Show simple item record

dc.contributor.authorOsnes, Andreas Nygården_GB
dc.contributor.authorVartdal, Magnusen_GB
dc.contributor.authorOmang, Marianne Gjestvolden_GB
dc.contributor.authorReif, Bjørn Anders Petterssonen_GB
dc.date.accessioned2019-04-03T07:10:17Z
dc.date.accessioned2020-03-03T08:49:48Z
dc.date.available2019-04-03T07:10:17Z
dc.date.available2020-03-03T08:49:48Z
dc.date.issued2019-03-22
dc.identifier.citationOsnes A, Vartdal M, Omang MG, Reif BAP. Computational analysis of shock-induced flow through stationary particle clouds. International Journal of Multiphase Flow. 2019;114:268-286en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/2689
dc.descriptionOsnes, Andreas Nygård; Vartdal, Magnus; Omang, Marianne Gjestvold; Reif, Bjørn Anders Pettersson. Computational analysis of shock-induced flow through stationary particle clouds. International Journal of Multiphase Flow 2019 ;Volum 114. s. 268-286en_GB
dc.description.abstractWe investigate the shock-induced flow through random particle arrays using particle-resolved Large Eddy Simulations for different incident shock wave Mach numbers, particle volume fractions and particle sizes. We analyze trends in mean flow quantities and the unresolved terms in the volume averaged momentum equation, as we vary the three parameters. We find that the shock wave attenuation and certain mean flow trends can be predicted by the opacity of the particle cloud, which is a function of particle size and particle volume fraction. We show that the Reynolds stress field plays an important role in the momentum balance at the particle cloud edges, and therefore strongly affects the reflected shock wave strength. The Reynolds stress was found to be insensitive to particle size, but strongly dependent on particle volume fraction. It is in better agreement with results from simulations of flow through particle clouds at fixed mean slip Reynolds numbers in the incompressible regime, than with results from other shock wave particle cloud studies, which have utilized either inviscid or two-dimensional approaches. We propose an algebraic model for the streamwise Reynolds stress based on the observation that the separated flow regions are the primary contributions to the Reynolds stress.en_GB
dc.language.isoenen_GB
dc.relation.urihttps://arxiv.org/abs/1901.03367
dc.subjectTermSet Emneord::Partikkelstørrelseen_GB
dc.subjectTermSet Emneord::Sjokkbølgeren_GB
dc.titleComputational analysis of shock-induced flow through stationary particle cloudsen_GB
dc.typeArticleen_GB
dc.date.updated2019-04-03T07:10:16Z
dc.identifier.cristinID1689881
dc.identifier.doi10.1016/j.ijmultiphaseflow.2019.03.010
dc.source.issn0301-9322
dc.source.issn1879-3533
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400::Fysikk: 430
dc.subject.nsiVDP::Mathematics and natural scienses: 400::Physics: 430
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400
dc.subject.nsiVDP::Mathematics and natural scienses: 400
dc.type.documentJournal article
dc.relation.journalInternational Journal of Multiphase Flow


Files in this item

This item appears in the following Collection(s)

Show simple item record