Show simple item record

dc.contributor.authorAkhtar, Jabranen_GB
dc.contributor.authorOlsen, Karl Eriken_GB
dc.date.accessioned2020-05-25T11:49:15Z
dc.date.accessioned2020-07-13T08:39:43Z
dc.date.available2020-05-25T11:49:15Z
dc.date.available2020-07-13T08:39:43Z
dc.date.issued2019
dc.identifier.citationAkhtar J, Olsen KE. GO-CFAR Trained Neural Network Target Detectors. IEEE Radar Conference. Proceedings. 2019en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/2740
dc.description-en_GB
dc.description.abstractDetecting targets embedded in noise and clutter is an essential task for many radar systems. A competent system must additionally offer high probability of detection with a low false alarm rate and a standard practice is to employ constant false alarm rate (CFAR) detectors. In this article, we develop and expand the use of neural networks to accomplish this objective. The neural networks are trained to recognize targets in a specified environment subject to the proposed conditions ascribed by a traditional CFAR detector. We show that after an initial learning process, a trained neural network can offer improved detectional performance. The improvement is related to either a lower false alarm rate or a slightly greater probability of detection.en_GB
dc.relation.urihttps://doi.org/10.1109/RADAR.2019.8835765
dc.subjectRadar
dc.subjectDeteksjon
dc.subjectDetektorer
dc.titleGO-CFAR Trained Neural Network Target Detectorsen_GB
dc.date.updated2020-05-25T11:49:15Z
dc.identifier.cristinID1725731
dc.source.issn1097-5764
dc.type.documentJournal article
dc.relation.journalIEEE Radar Conference. Proceedings


Files in this item

This item appears in the following Collection(s)

Show simple item record