FFl-notat 2013/00131

On the roles and synergies of the service oriented
architecture- and the semantic technologies paradigms in an
NNEC context

Eli Gjgrven and Audun Stolpe

Norwegian Defence Research Establishment (FFI)

16 January 2013

FFI-notat 2013/00131

1176

Keywords

Nettverksbasert forsvar
Semantiske teknologier

Tjenesteorientert arkitektur

Approved by
Rolf Rasmussen

Anders Eggen

Project manager

Director

FFl-notat 2013/00131

English summary

This document compares the Service-oriented Architecture (SOA) with Semantic Technologies
with regard to applications within the context of NNEC. We attempt to find out to what degree
these two paradigms are overlapping, and/or complementary as technologies within one information
infrastructure.

The document focus on the basic conceptual differences between the two paradigms, and does not
pretend to give a complete description over theory and practice in the respective research communities.
Rather, we look at the consequences for potential synergies between SOA and Semantic Technologies

based on the intentions of these two paradims.

We argue that SOA and Semantic Technologies are not conflicting, but rather orthogonal. Furthermore,
vi discuss how the respective capabilities of the paradigms could be utilized in an information
infrastructure that requires predefined, composable, and interoperable SOA services, as well as the

analytic capabilties of Semantic Technologies.

We illustrate our propositions with presumably realistic examples from the tactical military do-
main where the analysis functionality provided by Semantic Technologies, are combined with data

collection, processing, and dissemination in a secure way using SOA technology.

FFl-notat 2013/00131 3

Sammendrag

Dette notatet sammenlikner den Tjenesteorienterte Arkitekturen med Semantiske Teknologier med
hensyn pa anvendelser innenfor en NNEC kontekst. Hensikten er ansla i hvilken grad disse to
paradigmene er overlappende og/eller gjensidig utfyllende som teknologier i samme informasjonsin-

frastruktur.

Notatet fokuserer pa de grunnleggende konseptuelle forskjellene mellom disse to paradigmene, og
pretenderer ikke & gi en komplett oversikt over oppfatninger og praksis i de respektive fagmiljgene.
Hensikten er snarere a trekke enkelte konsekvenser for det potensielle samspillet mellom Tjenesteori-
entering og Semantiske Teknologier, basert pa hvordan disse paradigmene er tenkt og hva de er

designet for.

Vi argumenterer for at Tjenesteorientering og Semantiske Teknologier er ortogonale teknologier.
Videre diskuterer vi hvordan samspillet mellom dem fruktbart kan utnyttes i en NNEC-konform
infrastruktur som krever bade pre-definerte, kombinerbare, og interoperable tjenester, og de ana-
lysefunksjonaliteten som semantiske teknologier tilbyr. Vi illustrerer dette med et par presumtivt
realistiske eksempler fra det taktiske militeere domenet hvor analysefunksjonaliteten som Semantiske
Teknologier tilbyr, kombineres med datainnsamling, prosessering og disseminering pa en sikker mate

med Tjenesteorientert teknologi.

4 FFl-notat 2013/00131

Contents

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

5.1
5.11
5.1.2

5.2
5.2.1
5.3
5.3.1

Introduction
Background

Perspective of this Note

Service-oriented Architectures

Service Orientation

The Service-oriented Architecture

SOA Fosters System Interoperability

Web-services - WSDL and Accompanying Standards
Workflows and Processes

SOA Technology

General Features and Observations of SOA

Semantic Technologies and the Semantic Web Paradigm
Semantic Technologies = Knowledge Representation + Reasoning

The Semantic Web

RDF

OWL

The SPARQL Query Language and Protocol

Paradigmatic Use Case: Data Integration

Compatible Architectural Styles

General Features of Semantic Web technologies
Semantic Technologies vs. SOA; some Differences

Opportunities
Semantic Web-services
Related Work

Case: Semantically Enabled QoS Aware Service Discovery and Orchestra-
tion for MANETSs

SOA and ST as Complementary Information Systems Technologies
Case: From Sensor Data to Operative Decision Making
Semantic Data Integration with Service Access

Case: Information Dissemination with Services and Information Assurance

FFl-notat 2013/00131 5

11
11
12
12

13
13
13
14
15
15
16
16
18

18

19
19
19

20
20
21
23
23

Conclusions

References

25

26

FFl-notat 2013/00131

1 Introduction
1.1 Background

Informed decisions making in a military context—be it at the tactical or strategic level—requires
extensive sharing of timely and up-to-date information that induces a high degree of shared situational
awareness. This is particularly the case when the military conducts its operations according NATO’s
Network Enabled Capability concept (henceforth NNEC). The NNEC feasibility study (Booth
et al. 2005) states that:

"The NATO Network-Enabled Capability (NNEC) will be composed of a dynamic networked
coalition of military forces; cooperatively sharing information to progressively improve coordination,

collaboration and coherency across the full spectrum of military activity."

The realization of NNEC depends on a common Communication and Information System (CIS)
infrastructure, called Networking and Information Infrastructure (NII). The NII must facilitate
interaction between the technical solutions deployed by different military forces, constituting different
administrative domains. This type of cross-domain interaction requires the NII to satisfy the following

two requirements:

1. The NII must enable both software functions and data to be discovered and accessed across

domains and networks.

2. The NII must facilitate re-usability through static and/or dynamic composition and integration

of existing software functions and data.

Two different integration paradigms, well-known from the civil world, have continued to receive atten-
tion as means to fulfill different aspects of these requirements, namely Service Oriented Architectures
(SOA) and Semantic Technologies (ST).

1.2 Perspective of this Note

While SOA is focused on making software functions available through standardized interfaces
suitable for remote access, composition, and reuse, Semantic Technologies aim to make data from
different domains available and useful through formal information models, automated reasoning, and
standardized query languages.

The purpose of this note is to compare the above mentioned paradigms with an eye to areas of overlap,
conflict, and potential synergy. We have deliberately preferred clarity over completeness, that is,
we have chosen to try to draw a few instructive contrasts, rather than to give a complete survey of

opinions and practices.

More specifically, we have chosen to let the document be guided principally by the fundamental con-

ceptual difference between SOA and semantics, which we consider to be that of service-orientedness

FFl-notat 2013/00131 7

vs. data-orientedness. These principles may be said to capture the key intentions behind each
paradigm, and to indicate to which uses each is most naturally put.

In this note we argue that it ought to be possible to utilize the respective capabilities of the SOA and
ST paradigms in an information infrastructure that requires predefined, composable, and interoperable
SOA services, as well as the analytic capabilities of ST. In such an infrastructure one would for
example include semantic technologies for data integration, analysis and interpretation—possibly
on the fly—into SOA workflows consisting of services performing data collection, processing, and

transportation.

This document is organized as follows: Key ideas behind the SOA and ST paradigms are presented
in Section 2 and 3 respectively. Each section ends with a list of general features that is meant to
highlight some important consequences of applying the principles in question. This material in turn
feeds into Section 4, which is a brief point for point contrasting of general characteristics and natural
application areas. In Section 5 we discuss how these contrasts open for potential synergies, illustrated

by applications where SOA and ST components fulfill complementary functional roles.

These thought experiments are sufficiently realistic, we maintain, to serve as evidence that the union
of the two aforementioned paradigms satisfy requirements 1) and 2) above, and that they are both

key enablers for the realization of the NNEC concept.

2 Service-oriented Architectures

In this section, we present the main concepts and principles of SOA with definitions that we find
useful for the discussions found later in this document. The discussion below is based on the
Service-oriented Architecture reference model (OASIS 2006a), the W3C glossary (W3C 2004b), and
(Erl 2005) as widely accepted authorities in the SOA literature. We also briefly describe current SOA

technologies.

2.1 Service Orientation
In (Erl 2005) service orientation is described as follows:

Service orientation presents an ideal vision of a world in which resources are cleanly partitioned and
consistently represented. (...) By adhering to this vision, past technical and philosophical disparities
are blanketed by layers of abstraction that introduce a globally accepted standard for representing

logic and information.

As the term “service oriented” implies, from a SOA perspective this visionary world materialize as a
set of “services”, as opposed to for example programmable objects in the object oriented paradigm,
or relational databases in the database world. In real life, a service is often understood as a capability
of assistance provided by one to another, or work performed by one for another. By (OASIS 2006a),
a service is defined as a mechanism to enable access to one or more capabilities, where the access is

provided using a prescribed interface and is exercised consistent with constraints and policies as

8 FFl-notat 2013/00131

Service

registry
discover publish
Service Service
consumer invoke provider

Figure 2.1 SOA pattern of interaction

specified by the service description. This definition separates the service, as “access to one or more
capabilities”, from the entities, such as software components or databases, actually implementing the
service. As an example, consider the service addition a b. The addition service represents
the capability of performing the task of adding two numbers a and b. Obviously, we need an actual

computer program to be able to submit two numbers, and get the result back.

The above definition of a service allows a service to be specified, reasoned about, and even invoked,
in a standardized, technology-independent language without any knowledge about the service
implementation technologies. Furthermore, it allows a service to be referenced before a concrete

service implementation has been identified.

When a system is comprised by services matching our definition of service, we call it a service-

oriented system.

2.2 The Service-oriented Architecture

A software architecture normally describes the structure or style of a software system, concentrating
on the software elements in the systems, and the dependencies between them. SOA does not
define one such architecture. Rather, SOA is a conceptual approach to systems’ interaction and
interoperation, which SOA systems realize. SOA is defined by (OASIS 2006a) as a paradigm for
organizing and utilizing distributed capabilities that may be under the control of different ownership

domains.

The SOA concept is often illustrated as shown in Figure 2.1. Fundamentally, a SOA system is based
on three roles: The service provider, the service consumer, and the service registry. Service providers
make services available for service consumers to invoke. However, the two roles are decoupled in the
sense that a service consumer should not depend on the existence of a particular service provider, and
that a service provider should not assume any particular service consumer. Service providers publish
information about their provided services in a service registry, where arbitrary service consumers
may discover them. Based on information found in the registry, a service consumer should be able to
discover, locate, and invoke services as needed. To this end, we can also consider SOA as a pattern

for interaction, defined by its participating roles and the interaction between them.

To further describe SOA, it is common to refer to a set of service-orientation principles which

characterizes the ideal SOA system:

FFl-notat 2013/00131 9

Contract: Service providers and consumers share a contract which defines a set of operations
supported by the service, as a set of input and output messages, and the rules and characteristics of

these operations.

Abstraction: Beyond what is described in the service contract, services hide their implementa-
tion. The service consumer must not make any assumptions about implementation details such as

implementation logic, type of implementation resources (implementation classes and data) etc.

Reusability: As services expose their contracts and abstract their implementations, services promote

reuse.

Loose coupling: As service providers expose, and service consumers perceive, only the service
contract, services can interact without the need for tight, cross-service dependencies beyond the

contract.

Discoverability: Service contracts can be published to the registries or brokers, so that the services

can be statically or dynamically found and assessed by available discovery mechanisms.

Statelessness: Services should minimize the amount of state information they manage, and the
duration they hold it, in order to remain available to other requester. Services are stateless in the
sense that state information is specific to the current activity, and ideally to the currently processed
operation. Between operations, state information should be externalized from the processing of

service operations, into external components such as databases or file systems.

Autonomy: A service is autonomous if its implementation, i.e. implementation logic and resources,
reside within an explicit boundary and under unified control and self-governance. Service autonomy

improves the availability and robustness of the service.

Composability: Reusable services that allow loose coupling are inherently suitable for composition.
Furthermore, as for part services, statelessness and service autonomy improves the availability and

robustness of the composed service.

As these principles describe the ideal SOA system, we do not require actual SOA systems to satisfy
the all the principles entirely. However, if we find that a system only to a small degree satisfies the

SOA principles, we would normally not call it a SOA system.

2.3 SOA Fosters System Interoperability

Interoperable software systems are able to operate together, even though they are realized by different
technologies. Interoperable systems must at least share a common protocol for specifying message
exchange. (Erl 2005) and others claim that SOA systems fosters interoperability by their nature. We
can easily accept that services as defined above, and the principles described above, does contribute
to interoperability. As an example, the contract and abstraction principles by definition enable
developers to program service clients without considering the technologies used to implement the
services. As the service implementation is hidden from the client, the client system can operate

together with the server system by applying the operations specified by the service contract only,

10 FFl-notat 2013/00131

given that they share a language for contract specification and common message exchange protocol.

The international standards organization for the Internet, World Wide Web Consortium (W3C)
has recommended a set of standards for service description and message exchange, including the
Web Services Description Language (WSDL) (W3C 2001) and the Simple Object Access Protocol
(SOAP) (W3C 2000). Based on these standards, W3C defines a “web-service” as a software system
designed to support interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP-messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards.

As web-services are broadly used to realize SOA, Web-services provides a technology platform for
SOA systems.

2.4 Web-services - WSDL and Accompanying Standards

WSDL specifies a web-service interface as a set of operations with input and output parameters.
A concrete web-service can be identified as a specific endpoint (i.e. IP host and port), potentially
available over the Internet. The web-service can be accessed by sending a SOAP message containing
the name of the operation to invoke, and input parameters, to this endpoint. If the service specifies an
output parameter, a SOAP message containing operation output may be returned.

Several other standards exist, that manage different aspects of distribution in web-service technologies.
For example, WS-Discovery (OASIS 2009) specifies a discovery protocol for locating services based
on their type. WS-Policy (W3C 2007) defines a framework for expressing different types of policies
for Web-services, such as Quality of Service (QoS) or security policies. WS-Policy is often applied
together with WS-Security (OASIS 2006¢), which standardizes enhancements to SOAP messaging
that provide secure exchange of web-service messages. WS-Notification (OASIS 20060) is a group
of standards that specify how web-services can interact through notifications, also called events,
and how producers and consumers of such events can be loosely coupled using a publish-subscribe
pattern. These standards have been recommended by standardization organizations such as W3C and
OASIS. However, there are many other proposals, and it is generally a challenge for the community

to agree upon new standards.

Web-services use Extensible Markup Language (XML) namespaces to uniquely name resources,
such as service descriptions, service endpoints, and policies. Normally, Uniform Resource Locators
(URLs) are used to identify a namespace. As an example, the URL http://www.w3.0rg/
2002/ws/policy/ns/ws—policy always points to the latest XML schema for the WS-Policy

1.5 namespace.

2.5 Workflows and Processes

As discussed above, the SOA principles state that services are inherently suitable for composition,
into sequences of services called “workflows”. When processed, the output of each executed service

FFl-notat 2013/00131 11

http://www.w3.org/2002/ws/policy/ns/ws-policy
http://www.w3.org/2002/ws/policy/ns/ws-policy

in the workflow provides input to the next service in the sequence. Often, such workflows reflects
business processes in an organization. A much used example in civilian context, is travel planning; A
workflow consisting of services provided by a travel agency which customers can use to book flights,
hotel, car rental, and other related services, in one process. However, in a military tactical domain,
we may expect that workflows will model smaller scale processes of work, such as the information

flow from a particular sensor on a tactical unit, to a decision maker.

Specifying a workflow from web-services is called “web-service orchestration”. Several orchestration
languages have been proposed, such as the Web Services Business Process Execution Language
(WS-BPEL) (OASIS 2007), which has been much used both in the academia and in e-commerce.

2.6 SOA Technology

Commonly, SOA is realized by web-services running on top of the Enterprise Service Bus (ESB)
(Manes 2007). The ESB is a SOA-based software architecture in the traditional interpretation of the
term: It defines a framework and roles in which software can be added to build running SOA systems
based on web-services. The primary task of the ESB is to provide a message bus for message passing
between Web-services. Secondary, an ESB provides mechanisms related to service management and
execution, such as service discovery, composition, transactions, etc. Thus, an ESB can be seen as a
tool-chest which has a default set of tools, and which can be extended with more tools as needed.

There are many implementations available, suitable for different purposes.

As areaction to what many see as the complexity of web-services and the ESB architecture, and the
overhead of XML-based protocols such as SOAP, WS-Notification, and the like, the Representational
State Transfer (REST) architectural style has become a popular alternative for implementing web
applications over recent years (Fielding 2000, Rodriguez 2008). So-called RESTful web-services use
the Hypertext Transfer Protocol (HTTP) and the HTTP verbs (POST, GET, PUT, and DELETE) to
deal with data structures and the transfer of their state. However, RESTful web-services’ compatibility
with certain SOA principles, such as contract, composability, and in fact the service concept as
understood as “capacity of work™, is at best unclear. Thus, in the rest of this document we focus our

discussions around web-services as defined by W3C.

2.7 General Features and Observations of SOA

SOA systems generally has the following characteristics:

Service oriented: Services, as defined in this document, provide a capability of performing work for
a client. Thus, SOA is suitable for tasks where the processing of input generates new output.

Composability: Services can be composed into workflows, or processes, given that the output from
each service matches the input to the next.

Dominated by standards: SOA is largely realized through implementation of web-service stand-
ards such as WSDL, SOAP, and accompanying standards and standard proposals, which fosters
interoperability.

12 FFl-notat 2013/00131

Finally, we observe that web-service standard proposals and recommendations, and current SOA
research, have ambitions for SOA systems to develop into more dynamic systems, where automated
reasoning can be applied to service discovery and composition. This capacity has not been widely
exploited so far in civilian context. A possible reason may be that as most web-service based systems
in civilian context are statically and manually administered, they require little automated behavior.
However, as we discuss in the next section, dynamism and automation could be more interesting in
a military context, in particular when considering military tactical networks, where resources are

scarce and variable.

3 Semantic Technologies and the Semantic Web Paradigm

Whereas service orientation most aptly focus on operations, their input and corresponding outputs,
and compositions of operations into workflows, semantic technologies revolves around describing
the relationship between static objects—or in Semantic Web terminology resources. In this section
we try to spell out precisely what this means by describing the building blocks and the philosophy
behind the so-called Semantic Web. At the possible expense of nuance on behalf of both paradigms,
we are explicitly opting for a contrasting exposition that will yield a clear picture of the respective

discipline’s idiosyncratic capabilities.

3.1 Semantic Technologies = Knowledge Representation + Reasoning

The term ‘semantic technologies’ is most aptly considered a generic term that covers a wide range of
techniques based on knowledge representation and reasoning. Knowledge representation is concerned
with encoding qualitative information in machine-processable form, whereas automated reasoning
aims at providing an algorithmic description of how to draw conclusions from a corpus of knowledge

in an acceptable amount of time.

In this classical rule-based Al-paradigm the term ‘knowledge’ is best understood as a technical
term. It is used chiefly as an attribute of systems that are based on some declarative language for
stating facts which induces a computable relation of inference. More specifically, a system is a
knowledge-based system if a) facts are declaratively encoded in a formal language, and b) this
language gives rise to a notion of logical entailment that enables a machine to verify that a new fact is
implicit in the set of facts the system already knows. Such a language is by definition a logic, whence

the term ‘logic-based system’ may be regarded as a synonym.

3.2 The Semantic Web

The Semantic Web may be considered an adaptation of the knowledge representation paradigm
described in the previous section to HTTP-based network environments. By encouraging the
inclusion of formally encoded information in web pages and in web-oriented databases, the Semantic
Web aims at converting the current web, which is dominated by unstructured and semi-structured

documents into a “web of data”.

FFl-notat 2013/00131 13

Today, data is to a large extent stored in databases or files that feed info the Web but are not part of it.
By the time the data reaches the Web it has usually already been processed and presented to fit some

particular purpose or need, and can usually not be understood or reused outside that context.

The Semantic Web, in contrast, is about making the raw unprocessed data part of the very fabric of
the Web itself. The Web, so the argument goes, ought primarily to be about data, and only secondarily
about presentation and layout. Therefore, the Semantic Web emphasizes machine-readable self-
descriptive data as a key concept.

Data on the Semantic Web is supposed to be self-descriptive in the sense of being encoded and
wrapped in a description that is sufficiently rich to make the interpretation of the data software-
independent. It is data that encodes its own interpretation—meaningful data—and it is designed

precisely to transcend application barriers and software borders.

Condensed into a single sentence, therefore, the Semantic Web is about supporting intelligent
processing of information across software boundaries and data sources based on the intended
interpretation of the data, as given by the encoding of the data itself.

To that end the W3C has published a suite of mark-up languages of increasing degrees of complexity
and expressiveness. At the lower end of the spectrum we find The Resource Description Framework,
henceforth RDF, which is a basic model for encoding relational data in a format suitable for HTTP-
based network environments. At the other extreme we have the highly expressive Web Ontology
Language, which is a language for formally describing the semantics of data encoded in RDF. We

shall describe each in turn below.

3.3 RDF

RDF is language for making statements about resources in the form of subject-predicate-object
expressions.! These expressions are known as triples in RDF terminology. The subject denotes the
resource/topic, and the predicate denotes a property of the resource that relates it to the object (which

is another resource).

RDF is an abstract model implemented in several concrete file formats, and so the particular way
in which a triple is encoded varies from format to format. Common to all, however, is the naming
scheme, which is a fundamental feature of the RDF data model. More specifically, RDF uses Uniform
Resource Identifiers (URIs) as constants (i.e. names of entities): a fundamental prerequisite for the
Semantic Web is the ability to state facts and assertions unambiguously in a web-wide scope. The
Semantic Web is designed to heed the so-called AAA principle—Anyone can say Anything about
Any topic—so there is a very real and pressing need for a supply of identifiers that refer uniquely, no
matter where on the web they are used.

RDF solves this by using the Web’s addressing scheme itself as a basis for naming. URIs by design

!The use of ‘resource’ has historical roots and is not very clear terminology. Briefly put a resource can be any object or
topic, abstract or particular, that one can point to or talk about, e.g. a concept, a person or a web page. In other words,

‘resource’ is synonymous with ‘entity’.

14 FFl-notat 2013/00131

provide a foundation for a data-sharing infrastructure because they all exists within a universal
namespace that comprises the web as such. Thus, information expressed in RDF does not run the

risk of context-dependent semantic interference or obfuscation.

3.4 OWL

The Web Ontology Language (OWL) is a Semantic Web language designed to represent complex
knowledge about classes of things, and relationships between classes of things. Whereas RDF deals

with concrete objects of a given domain, OWL deals with the relationship between its general terms.

OWL is a computational logic-based language such that knowledge expressed in OWL can be
reasoned with by computer programs either to verify the consistency of that knowledge or to make
implicit knowledge explicit. An OWL ontology encodes the meaning of a general term by specifying

the relationship this term bears to other terms in the domain, e.g. (where general terms are underlined):

e Every project has at least one participant.

e Projects are always external- or internal projects.

o The superior of my superior is also my superior.

When an ontology is superimposed onto an RDF data set, the result is a logical theory. The general
statements in the ontology act as axioms that allow new facts to be derived from the explicitly stated
RDF data. In less clear language one may say that the ontology axioms give the meaning of the
general terms, which in turn dictates the interpretation of the data by defining the inferences that
apply to it.

3.5 The SPARQL Query Language and Protocol

Querying the Semantic Web requires a language that recognizes RDF as the fundamental syntax,
whereas exchanging data requires a standardized way to store and request RDF data. The SPARQL
specification is designed to cater for both needs.

The SPARQL specification was made a standard by the RDF Data Access Working Group of the
World Wide Web Consortium in 2008. It defines both a query language and a protocol for data
exchange. The query language is a syntactically-SQL-like language for querying RDF data sets via
pattern matching. The language’s features include basic conjunctive patterns, value filters, optional
patterns, and pattern disjunction.

The SPARQL protocol, on the other, hand is a method for remote invocation of SPARQL queries. It
specifies a simple interface that can be supported via HTTP or SOAP that a client can use to issue
SPARQL queries against a so-called SPARQL endpoint, which is a conformant SPARQL protocol

service.

At its simplest a SPARQL endpoint is a URI to which queries can be sent, and which returns answers

to the queries as a response. A SPARQL endpoint may be thought of as a web-oriented database

FFl-notat 2013/00131 15

designed to support queries and data exchange in a networked, HTTP-based environment. The query
interface is completely generic, that is, it does not, unlike the typical SOA service presuppose any

particular use of the data as given by a custom made web-service interface.

3.6 Paradigmatic Use Case: Data Integration

Ontology-based data integration is concerned with unifying data that overlap in content, interpretation
and relevance, but which resides in different repositories or databases. One of the principal functions
of an ontology is to mitigate the semantic heterogeneity of the sources involved in order to enhance

interoperability.

Semantic heterogeneity involves a mismatch between concepts and their interpretations, and is due
to one of three things: semantically equivalent concepts, semantically unrelated concepts, and/or
semantically related concepts where the relation is not made explicit. In the first case, two sources use
different terms to refer the same concept, i.e. to synonyms. This is the case if, say, the same concept
is modeled differently by different systems, for example if the concept vehicle is modeled as a “unit
with a propulsion engine” in one source and as a “self-propelled unit” in another. In the second case,
the same term is used by different systems to denote completely different concepts, e.g. homonyms
like “bow” as a weapon vs. “bow” as the front of a ship. In the third case semantic heterogeneity
may stem from a situation where, say, one source contains records of scientific staff and another of
administrative staff, whilst one cannot interact with both types of record simultaneously simply as

records of employees.

An ontology can reduce the effects of semantic heterogeneity in at least three ways: (1) the vocabulary
provided by the ontology serves as a stable and unified query interface to the databases, (2) the
ontology enables translation of all the relevant information sources into a common frame of reference,

and (3) the ontology supports consistent management and recognition of inconsistent data.

3.7 Compatible Architectural Styles

Although the Semantic Web is not primarily an architectural concept, its emphasis on rich and
semantically self-descriptive data is highly compatible with certain paradigms for publishing data on
the web that have emerged in recent years. These paradigms do add architectural traits to the existing
web within which the principles behind data-orientation and semantic technologies live particularly
comfortably. We describe two of the more well-known examples below, namely Linked Data and
REST.

Linked Data

Linked data describes a method of publishing RDF as an interlinked part of the web fabric itself. It
builds upon RDF, and thus on standard Web technologies such as HTTP and URIs, but rather than
just storing RDF in SPARQL endpoints, it embeds the data items in the web itself by making URIs
interlinked and clickable. That is, Linked Data describes a recommended best practice for exposing,

distributing and connecting data items by extending the hypertext architecture of the web to a hyper

16 FFl-notat 2013/00131

data architecture (Bizer et al. 2009).

Linked Data is usually summarized with reference to the following four maxims:

1. Use URIs to identify things.

2. Use HTTP URIs so that these things can be referred to and looked up ("dereferenced") by

people and user agents.

3. Provide useful information about the thing when its URI is dereferenced, using standard
formats such as RDF/XML.

4. Include links to other, related URIs in the exposed data to improve discovery of other related

information on the Web.

Tim Berners-Lee restated the linked data principles as the following "extremely simple" rules:

o All kinds of things, conceptual or not, may have names that start with HTTP.

e When URIs are resolvable, I get important information back. I will get back some data in a
standard format which is data that somebody might like to know about that thing, about that

event.

e What I get back has got relationships, whenever it expresses a relationship then the other thing
that it’s related to is given one of those names that starts with HTTP.

Linked Data enables information from different sources to be connected and queried. By providing
links (in terms of RDF triples) applications may exploit the extra knowledge from other data sets
when developing an application; by virtue of integrating facts from several data sets, the application

may provide a much better user experience.

REST

Representational State Transfer is a pattern of resource operations that has emerged as a de-facto
standard for service design. Whereas the traditional SOAP-based approach to web-services uses
full-blown remote objects with remote method invocation and encapsulated functionality, REST deals
only with data structures and the transfer of their state. REST’s simplicity, along with its natural fit
over HTTP, has contributed to its status as a method of choice for web applications to expose their
data (Battle & Benson 2008).

At the core of REST based design is a set of state transfer operations universal to any data storage
and retrieval system. These operations, as commonly interpreted on the web, are referred to by the
acronym CRUD, for “Create, Read, Update, Delete.” The REST community has adopted an informal
mapping of CRUD operations onto the commands provided by the HTTP protocol: POST, GET,

FFl-notat 2013/00131 17

PUT, and DELETE, respectively. These commands identify the particular CRUD operation being
requested of the resource identified by the URL endpoint (ibid.).

The REST design methodology integrates well with the resource paradigm of the Semantic Web.
The Semantic Web uses URIs as resource identifiers, so the URL-based identifiers of REST fit
naturally into its scheme. The Semantic Web, like REST, also deals strictly with assertions describing
objects and their state; no parallel exists for SOAP-like remote method invocation. Finally, all
common operations on the Semantic Web with the exception of query— data fetch, insertion, and
deletion—are the fundamental operations in a REST-based system. It follows that REST-based web

sites are an ideal carrier of semantic data.

3.8 General Features of Semantic Web technologies

RDF, SPARQL and OWL, make Semantic Web technologies ideally suited for data integration
in HTTP-based environments: RDF encodes information using globally unique URIs, making it
possible to express factual knowledge unambiguously in a network-wide scope. SPARQL endpoints
are directly accessible over HTTP and do not require connection objects in a programming language,

whereas SPARQL queries do not make any assumptions about the physical location of data.

The combination of RDF, SPARQL and OWL therefore brings to the web some of the same traits
that characterize traditional knowledge-based systems. These include:

Declarativeness: Information model ling is based on a declarative description language that offers
a level of abstraction in which data is managed according to its conceptual content, rather than,
say its manner of storage or its manner of computation.

Basis in logic: Standard techniques from logic offer precise measures of important meta-properties
of a data repository, for instance its consistency and or/the correctness and completeness of the
reasoning procedures.

Reasoning as processing paradigm: The analysis of data is typically fueled by automated reason-
ing, which enables the interrelations between facts to be explored with depth and penetration,
yielding considerable analytical power.

Data-orientation: Emphasis is placed on providing rich and semantically self-descriptive data that
can be interpreted and processed intelligently by any application capable of decoding the
format in question.

Qualitative information: The Semantic Web deals strictly with assertions describing objects and

their state. This makes it particularly suitable for representing qualitative information.

4 Semantic Technologies vs. SOA; some Differences

The most conspicuous difference between the SOA conception and that of the Semantic Web is
perhaps the fact that the Semantic Web is not primarily an information infrastructure or a system
architecture concept. It is rather a particular methodology or technique for encoding, integrating and

analyzing large sets of data. Contrasting it with key notions in the SOA conception, we have, among

18 FFl-notat 2013/00131

others, the following dissimilarities:

Background: SOA comes from software engineering, understood as the application of a systematic,
disciplined, quantifiable approach to the design, development, operation, and maintenance of
software. The Semantic Web comes from the sub-discipline of artificial intelligence concerned
with knowledge representation and reasoning.

Orientation: SOA is service-oriented and procedural in the sense that it focuses on operations, and
their input and corresponding output, and the pipe-lining of operations into processes. The
Semantic Web, in contrast, is data-oriented and declarative and deals strictly with assertions
describing objects and their state.

Aim: SOA denotes a set of abstract principles for reasoning about behavior and interaction of
operations, their preconditions and post-conditions, and how to combine them into workflows,
in order to achieve a particular end. The Semantic Web, in contrast, represents a concrete take
on the problem of reasoning about qualitative data, such as vehicles, types of vehicles, their
parts and their capabilities. Furthermore, the Semantic Web supports analysis, integrating and

processing such data on the Web according to its intended interpretation.

In the next Section, we show how the different capabilities of SOA and Semantic technologies make
them potential partners in building an infrastructure in line with the NNEC concept, benefiting from

the strengths of the two concepts.

5 Opportunities

Based on the key characteristics of SOA and ST, and the discussion of their conceptual differences,
we now present some potential synergetic appliances of the two paradigms in combination. We
describe some example applications to show relevance and feasibility.

5.1 Semantic Web-services

Web-service standards, like WSDL and SOAP, only specify the syntax, and not the semantics, of
service operations and data types. Thus, web-services depends on a human-in-the-loop to interpret
the semantic interoperability of web-services and their clients. Semantic web-services use ontologies
as the underlying data model to implement semantically enhanced mechanisms for service discovery,
composition, and execution, enabling automated reasoning about web-services and web-service

compositions, and thus better adaptability towards dynamic environments.

5.1.1 Related Work

Research in semantic web-services has been focused on semantic QoS models and ontologies, and
corresponding policy based frameworks. As an example, (Ben Mabrouk et al. 2009) describes an
ontology based quality model based on OASIS’ Web Service Quality Model (WSQM). Another
example is (Chaari et al. 2008), where a QoS-based ontology and WS-Policy-based framework for
WS publication and selection is presented. Finally, (Hafsge et al. 2010) describes an ontology-based

FFl-notat 2013/00131 19

approach to QoS-aware service discovery and orchestration of web-services in a MANET environ-
ment. Some ontologies for semantic web-services has been submitted for W3C recommendation,
including OWL-S (W3C 2004a) and Web Service Modeling Ontology (WSMO) (W3C 2005).

There seems to be a lack of implemented systems and demonstrations available. As mentioned
in Section 2.7, most web-service based systems in civilian context are statically and manually
administered. Then, semantically enhanced descriptions can be replaced by descriptions more
naturally read and processed by the human user. However, as argued by (Hafsge et al. 2010),
semantically enhanced web-services could be useful in military tactical networks, where resources
are scarce and rapidly changing. The approach in (Hafsge et al. 2010) is briefly described in the

use-case below.

5.1.2 Case: Semantically Enabled QoS Aware Service Discovery and Orchestration for
MANETs

(Hafsge et al. 2010) describes an ontology-based approach to QoS-aware service discovery and
orchestration of web-services in a military tactical MANET environment. The nodes in a Mobile Ad
Hoc Network (MANET) are likely to be heterogeneous, and have different capabilities, both with
regard to connectivity and end system resources. The discovery mechanism presented in (Hafsge
et al. 2010), called Service Advertisements in MANETSs (SAM), enable clients to find the services

that best match their capabilities by extending the service discovery mechanism with QoS attributes.

(Hafsge et al. 2010) describes how service providers and consumers may specify both service types
and QoS offers and requirements using an OWL-S based service ontology called OWL-S LiQ. Client
requests are matched with available services in two steps; First functional aspects, that is the service
inputs and outputs, are matched to find alternative services that provide the required functionality,
then QoS parameters are matched to select the best alternative. If a service matching the client
requirements can not be found, the matching algorithm attempts to apply service orchestration, to

find a composition of services matching the requirements.

5.2 SOA and ST as Complementary Information Systems Technologies

The SOA and Semantic Web paradigms are very different conceptually, and are not naturally
considered competing frameworks. On the contrary, larger information infrastructure may benefit

from utilizing both, but in different functional roles.

In such an infrastructure, one would typically delegate responsibility for secure and reliable data trans-
portation, -processing and -dissemination to a SOA layer—utilizing standards such as WS-Security,
WS-ReliableMessaging, and WS-Policy—whereas one would employ semantic technologies to
integrate, analyze and interpret the data that flows between the SOA components. In the example
below, we describe an application where such a delegation is applied in a military context, to support

operative decision making.

20 FFl-notat 2013/00131

query
__________ - SPARQL
e Endpoint
result T~
‘ d) -—
JOCWatch
MedWatch Tracks

SQL / \
WS: WS: WS:
MedService JOCService TrackService
SOAP /

T T

Figure 5.1 SOA and ST as complementary technologies

5.2.1 Case: From Sensor Data to Operative Decision Making

In 5.1 is illustrated a scenario where a semantic database is combined with services to collect
and Analyse sensor data from operative units. A military analyst is monitoring planned medical
evacuation flight missions, and needs to be alerted when missions are threatened by enemy activity.
The analyst would want access to a Blue Force tracking system to obtain information about friendly
units within a certain distance from the site of events, in order to summon those with the capabilities

to support the evacuation mission.

Suppose there are three operational information systems involved in the task: A) JOCWatch, an event
log containing information on incidents of relevance to the command B) MedWatch, a system for
medical mission tracking designed to support the planning, logging and monitoring of medical evacu-
ation missions, and C) Track Source, a unit tracking service providing timestamped geopositional

information regarding friendly units in the field.

These system, which are systems in actual use, have links between them: MedWatch missions are

FFIl-notat 2013/00131 21

(potentially) related to JOCWatch events through a shared incident. JOCWatch events are typed
according to category e.g. as a SAFIRE event, which is an event that involved a hostile surface-to-air

attack, whereas units in the Track Source are typed according to capability, e.g. as Artillery.

Note that, whereas missions and events are linked by an actual foreign key in the MedWatch database,
event types and capabilities are linked only conceptually. The conceptual link may consist in e.g. the
fact that a unit of type Artillery is adequately equipped to counter a hostile SAFIRE event, although
this is not explicitly stated anywhere.

Semantic Web-aspects of the Case:

The above mentioned links, whether conceptual or not, are typical examples of the kind of static
qualitative relationships that ontologies are designed to capture. An ontology for the case at hand
would define the relevant concepts needed to express the analyst’s information needs. For instance
an ontology could define a concept ThreatenedMission as a MedWatch missions that is related to
a ThreateninglIncident, a concept ThreateningIncident as a JOCWatch incident that is related to a
ThreateningEvent, and a ThreateningEvent as a JOCWatch event that is both a MilitaryOperation
(from the JOCWatch ontology) and a HostileEvent. The ontology would also define significant
relationships, for instance a relation canCounter to correlate unit types with event types.

Given such an ontology, the analyst will be able to express his or her information need in the form of
a query phrased in terms of the above mentioned abstract and presumably familiar concepts: Find all
medical evacuation missions and friendly units such that a) the mission can be classified as being
threatened; and b) that the friendly unit can counter the specific type of threat that the enemy poses.
A semantic application would typically apply a reasoner to compile this query into simpler ones that
are executable directly against the sources. The analyst would not need to now which sources were
involved, or even that there is more than one, but would simply interact with the system through the

abstract interface offered by the ontology.

SOA Aspects of the Case:

Parts of the data in operational information systems such as JOCWatch and MedWatch will come
from live reporting of incidents in the field, conceivably from gps-sensors, handheld mobile devices
and radar. While some data elements can be read directly from the device, such as location data can
be read from the gps sensor, other elements has to be typed in by the user, such as the description of
an incident. However, the data types and formats are known in advance. Thus, web-services could be
defined, specifying input messages for carrying MedWatch, JOCWatch, or Track data.

The system can be implemented as follows: A web-service client runs on the user device, collecting
sensor data from the device and input data from the user. The client compiles SOAP messages and
transmits them to the server-side web-service end-points. The web-services receive SOAP messages,
performs necessary message processing, and insert information into the JOCWatch, MedWatch, and
Track source databases.

22 FFl-notat 2013/00131

5.3 Semantic Data Integration with Service Access

While a SPARQL endpoint offers a generic query interface to the client, some situations may require
more restricted data access. By wrapping a semantic query interface as a service, we may benefit
from combining the data analysis and reasoning capabilities provided by Semantic Technologies,
with SOA features:

e Web-services exert control over data access through the service contract, which limits the
information access to specific and predefined queries, and data abstraction, hiding data sources

and schemas.

e Web-services enable composition through the specification of workflows, where the execution
of SPARQL queries may occur in certain processing steps. That is, service composition may
involve i) piping the result of a SPARQL query into a service, or ii) piping the output of a
service into a SPARQL query.

e Application of SOA standards such as WS-Security, WS-ReliableMessaging, and WS-Policy
provides service level security and QoS over data access.

Restricted data access with services, fix the allowed queries at service design time, and thus limits
the choices available to the user, as compared with direct access to a SPARQL endpoint. When the
query interface and the source schema is protected by a service layer, the user can no longer decide
which information he wants to query, nor specify new queries on demand. Thus, the cost of adding
access control with web-services is reduced usability of the semantic technology.

5.3.1 Case: Information Dissemination with Services and Information Assurance

In the scenario described in Section 5.2.1, several different information consumers, both at the tactical
and strategic level, would be interested in results from semantic queries to the MedWatch, JOCWatch,
and Track source databases. As an example, operatives in the tactical domain would be interested
in information about planned medical missions close to their own location, while analysts on the
strategical level would be interested in statistics and trends on injuries and diseases in all the areas

where soldiers are deployed. Furthermore, parts of the information could be shared with allied forces.

Requirements
To ensure that information is efficiently and securely shared with receivers, the data dissemination

mechanism should satisfy the following requirements:

e Control over data access: To limit data access of different categories of users, and thus the
potential for information aggregation, users should not have direct access to the data source.
Rather, they should have access to predefined queries which provide users with exactly the

information they need, and not more.

e Automation of processing: To make the processes of extracting and distributing information

FFl-notat 2013/00131 23

Start agent: Start agent:
Threatened missions Disease outbreak

Ws: ~| SPARQL WS:
CreateTMP Endpoint

TMP
l input JOCWatch
MedWatch Tracks
WS:
PublishTMP PublishDOP
output output
MSPNotification
l input
WS:
NotificationBroker

Figure 5.2 SPARQL-WS workflow

efficient and user friendly, these processes should be automated and as self-managed as

possible.

e Information assurance: Data which is processed, stored, or transmitted must be protected
by security mechanisms, ensuring data confidentiality, integrity, availability, authenticated
access, and non-repudiation. As security mechanisms need to provide role-based, object-level

protection, lower-level security does not suffice.

Application of SOA Mechanisms:

Web-service technologies provide mechanisms that satisfy these requirements. Therefore, results
from SPARQL queries, as described in the scenario, can be distributed using web-service technologies.
Either a pull or a push approach can be applied; With a pull approach, SPARQL queries are wrapped
and made available as a public web-service endpoint to which any web-service client can connect.
With a push approach, the same wrapped query is regularly invoked, and the result is published using
a web-service based notification service. Both alternatives can be protected using the WS-Security

framework, controlled by security policies written in WS-Policy.

Figure 5.2 illustrates how the push approach could be implemented using web-service workflows.

Two agents repeatedly execute workflows that query a SPARQL endpoint and distribute interesting

24 FFl-notat 2013/00131

results using web-service technologies. The Threatened mission agent extracts information about
planned missions and threats as described in Section 5.2.1, and issues a warning when a threatened
mission is identified. The Disease outbreak agent detects patterns in illness reports, and tries to

predict disease outbreaks based on them. When there are signs of an outbreak, an alarm is triggered.

The services CreateThreatenedMissionPicture (CreateTMP) and CreateDiseaseOutbreakPicture (Cre-
ateDOP) submit queries to the three data sources (JOCWatch, MedWatch and the Track source).
The outputs from CreateTMP and CreateDOP, ThreatenedMissionPicture (TMP) and DiseaseOut-
breakPicture (DOP), are submitted to the next two services in the workflows, PublishTMP and
PublishDOP. These services transforms the TMP and the DOP into notifications, conforming to
the WS-Notification standard, and publish the notifications to a web-service broker. The broker
distributes the notifications to any client that has subscribed to TMPs or DOPs.

WS-Notification can be combined with WS-Security to i) authenticate notification publishers and

subscribers, and ii) guarantee integrity and confidentiality of notifications.

6 Conclusions

In this document, we have discussed the role of SOA and Semantic Technologies in the perspective
of NNEC. With NNEC, the NII must facilitate interaction between technical solutions deployed by

allied forces.

Roughly stated, the SOA toolbox contributes to the interaction between services, remotely accessed
and composed by means of standardized interfaces, whereas Semantic Technologies add the capability
to reason over data (i.e. to analyze/synthesize information) across domains and systems. Hence, we
claim that SOA and Semantic Technologies are orthogonal technologies which are conceptually very
different, and therefore typically suitable for different things. The table below summarizes some

important points of contrast:

Service-oriented Architecture Semantic Technologies

service-oriented data-oriented

procedural declarative

describes workflows and processes describes static relationships in qualitative data
methodology for structuring interaction | technique for integrating and analyzing data sets

One may benefit from combining SOA and semantics in the same information infrastructure, given
that each paradigm is relegated to its appropriate functional role; SOA as a principled approach to
building workflows from predefined, composable, and interoperable services, and ST as a provider of
information integration, analysis, and reasoning. By sketching two plausible example applications,
we have identified some potential synergies that may result from combining the two:

e One possibility is to use semantics for data representation, integration and analysis, whilst data

harvesting and secure transportation is delegated to SOA components.

FFl-notat 2013/00131 25

e Alternatively, one may use SOA technologies to disseminate knowledge gained from semantic
integration and reasoning through more controlled service interfaces, with the potential of

adding SOA-mechanisms providing role-based and object-level security.

¢ Finally, web-services may use ontologies to implement semantically enhanced web-service
descriptions, enabling automated reasoning about web-services and web-service compositions

based on inference.

Of course, these alternatives are not mutually exclusive.

Generally, with regard to information collection, processing, and dissemination, SOA and semantic
technologies represent a span between the great flexibility and data usability of the Semantic Web,
where information is available to the user as raw data, and the stricter regime of SOA where specific
elements of information is made available through discrete services. Combining them gives the
opportunity to make a trade-off between flexibility and control which may be a interesting alternative

in a military context.

References

Battle, R. & Benson, E. (2008), ‘Bridging the semantic web and web 2.0 with representational state
transfer (rest)’, Web Semant. 6(1), 61-69.
http://dx.doi.org/10.1016/j.websem.2007.11.002

Ben Mabrouk, N., Georgantas, N. & Issarny, V. (2009), A Semantic End-to-End QoS Model for
Dynamic Service Oriented Environments, in ‘ICSE Workshop on Principles of Engineering
Service Oriented Systems - PESOS 2009’, IEEE Computer Society, Vancouver, Canada.
http://hal.inria.fr/inria-00468220

Bizer, C., Heath, T. & Berners-Lee, T. (2009), ‘Linked data - the story so far’, Int. J. Semantic Web
Inf. Syst. 5(3), 1-22.

Booth, M., Buckman, T., Busch, J., Caplan, B., Christiansen, B., van Engelshoven, R., Eckstein,
K., Hallingstad, G., Halmai, T., Howland, P., Rodriguez-Herola, V., Kallgren, D., Onganer, S.,
Porta, R., Shawcross, C., Szczucki, P. & Veum, K. (2005), Nato network enabled capability
feasibility study vii version 2.0, Technical report, NC3A.

Chaari, S., Badr, Y. & Biennier, F. (2008), Enhancing web service selection by qos-based ontology
and ws-policy, in ‘Proceedings of the 2008 ACM symposium on Applied computing’, SAC *08,
ACM, New York, NY, USA, pp. 2426-2431.
http://doi.acm.org/10.1145/1363686.1364260

Erl, T. (2005), Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall PTR,
Upper Saddle River, NJ, USA.

26 FFl-notat 2013/00131

http://dx.doi.org/10.1016/j.websem.2007.11.002
http://hal.inria.fr/inria-00468220
http://doi.acm.org/10.1145/1363686.1364260

Fielding, R. T. (2000), REST: Architectural Styles and the Design of Network-based Software
Architectures, Doctoral dissertation, University of California, Irvine.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Hafsge, T., Johnsen, F. T. & Rustad, M. (2010), Semantically enabled qos aware service discovery
and orchestration for manets, in ‘Proceedings of the 15th International Command and Control

Research and Technology Symposium’.
Manes, A. T. (2007), Enterprise Service Bus: A Definition, Technical report, The Burton Group.

OASIS (2006a), ‘Reference model for service oriented architecture 1.0°, https://www.oasis-

open.org/committees/soa-rm/.
OASIS (2006b), ‘Web services notification’, https://www.oasis-open.org/committees/wsn.

OASIS (2006c), ‘Web services security: Soap message security 1.1 (ws-security 2004)’,
http://docs.oasis-open.org/wss/v1.1/.

OASIS (2007), “Web services business process execution language version 2.0, http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.html.

OASIS (2009), “Web services dynamic discovery (ws-discovery)’, http://docs.oasis-open.org/ws-
dd/discovery/1.1/wsdd-discovery-1.1-spec.html.

Rodriguez, A. (2008), ‘Restful web services: The basics’,

http://www.ibm.com/developerworks/webservices/library/ws-restful/.
W3C (2000), ‘Simple object access protocol (soap) 1.1°, http://www.w3.org/TR/soap/.
W3C (2001), “Web services description language (wsdl) 1.1°, http://www.w3.org/TR/wsdl.

W3C (2004a), ‘OWL-S: Semantic Markup for Web Services’, http://www.w3.org/Submission/OWL-
S.

W3C (2004b), “Web services glossary’, http://www.w3.org/TR/ws-gloss.
W3C (2005), “Web Service Modeling Ontology (WSMO)’, http://www.w3.org/Submission/WSMO.

W3C (2007), “Web services policy 1.5 - framework’, http://www.w3.org/TR/ws-policy/.

FFI-notat 2013/00131 27

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

	Introduction
	Background
	Perspective of this Note

	Service-oriented Architectures
	Service Orientation
	The Service-oriented Architecture
	SOA Fosters System Interoperability
	Web-services - WSDL and Accompanying Standards
	Workflows and Processes
	SOA Technology
	General Features and Observations of SOA

	Semantic Technologies and the Semantic Web Paradigm
	Semantic Technologies = Knowledge Representation + Reasoning
	The Semantic Web
	RDF
	OWL
	The SPARQL Query Language and Protocol
	Paradigmatic Use Case: Data Integration
	Compatible Architectural Styles
	General Features of Semantic Web technologies

	Semantic Technologies vs. SOA; some Differences
	Opportunities
	Semantic Web-services
	Related Work
	Case: Semantically Enabled QoS Aware Service Discovery and Orchestration for MANETs

	SOA and ST as Complementary Information Systems Technologies
	Case: From Sensor Data to Operative Decision Making

	Semantic Data Integration with Service Access
	Case: Information Dissemination with Services and Information Assurance

	Conclusions
	References

