calibrated IR images. We apply this analysis to investigate three different effects that may appear in recorded data: How does the uniformity of the background change when we vary the temperature, the distance, or the lens focus? We have performed a series of laboratory measurements on blackbodies in order to investigate these effects. We find that large-scale non-uniformity may be present even in calibrated images, with an order of magnitude up to ΔT~0:6 K.
    URI
    http://hdl.handle.net/20.500.12242/2810
    DOI
    10.1117/12.2574573
    Description
    Thomassen, Jan Brede; Rheenen, Arthur Dirk van. Three-dimensional signal decomposition of infrared image sequences and large-scale non-uniformity analysis. Proceedings of SPIE, the International Society for Optical Engineering 2020
    Collections
    • Articles

    Browse

    All of FFI PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

    My Account

    Login

    CONTACT US

    • FFI Kjeller
      FFI, PO Box 25, 2027 Kjeller
    • Office Address: Instituttvn 20,
      Phone 63 80 70 00
    • biblioteket@ffi.no

    HELPFUL

    • About FFI
    • Career
    • Reports

    Sitemap

    • About cookies (cookies)
    • Newsletter
    • Sitemap

    FOLLOW US

     

     

    © Copyright Norwegian Defence Research Establishment
    Powered by KnowledgeArc