
 

FFI-rapport 2012/00419  
  

  

 

  
 

 

 

 

MILKOG – a cognitive radio electronics warfare agent 
architecture 

Tore Ulversøy and Thomas Thoresen 

 

Norwegian Defence Research Establishment (FFI) 

08 May 2012 

 

  

  



 2 FFI-rapport 2012/00419 

 

FFI-rapport 2012/00419 

1107  

 
P: ISBN 978-82-464-2107-0 

E: ISBN 978-82-464-2108-7 

 

 

Keywords 

Elektronisk krigføring 

Kommunikasjon 

Kognitiv radio 

Dynamisk spektrums-tilordning 

Multiagentsystem 

 

 

 

Approved by 

Tor-Odd Høydal Project Manager 

Anders Eggen Director 

  

  

  

 

 

 



  
 

FFI-rapport 2012/00419 3  
 

 

 

English summary 

The report documents investigations, design and development of agent controlled combined 

communication (COM), electronic surveillance (ES) and electronic attack (EA) nodes.  

 

The report outlines an overall architecture for and the conceptual design of the MILKOG 

communications and electronic warfare agent.  The objective of MILKOG is to manage radio 

transceivers and the radio spectrum in such a way that both communication and electronic 

warfare requirements are taken into account.   

 

The report also describes a reduced-functionality experimental version of the MILKOG agent and 

multifunction (COM+ES+EA) platform, and documents some initial tests of a small system of 

MILKOG nodes.  The experimental version of MILKOG demonstrates simple dynamic spectrum 

access where each agent is allowed to make its independent decision on which part of the 

spectrum to utilize.  The demonstration functionality includes video transmission.  It also 

demonstrates the combination of monitoring and jamming to form a reactive communications 

jammer functionality. 

 

It is expected that MILKOG will form an expandable basis for research on combined COM and 

EW radio nodes and smart communications electronic attack features.  While the prototype 

system and the initial tests of this system provide some level of support for the hypothesis that 

agent coordinated communication and electronic warfare is beneficial, further work is clearly 

needed.  Suggestions for such further work are provided. 

  



 4 FFI-rapport 2012/00419 

 

Sammendrag 

Rapporten skisserer en overordnet arkitektur og konseptuelt design for en software-agent for 

kommunikasjon og elektronisk krigføring, MILKOG.  Hensikten med MILKOG er å styre og 

koordinere transceivere slik at krav fra både kommunikasjon  og elektronisk krigføring blir 

hensyntatt. 

 

Rapporten beskriver også utviklingen av en eksperimentell versjon av MILKOG og en 

eksperimentell multifunksjons (kommunikasjon, monitorering, elektronisk angrep) plattform.  

Den eksperimentelle versjonen har redusert funksjonalitet i forhold til totalkonseptet, men 

demonstrerer en enkel form av dynamisk aksess til radiospektrumet.  

Demonstrasjonsfunksjonaliteten inkluderer videooverføring, og den demonstrerer også 

kombinasjonen av elektronisk monitorering og jamming som sammen utgjør en reaktiv jammer. 

  

Det er forventet at MILKOG vil utgjøre en utvidbar basis for forskning på kombinerte 

kommunikasjons- og elektronisk krigføringsnoder, samt for forskning på smarte måter å designe 

funksjonalitet for elektroniske angrep på kommunikasjonsnettverk. 

 

Prototype-systemet, og foreløpige tester av dette, gir støtte for en hypotese om at agent-koordinert 

kommunikasjon og elektronisk krigføring er nyttig, men det er klart at mer arbeid gjenstår for å 

belyse denne hypotesen.  Rapporten inneholder forslag til videre MILKOG-aktiviteter.  

 

 

 

  



  
 

FFI-rapport 2012/00419 5  
 

 

 

Contents 

1 Introduction 7 

2 System Architecture 8 

2.1 Infrastructure Perspective 8 

2.2 Network Models 10 

2.3 Spectrum Model 10 

2.4 The Agent 11 

2.5 Databases 11 

2.5.1 Primary and Prioritized COM Database (PPCD). 12 

2.5.2 EA Database (EAD). 12 

2.5.3 ES Database 12 

2.6 Coordination Communication 12 

2.6.1 Coordination Within one Logical Network 13 

2.6.2 Coordination Between Different Logical Networks 13 

3 MILKOG Agent, Internal Architecture 13 

3.1 Overview 14 

3.2 MILKOG Agent Blocks 14 

3.2.1 Cognitive Engine 14 

3.3 GUI 15 

3.3.1 Local Communication Goals 15 

3.3.2 Local ES Targets 15 

3.3.3 Local EA Targets 15 

3.3.4 COM Monitor 15 

3.3.5 ES Monitor 15 

3.3.6 EA Monitor 15 

3.4 Interfaces 16 

3.4.1 Coordination Channel Interface 16 

3.4.2 Transceiver Interface 16 

3.4.3 The Sensing Interface 16 

3.4.4 The Monitoring Interface 16 

3.4.5 Jammer Interface 17 

4 Prototype Implementation 17 

4.1 Introduction 17 

4.2 Prototype Overview 18 

4.3 The MILKOG Software Agent 18 

4.3.1 The Internal Architecture of the MILKOG Agent 19 

4.3.2 MILKOG GUI 20 



 6 FFI-rapport 2012/00419 

 

4.3.3 The Send, Receive and ReceiveFromForwarder Threads 23 

4.3.4 The DSA Thread 23 

4.3.5 Coordination Between Agents 27 

4.4 The MILKOG Forwarder 29 

4.5 The COM Functionality 30 

4.5.1 PHY 31 

4.5.2 MAC 35 

4.6 The Sensing Functionality 37 

4.7 The ES Functionality 38 

4.8 The EA Functionality 39 

4.9 The Traffic Source and Sink 39 

5 Prototype Verification Tests 40 

5.1 COM Functionality Tests 41 

5.1.1 Test Pattern Bit Rate and Bit Error Rate Measurements 41 

5.1.2 Video Transfer Test 43 

5.2 COM DSA Test: 43 

5.2.1 Avoiding a Slow Follower Jammer 43 

5.3 ES Functionality Test:  Energy Spectrum Monitoring 44 

5.4 EA Functionality Test:  Reactive Jamming 48 

6 Lessons Learnt from the MILKOG Prototype Development 51 

6.1 Lyrtech SFF SDR HW Experiences 51 

6.2 SFF Design Tools Experiences 51 

6.3 Pros and Cons of FPGA PHY 52 

6.4 Distributed Node SW Architecture 52 

7 Planned Expansions of MILKOG 53 

7.1 Functionality Improvement for Practical Tests 53 

7.2 Cognitive Architecture and Optimization Methodology 54 

7.3 Systems of Communication Nodes and Jamming Nodes 54 

7.4 Reactive and Proactive Jamming 54 

7.5 MILKOG Databases 55 

8 Conclusions 55 

Appendix A Overview of MILKOG Administrative Messages 61 

Appendix B The Formation of Local Networks 63 

Appendix C Hardware Description of SFF SDR 64 



  
 

FFI-rapport 2012/00419 7  
 

 

 

1 Introduction 

Electronic Warfare (EW) traditionally is using both separate personnel, information handling 

processes as well as equipment, from that of Communications (COM).  A common challenge is 

that of coordination of the actions between these disciplines, such that the EW activities do not 

interfere with and destroy the performance of the COM networks.  Moreover, EW may benefit 

from observations made in the COM systems.  With the evolution of several key technologies, 

such as Multi-Agent Systems (MAS), distributed processing and interaction and Software 

Defined Radio (SDR), a technological basis for a closer integration of EW and COM is 

appearing.   

 

Cognitive radio was proposed by Mitola and Maguire [1] in 1999 as a merge between SDR and 

artificial intelligence in the form of model-based reasoning.  The radios were envisioned to 

include a software agent that would be capable of reasoning about a number of radio-domain 

aspects, e.g. when the radio should do simplified signal processing in order to save battery power.  

As well known, the issues related to dynamic and opportunistic access of the radio spectrum has 

since dominated the research agenda.  The counterparty to the cognitive radio, the cognitive 

jammer [2] has however also been put forward and is likely a hot research topic in military 

research organizations.  Cognitive radio is hence pushing the balance between COM and EW 

systems to a higher complexity level, where both COM and EW may utilize cognition to optimize 

their responses to counter-parties. 

 

This report documents investigations, design and development of multifunction radio units, where 

by multifunction is meant the combination of COM and EW. The research goals are:  

 

 Outline a system and an agent architecture for a MILKOG cognitive radio electronic 

warfare agent.   

 Document the implementation of a simplified, reduced functionality, prototype MILKOG 

agent, based on the system and agent architecture. 

 Design and implement the COM, ES and EA functionalities of the prototype. 

 Document some initial small-scale prototype measurements with the agent, using real 

radio channels for the data payload, in order to provide some levels of support for the 

hypothesis that the suggested system and agent architecture will work in a real 

environment. The large-scale verification of the concepts and detailed solutions for the 

MILKOG system is however outside the scope of this report and outside the scope of the 

MILKOG activities in the OPEK II project. 

 

MILKOG is intended to be a combined decision agent for Dynamic Spectrum Access (DSA) of 

the COM networks as well as handling Electronic Surveillance (ES) and Electronic Attack (EA).  

It aims to balance its own local COM and EW requirements with requests received from other 

networks or entities, as well as with infrastructure databases when available.  The term „agent‟ 

implies an entity that collects information and uses this information to make decisions, on behalf 

of a user. 

 



 8 FFI-rapport 2012/00419 

 

MILKOG is aimed to serve as a system for further detailed studies within cognitive radio and 

cognitive EW, and it is expected that it will be expanded and changed many times during the 

course of the MILKOG activities in OPEK II and successor projects.  The overall goal with the 

MILKOG architecture is to visualize benefits of co-locating and co-optimizing COM and EW 

functionality, and to have a prototype system for experimenting and verifying radio agent 

behavior. 

 

The current report focuses on the architectural aspects of MILKOG, on documenting the 

prototyping of elements of this architecture, and on the prototyping of the multifunction 

(COM+ES+EA) platform functionalities.  Future work will deal with the issue of the „cognitive 

engine‟ of the agent and advanced optimization of agent spectrum decisions. 

 

This report is organized as follows:  Chapter 2 outlines the overall system architecture that the 

MILKOG agent aims to work in, and describes the elements of that architecture.  Chapter 3 

outlines the internal MILKOG agent architecture including its interfaces to the environment.  

Chapter 4 documents the development of a simplified MILKOG agent prototype, as well as the 

COM, ES and EA functionalities.  Some initial tests of the prototype are described in Chapter 5. 

Chapter 6 provides a „lessons learnt‟ summary from the MILKOG prototype development work.  

Chapter 7 provides suggestions for future MILKOG-related work to be carried out during OPEK 

III. Chapter 8 summarizes conclusions. 

2 System Architecture 

The purpose of this chapter is to outline the conceptual principles for the MILKOG architecture.  

2.1 Infrastructure Perspective 

Figure 2.1 and Figure 2.2 provide an overview of the different elements in the MILKOG 

architecture.  The architecture includes the radio networks themselves („green‟ units), where each 

transceiver is assumed to include a MILKOG agent.  There is also an assumption that there are 

adversary networks present („red‟ units), controlled by similar software agents, but with unknown 

functionality and strategies.  Additionally, conventional non-agent controlled transceivers, 

electromagnetic monitoring units and jammers are assumed to be present. 

 

The architecture also contains database elements, as will be explained in detail further below.  

The databases may be either in the form of replicated servers, or they may be distributed across 

the radio networks e.g. in the form of peer-to-peer databases.   

 

 



  
 

FFI-rapport 2012/00419 9  
 

 

 

 

Figure 2.1 Overview of elements in the MILKOG architecture.  ‘Interfering simplex links’ 

network model. 

 

 

Figure 2.2 Overview of elements in the MILKOG architecture.  Combat Net Radio Network 

(CNR) (all-hear-all) network model. 

 

Both within radio networks, between radio networks as well as between networks and databases, 

there is supposed to be self-configuring coordination channels, as described in more detailed 

below.   

Primary and 
prioritized
database

TX

RX

TX

RX

TX

RX

MON

MON

JAM

JAM

EA Database ES Database

Primary and 
prioritized
COM database

EA Database

TRX

TRX

TRX

TRX

TRX

TRX

TRX

TRX

TRX

MON

JAM JAM

MON

ES Database



 10 FFI-rapport 2012/00419 

 

2.2 Network Models 

Two types of network models are taken into account.  The simplest model is the Interfering 

simplex links one, which is the one sketched in Figure 2.1.  Here, each one-way link between two 

transceivers is considered a physical network entity with individual waveform parameters and 

spectrum use.  The links may be viewed as individual links in an ad hoc network, and where the 

links may dynamically access the medium in both the time and the frequency dimension, such as 

visualized in DARPA‟s Wireless Network After Next (WNAN) [3].  The second type is what is 

typically referred to as a Combat Net Radio (CNR) type of network, where several transceivers 

use the same single frequency interval (or the same hop-set), and where each transceiver 

broadcasts to the other transceivers in the network.   

 

For the experimental implementation of MILKOG, see Chapter 4, the CNR type of networks are 

assumed, as those are closest to how military tactical networks operate today. 

2.3 Spectrum Model 

The sharing of spectrum resources may be realized along multiple dimensions, including time, 

frequency, code division, space, directive antenna angle, antenna polarity etc. In this report, and 

in the developed MILKOG prototype, we limit ourselves to discussing pure frequency division.  

We assume a spectrum model which is slotted in frequency, implying that the available spectrum 

band is divided into segments, see Figure 2.3.  Here,   is the width of the spectrum band.  The 

band is divided into   segments, each with a width of       .   Defining     as the center 

frequency of B, the center frequency of each segment   in   is  

 

             
   

 
    (2.1) 

 

where          .   

 

Each agent, or each CNR network, may use one or several segments.   

 

 

Figure 2.3 The segmented spectrum model that is assumed in this report 

 

Methodology and mechanisms for optimized spectrum use and coordination between ES, EA and 

COM will be treated in OPEK III and documented in a separate report. 

1 .. M

B

Δf

Frequency

Spectrum band



  
 

FFI-rapport 2012/00419 11  
 

 

 

2.4 The Agent 

The MILKOG agent is to be implemented as a software module that is co-located with and 

controls each MILKOG transceiver.  The MILKOG agent manages the transceiver and controls 

the communication as well as the electronic surveillance and electronic attack properties.   

 

The COM, ES and EA decisions made by the agent are to be based on a number of different 

inputs, both local and from the remote environment and infrastructure.  The local stimuli include 

 

 user commands and preferences 

 communication traffic demands 

 the sensed electromagnetic environment 

 the transceiver limitations 

 

The stimuli from within one‟s own network unit additionally include 

 

 feedback of signal-to-noise and signal quality measures 

 the sensed electromagnetic environment 

 agreement on spectrum decisions 

 

The stimuli from other networks include 

 

 feedback on performance versus its target performance  

 other optional feedback such as priority and interference measurements 

 

The infrastructure information includes 

 

 information about receivers that should be protected, and their priorities 

 electronic attack targets 

 electronic monitoring targets 

2.5 Databases 

The databases are infrastructure elements and provide a way of having accumulated information 

in the agent‟s environment, and that is accessible for all the agents.  The interfacing to the 

databases is proposed to be implemented as a Web Service.  For continuous coverage of large 

geographical areas, the databases should be implemented as replicated sets, where replication 

mechanisms copy location-relevant information between neighbor databases. 

 

Not relying entirely on direct agent-to-agent communication but also including having 

accumulated information as part of the agent‟s environment, is inspired from [4].  Having 

infrastructure database elements is also in line with how cognitive reuse of the TV bands in the 

US have developed, where the FCC issued a request for companies willing to establish and run 

such spectrum databases. 

 



 12 FFI-rapport 2012/00419 

 

Investigations on the databases and their communication interfaces are proposed as future 

MILKOG activities, see Chapter 7. 

2.5.1 Primary and Prioritized COM Database (PPCD). 

The Primary and Prioritized COM Database (PPCD) is to contain information about radio 

communication nodes, broadcasters and other forms of electromagnetic emitters, that do not have 

DSA abilities and whose emissions need to be protected from interference. 

 

From the view of each MILKOG agent, the internal representation of information in PPCD is not 

important, but the agent needs to be able to obtain information about the query interface of the 

database.  Two alternatives for the queried information are proposed: 

 

 Alternative 1:  The geographical area is divided into a cell structure with non-

overlapping, equal-size cells. Each such cell has an address in a geographical addressing 

system. Upon requesting info from the PPCD, the MILKOG agent will receive 

information about maximum radiated power-density, for each spectrum segment within 

a specified interval. Obviously, there is a tradeoff between information accuracy (small 

cells) and complexity (large cells give a less complex data structure).  

 Alternative 2:  Same as alternative 1, the geographical area is divided into a cell 

structure with non-overlapping, equal-sized addressed cells. That is, in this case the 

MILKOG agent needs to inquire the tolerated interference level both in the cell in which 

it is located, and also in neighboring cells. 

 

Alternative 1 is judged as the simplest approach. 

2.5.2 EA Database (EAD). 

The EA database (EAD) contains information about jamming targets. In its simplest form the 

return information from a query would be a specification of jamming power densities in specific 

spectrum segments.  At a more advanced level, the return information could be characteristics of 

targets to be jammed, such as identities, types of networks or specific modulation features.    

2.5.3 ES Database 

The ES database (ESD) contains information about monitoring targets.  In its simplest form the 

ESD specifies which frequencies are to be monitored at a given location.  At a more advanced 

level, it could specify characteristics or identities of units to be monitored.      

2.6 Coordination Communication 

In order for agents to be able to coordinate decisions within and between radio networks, 

obviously channels for coordination communication need to exist.  Also, between the agents in 

the radio networks and the infrastructure elements such as the various databases, coordination 

communication is needed.   

 



  
 

FFI-rapport 2012/00419 13  
 

 

 

The coordination communication is proposed to take place as high-layer communication, e.g. 

using an overlay addressing layer on top of Internet Protocol (IP) addressing.  The data packets 

carrying the coordination information may then be physically routed depending on what physical 

connections are available in the specific time instant.  This allows that the coordination 

communication is routed through the payload connections when these are active.  Dedicated 

physical coordination channels are intended to be present as fallback when the payload 

connections are intermittently not available. 

 

In the initial MILKOG prototype implementation, the coordination communication, for reasons of 

implementation simplicity, is using IP addressing and IP socket communication, and run through 

a wired Ethernet.  This approach is realistic in the sense that it models the agents as truly separate 

entities, with all communication between them being explicit messages.  It is partly idealistic 

though, since the probability that a coordination message gets lost is very small.  For later tests 

outside of laboratory environment, we will include solutions for wireless coordination 

communication. 

2.6.1 Coordination Within one Logical Network 

For the one-way link type of network, this coordination is simply the feedback from the receiver 

back to the transmitter, such that the transmitter may make decisions based on its own link 

performance and sensed spectrum.   

 

For the second logical network type considered, where multiple receivers and transmitters share a 

set of frequency segments, all transceiver nodes feedback their performance and sensed spectrum 

data to the other nodes.  Further, coordination information that individual nodes have gathered 

from other networks is shared within the network.  Lastly, the independent spectrum and jamming 

decisions made by the transceivers are fused into network-wide decisions. 

 

The specific implementation of intra-network coordination for the MILKOG prototype is 

described in Section 4.3.5. 

2.6.2 Coordination Between Different Logical Networks 

This is coordination information between different networks within a coalition of such networks. 

The coordination comprises information about spectrum use, monitoring and jamming. 

 

The specific implementation of inter-network coordination for the MILKOG prototype is 

described in Section 4.3.5. 

3 MILKOG Agent, Internal Architecture 

In this chapter, a conceptual description of each the modules in the MILKOG agent architecture is 

provided.  Further details on the specific prototype implementation are provided in Chapter 4. 



 14 FFI-rapport 2012/00419 

 

3.1 Overview 

An overview of the internal architecture of the MILKOG agent is shown in Figure 3.1.   

 

The functionality inside the dashed line is considered the internal agent functionality.  The agent 

interfaces with the radio user through the Graphical User Interface (GUI) functionality.  Further 

it interfaces with other agents and the infrastructure through the coordination channel interface.  

It acquires information on the observed spectrum through the senser interface, and manages the 

transceiver and receives Quality-of-Service (QoS) information through the transceiver interface. 

 

 

Figure 3.1 Overview of the MILKOG agent internal architecture. 

 

Each block is described in further detail, below.  

3.2 MILKOG Agent Blocks 

3.2.1 Cognitive Engine 

The MILKOG “cognitive engine” is the core of the agent, collecting information, doing the 

reasoning and optimization, and making spectrum decisions.  The goal of the cognitive engine is 

to arrive at close-to-optimal solutions for transceiver power and operating modes in each of the 

used parts of the spectrum, subject to transceiver limitations, user-input restrictions and 

performance goals, and global restrictions and performance goals.  

 

To calculate the transceiver power solutions, the cognitive engine may include various types of 

optimizers, e.g. ones based on classical optimization, and ones based on genetic algorithms.   

 



  
 

FFI-rapport 2012/00419 15  
 

 

 

The cognitive engine is assumed to include persistence elements such that it may aggregate 

observations and decisions, and experience related to past decisions.   

 

Cognitive engine architecture is a vast subject in itself, and will be deferred to OPEK III.  For the 

prototype described in Chapter 4, the cognitive engine block has been realized as a continuously 

operating reactive loop that evaluates bit error rates, senses the spectrum, suggests new spectrum 

decisions, and fuses these decisions with other agents in the same network.  

3.3 GUI 

This section outlines the principles for the agent GUI. The reader might want to have a side look 

at the prototype GUI in Chapter 4.   

3.3.1 Local Communication Goals 

This is a local GUI where the user is allowed to input her communication preferences.  The 

preferences may be in the form of target frequency intervals, or in the form of a specific 

minimum bit rate that the MILKOG agent should target.    

3.3.2 Local ES Targets 

This is the local interface for inputting ES target preferences from the operator.  This may be in 

the form of specific frequency or location targets for surveillance, or in the form of rules that 

describe which type of surveillance activity that should take place. 

3.3.3 Local EA Targets 

This is the local interface for inputting information on which radio nodes, networks, frequencies, 

operating modes and locations that should be subject to electronic attacks, and which forms of 

electronic attacks that are preferred. 

3.3.4 COM Monitor 

The COM monitor presents an overview of which MILKOG nodes this MILKOG node is 

connected to, along with performance and QoS information, and optionally sense data.   

3.3.5 ES Monitor 

The ES monitor displays surveillance information to the user.  Based on the user‟s preferences, 

this may be only local EM information, fused information within own network, or globally fused 

information for a chosen area. 

3.3.6 EA Monitor 

The EA monitor displays information on currently active EA tasks.  To the extent possible, it 

should display the effectiveness of EA tasks. 



 16 FFI-rapport 2012/00419 

 

3.4 Interfaces 

3.4.1 Coordination Channel Interface 

The coordination channel interface handles the receiving and sending of coordination messages.  

The messages may be to other agents within own network, to agents in nearby networks that the 

agent needs to coordinate with, or to the database infrastructure elements.  

 

If the normal payload physical communication is up and running, the coordination interface may 

choose to forward the coordination communication through these payload channels.  If the 

payload physical channel is not available, the coordination communication will be forwarded on 

control channels.   

 

The two modules in the SW agent that handles coordination messages are:  

 

 The EW policies/coordination module takes care of messages related to locally identified 

EA targets that are to be coordinated with other nodes, and receives information about 

targets from other nodes or from the EA database.  It also prepares ES data to be sent for 

fusion at other nodes or in a fusion database, and receives ES data from other nodes or 

fused data from a database. 

 The COM coordination module deals with the formation of local networks and COM 

spectrum coordination with other agents.  It also downloads aggregated spectrum 

information from a COM spectrum database  (information on “which frequencies or 

receivers need to be protected in a certain area”, see 2.5.1).  Optionally it may upload 

spectrum decisions to the database. 

 

3.4.2 Transceiver Interface 

This is the interface to the COM transceiver unit controlled by each MILKOG agent.   

3.4.3 The Sensing Interface 

This is the interface to the sensing part of the radio node.  The MILKOG agent will through this 

interface send sensing parameters, and receive corresponding sensing values.  The sensing 

functionality may be implemented on the same hardware platform as COM, or on complementary 

hardware.  The prototype implementation is described in Section 4.6. 

3.4.4 The Monitoring Interface 

This is the interface to the monitoring part of the radio node.  The MILKOG agent will through 

this interface send monitoring parameters, and receive corresponding monitoring data values.  

The monitoring functionality may be implemented on the same hardware platform as COM, or on 

complementary hardware.  The prototype implementation uses the COM platform, as described in 

Section 4.6. 



  
 

FFI-rapport 2012/00419 17  
 

 

 

3.4.5 Jammer Interface 

This is the interface to the jammer part of the radio node.  The MILKOG agent will through this 

interface send commands to the jammer functionality.  The jammer may be implemented on the 

same transceiver hardware as COM, or on complementary transceiver hardware. The prototype 

implementation is described in Section 4.8. 

4 Prototype Implementation 

4.1 Introduction 

A reduced-functionality prototype MILKOG system has been implemented to satisfy the project 

requirement to „design and develop multifunction radio units‟ and for the purposes of 

experimentation and verification of system principles and optimization algorithms.  It is expected 

that it will be a living prototype that will be gradually expanded during the course of the OPEK II 

and OPEK III projects.  

 

The implementation of a full-functionality MILKOG prototype is a time-consuming task in terms 

of man-hours of programming.  It is complex in terms of implementation details that need to be 

attended to in a system that should operate with real RF waveforms and data transmissions, and 

with fully distributed spectrum decision processes.  In order to reach a working prototype within 

the timeframe of OPEK II, not all of the MILKOG functionality, as described in Chapter 3, has 

been implemented in the prototype.  The prototype has basic functionality (as detailed in 4.2 

through 4.9) that includes 

 

 Transmission of real user data using an OFDM waveform 

 Monitoring of data bit error rates for the purpose as input to the spectrum decision 

algorithms 

 User-initiated formation of logical networks through control channel messages 

 Basic spectrum sensing and electronic monitoring functionality (limited to “energy-

sensing”) 

 A basic agent decision entity (using preprogrammed reactive strategies)  

 The combination of the electronic monitoring functionality and jammer functionality to 

form a reactive jammer 

 

Referring to Chapter 3, in particular the following features of the MILKOG architecture have not 

been implemented in the OPEK II MILKOG prototype:  

 

 The central COM and EW databases and the interfaces to these databases 

 Wireless control channels 

 Advanced spectrum optimization algorithms  

 Cognition features like advanced awareness, learning, planning and reasoning 

 



 18 FFI-rapport 2012/00419 

 

Several of the topics above will be addressed in the OPEK III MILKOG activities, as described in 

Chapter 7. 

4.2 Prototype Overview 

The prototype consists of the following modules (see Figure 4.1): 

 

 The MILKOG software agent (residing on a PC) 

 The MILKOG traffic forwarder (co-located on the same PC as the software agent) 

 The COM waveform running on a Lyrtech SFF SDR platform (See Section 4.5) 

 Sense and ES functionality (“energy sensing”), also implemented on a Lyrtech SFF 

 EA functionality implemented on the Lyrtech SFF (the MILKOG software agent is also 

prepared for using a USRP as EA unit, as a possible extension) 

 The control channel (using wired Ethernet) 

 The traffic source and sink, that uses the open-source freely available VLC software [5].  

On the prototype, the traffic source and sink runs on the same computer as does the 

MILKOG software agent. 

 

 

Figure 4.1 The prototype MILKOG radio node 

4.3 The MILKOG Software Agent 

The prototype MILKOG software agent has been developed in Microsoft Visual C++ for 

Windows.   



  
 

FFI-rapport 2012/00419 19  
 

 

 

4.3.1 The Internal Architecture of the MILKOG Agent 

In order to handle the user interaction and various inter-agent and agent-to-platform 

communications concurrently with the COM-ES-EA decision making in a close-to-real time 

manner, the SW agent has been implemented as a multi-threaded1 structure.  Figure 4.2 illustrates 

the thread structure in the agent, where rectangles illustrate threads and the rectangles with 

rounded corners illustrate internal queue structures.  

 

The MILKOG functionality is split between the following concurrent threads: 

 

 The Main & Windows GUI thread, that creates all the other threads and runs the 

Graphical User Interface (GUI).  If activity within the GUI results in coordination 

messages that needs to be sent to other agents, these messages are put on the SendQueue.   

 SendThread, that reads messages from SendQueue and sends them out on the 

coordination interface. 

 ReceiveThread, that receives messages from the coordination interface and puts them on 

ReceiveQueue. 

 ReceiveFromForwarderThread, that receives bit error rate and bit rate measurements 

from the Forwarder, and puts these on the receive queue for the DSA thread to handle. 

 The DSA thread, that interprets received messages, sense data and error rate data, and 

makes spectrum decisions. 

 

 

Figure 4.2 The thread structure of the MILKOG agent. 

  

                                                           
1 A thread is the smallest unit of processing that can be scheduled by an operating system.   



 20 FFI-rapport 2012/00419 

 

4.3.2 MILKOG GUI 

The MILKOG GUI has been developed using the standard win32 API.  A screenshot of the main 

menu is shown in Figure 4.3.  By selecting „View‟, the various submenu choices appear.  The 

ones that are activated in the current prototype, are:   

 

 MILKOG GUI  

 Configuration Settings 

 Radio Network Configuration 

 

 

Figure 4.3 The main menu of the MILKOG agent. 



  
 

FFI-rapport 2012/00419 21  
 

 

 

4.3.2.1 Configuration Settings 

 

Figure 4.4 The Configuration Settings menu. 

 

As explained previously, the MILKOG nodes are comprised of one or more software radio 

platforms and one or more computing platforms, connected using an ordinary Gigabit Ethernet 

switch.  The „Configuration Settings‟ menu allow to set the individual IP addresses of the 

platforms, see Figure 4.4.  The two first IPv4 address bytes are fixed at „192.168‟.  The third 

address byte is the MILKOG node number (which imposes a restriction on the number of nodes 

in the experimental system).  The fourth byte is used to address the various computers and SDR 

platforms, as seen in Figure 4.4.  The port number input is currently not used (the port numbers 

are preset in the system). 

4.3.2.2 Radio Network Configuration Settings GUI 

The Radio Network Configuration Settings menu allows the user to inform MILKOG which 

nodes it wants to communicate with, and that should form a network.  The user first selects the 

„Detect available MILKOG nodes‟.  This creates PING messages to the range of other MILKOG 

units to discover which ones are present.   The PING messages are added to SendQueue, for the 

Send thread to handle. 

 

The nodes that receive PING messages send responses (“PONG”), which are used to build a list 

of available MILKOG nodes.  The user is allowed to select nodes to connect to, then presses „Try 

connecting to selected nodes‟, which sends out JOIN messages to the selected nodes. This action 



 22 FFI-rapport 2012/00419 

 

only needs to be carried out from one of the nodes in the network.  A full explanation of the 

messages associated with radio network configuration is documented in Appendix I. 

 

 

Figure 4.5 The Radio Network Configuration menu. 

4.3.2.3 MILKOG GUI 

The MILKOG GUI is the main dialog for the combined optimization of COM, ES and EA.   

 

The dialogue is organized in a 3 by 3 blocks fashion.  The left column displays status information 

to the user.  The middle column is used to input local restrictions from the user to the DSA 

optimization functionality (or to the „cognitive engine‟).  The right-hand column is supposed to 

show global restrictions, downloaded from infrastructure databases, but in this version the right-

hand column is unused. 

 

Row-by-row, the upper row contains the COM information and restrictions.  The middle row 

contains ES information and restrictions, and the lower row the EA information and restrictions. 

 

It must be stressed that the MILKOG GUI should be considered as a draft one.  Its main purpose 

is that of being an engineering tool for experimentation with the MILKOG system.  However, we 

hope that the draft GUI also can serve to trigger discussions with military operations personnel as 

to requirements for practical such GUIs. 

 



  
 

FFI-rapport 2012/00419 23  
 

 

 

 

Figure 4.6 The combined COM-EW menu of the MILKOG agent. 

4.3.3 The Send, Receive and ReceiveFromForwarder Threads 

The Send thread monitors SendQueue.  For each new message that appears in SendQueue, the 

Send thread sends the message to the recipient, as UDP (i.e. best-effort) packets.   

 

The Receive thread receives UDP messages on the SW agent‟s monitoring port.  It puts the 

messages on the ReceiveQueue, for the DSA thread to handle. 

 

The ReceiveFromForwarder thread is responsible for receiving bit error rate and bit rate data as 

UDP messages from the Forwarder program, and adding these to the ReceiveQueue. 

 

An overview of all the defined messages is provided in Table 4.1 in Section 4.3.5.3. 

4.3.4 The DSA Thread 

The DSA thread runs the core functionality of the current version of the MILKOG SW.  The DSA 

thread interprets all incoming information, maintains the internal data representations, sends new 

spectrum proposals to other agents and handles fusion of arrived spectrum proposals. 

 

In the current version, only COM spectrum proposals and decisions are made (not fused COM-

EW decisions), and only a very simple spectrum decision algorithm has been implemented.    It is 



 24 FFI-rapport 2012/00419 

 

planned to expand this functionality into demonstrating a much more advanced COM-EA-ES 

decision functionality, as explained in Chapter 7.  

 

The DSA thread continuously interprets new information (e.g. sense data), puts the information 

into internal structures, based on the current existing information makes new decision proposals 

and contributes in finding the fused decision among the agents.  In this way the DSA thread 

implements a purely reactive architecture, where new information trigger new decisions. 

 

The functionality in the DSA thread also handles the medium access (MAC) mechanism, as 

explained below. 

4.3.4.1 Interpretation of New Information 

All new information to the DSA core, which may range from information about discovered nodes 

to bit rates, sense data and monitoring data, all arrive through the ReceiveQueue.  As explained 

previously, the reasoning behind this is that the DSA thread should be operating continuously, 

and without the risk of being stuck polling the various interfaces to platforms and other agents. 

 

The DSA thread runs a continuous loop where it constantly reads the messages from 

ReceiveQueue, and puts them into internal information structures according to message type.   In 

the prototype, new information merely replaces older information, there are no statistical 

aggregation of information or learning mechanisms implemented. 

4.3.4.2 Internal Data Representation in the Agent 

Network: 

Each agent builds up her internal representation of the local network that she belongs to.  The 

network representation is in the form of a doubly linked list structure termed LOCALNET. 

 

There are three cases that lead to updating of the LOCALNET structure: 

 

 The DSA thread receives a JOIN message from another agent 

 The DSA thread receives a JACK message from another agent, as an acknowledgment of 

a JOIN 

 The DSA thread receives an UPDN message from another agent 

 An UPDN is sent to all nodes in the network, each time a change is made to 

LOCALNET.  This is to make sure all the nodes in LOCALNET have the same 

information about the structure of the network. 

 

Refer again to Table 4.1 and Appendix I. 

 
  



  
 

FFI-rapport 2012/00419 25  
 

 

 

Sensing and Monitoring Data: 

 

As described previously, the spectrum model assumes that the available spectrum is divided into a 

number of segments.  The sensing data is referenced to each such segment.   

 

The monitoring in the same way uses a monitoring spectrum bin size.  The monitoring bin size  

may be of a different size than the COM segment. 

 

The sense data for the individual node is stored in the structure 

segmentLocalTxReferencedNoiseAndInterference.  The lowest signal-to-sense level for the 

network of nodes, for each segment, is to be stored in the structure 

segmentWorstCaseTxReferencedNoiseAndInterference (not fully implemented). 

 

In the same manner, local node monitoring data is stored in the data structure 

ESnodeNoiseAndInterference.  The highest monitoring level for the network of nodes, for each 

segment, is to be stored in the data structure ESnetworkNoiseAndInterference (not fully 

implemented). 

 

Quality-Of-Service: 

 

MILKOG monitors bit error rate and data rate for the communications channel.  The bit error rate 

is measured by sending known data.  The known bit error rate test data is always sent when the 

unit is in TX mode, and there is not any payload (e.g. video) data available to be sent.  Also, 20 

packets of known data is always sent prior to a sequence of video data, and after a sequence of 

video data. 

4.3.4.3 DSA proposals 

The DSA thread implements a state machine for the spectrum decisions, refer to Figure 4.7.  The 

following is a description of the different states in the state machine: 

 

 IDLE:  This is a waiting state, where the DSA thread waits for other agents to send a 

spectrum proposal, or it waits for a need to initiate a proposal, based on evaluation of 

QoS data and sense data.  If a spectrum proposal is received, the next state is PROP 

RECEIVED.  If instead a need to initiate a proposal is identified, the next state is 

INITIATE PROP. 

 INITIATE PROP:  When this state is entered, a need for a spectrum change has been 

identified.  The DSA thread in this state uses available information to calculate a new 

spectrum proposal, and adds this spectrum proposal to SendQueue, then sets a timer.  The 

next state is RECEIVE FURTHER PROPS. 

 PROP RECEIVED:   When this state is entered, through a received proposal from 

another node it has been indicated that there is a need for a spectrum change.  The DSA 

thread in this state uses available information to calculate a new spectrum proposal, and 

adds this spectrum proposal to SendQueue, then sets a timer.  The next state is RECEIVE 

FURTHER PROPS. 



 26 FFI-rapport 2012/00419 

 

 RECEIVE FURTHER PROPS:  In this state the DSA thread accumulates proposals from 

other agents until timer expires (in the prototype: 200 milliseconds).  

 ACT:  This is the state where individual decisions are evaluated, to arrive at a common 

decision for the network.  After implementing the decision, the next state is IDLE. 

 

 

Figure 4.7 State diagram for spectrum decisions 

 

The state diagram naturally triggers more questions, like: 

 

 When is there a need to initiate a new PROP? 

 How to calculate / determine new PROPs? 

 How are individual PROPs evaluated, in order to arrive at a common fused decision? 

 

These questions are at the core of the MILKOG functionality, with multiple choices being 

possible.  As outlined in Chapter 7, these are questions that will be subject to future research.  For 

the current prototype, a simple set of assumptions and implementations have been made: 

 

When to send a new PROP:  There are two conditions that both need to be met in order to 

switch to the INITIATE PROP state.  The first condition is a minimum time since the last 

spectrum decision.  This minimum time is a stochastic parameter  

                                  (4.1) 

        is a settable parameter (value used in the tests in Chapter 5:  6 seconds).  The second 

condition is based on Bit Error Rate (BER):  The agent receives a BER measurement each 

second.  Let BER(0) denote the last measured BER value that the agent has received, and BER(1) 

the previous value, and so on.  Then 

        
4..0

min
i

         (4.2) 

The second condition is then that lowBER > minBER (value used in the tests in Chapter 5: 3.5%) 

 



  
 

FFI-rapport 2012/00419 27  
 

 

Calculation of a new PROP: This is based on the agent’s local sense data.   The agent proposes 

to switch to the spectrum segment that has the lowest sense noise level, of all spectrum segments 

between the spectrum sense start frequency and the sense stop frequency.  

 

Common decision:  The decision chosen is based on each individual agent’s evaluation 

according to the diagram in Figure 4.8.  There are no confirmations returned.  In the unlikely 

event of a wrong decision having been made, this merely results in a new INITIATE PROP. 

 

 
Figure 4.8 The criteria for selecting which of the proposed spectrum decisions to use 

4.3.5 Coordination Between Agents 

4.3.5.1 Out-of-band Coordination Signaling 

By out-of-band coordination signaling we mean signaling that does not utilize the payload 

waveform. 

 

Out-of-band coordination signaling has been implemented as IP datagrams (UDP).  In the very 

first prototype, the out-of-band physical data carrier is wired Ethernet.  This is to be replaced with 

wireless physical layer connections at a later stage.   

 

As explained previously, coordination messages are added to SendQueue, which is then read by 

SendThread and sent via UDP to the recipient agent.  Here, the message is received by 

ReceiveThread of that agent and added to ReceiveQueue for handling by the information 

processing and decision making core of the agent. 

4.3.5.2 In-band Coordination Signaling 

In-band coordination signaling refers to signaling that utilizes the payload waveform. 

 

Preparations have been made for using in-band signaling for the feedback of bit error rates from 

radio nodes within a common network, but this has not been activated in the prototype. 



 28 FFI-rapport 2012/00419 

 

4.3.5.3 Local Parameters Synchronization 

Whenever a change of local parameters settings is done at one of the agents in a logical network, 

the new parameter settings are communicated to the other agents in the network.  The messages 

are COMP (for local communication parameters) , EAPA (local electronic attack parameters) and 

ESPA (local electronic surveillance parameters), see Table 4.1. 

 

For the full details on the message formats, please refer to Appendix I. 

 

Table 4.1 An overview of the implemented administrative command messages in the MILKOG 

system.  The complete format of each message may be found in Appendix I. 

Local parameters exchange messages: 

COMP Local COM parameters (sent to other nodes in network when changes made) 

EAPA Local EA parameters (sent to other nodes in network when changes made) 

ESPA Local ES parameters (sent to other nodes in network when changes made) 

 

Network association messages: 

PING Discovery type message.  Sent to all node numbers.   

PONG The response to a received PING message. 

JOIN Request from sender node to receiver node to join his logical network. 

JACK Response to JOIN, an accepted JOIN request 

UPDN Network update notification sent to all nodes in the logical network, 

following any change of the logical network (this is to make sure that all 

nodes in the logical network have knowledge about all the other nodes). 

DISC Disconnect message sender node from network (reserved, not implemented in 

the prototype) 

 

Time synchronization messages: 

SYNC Sends the node‟s current time (to other nodes in the current network) 

 

Spectrum proposal messages: 

PROP Sends a spectrum proposal (to other nodes in the current network) 

4.3.5.4 Time Synchronization 

Due to not having absolute time references (e.g. GPS clocks) available in the prototype agent, 

clock synchronization between agents in each LOCALNET has been implemented.   Each time an 

update has been done to the LOCALNET, a SYNC command is sent to all nodes in the network.  

The SYNC command includes a time-stamp, which is compared to the clock in the receiving 

agent.  The transmission delay of the SYNC messages is neglected. The clock of the highest-

numbered node in the LOCALNET is adopted as a common time for all the nodes in the network, 

and correction factors are calculated in each agent. 

 



  
 

FFI-rapport 2012/00419 29  
 

 

 

The purpose of synchronizing the time between the agents in this manner is to enable the clock-

controlled MAC. 

4.3.5.5 Performance Feedback Within a Network 

Each agent maintains a BER monitoring for the received signal, which is a moving average BER 

where the BER of each new received packet contributes by 10% relative to the accumulated BER.  

In the same manner, it maintains a moving average Bit-Rate monitoring.   BER data and Bit-Rate 

data is sent from the Forwarder to the MILKOG agent SW (in the prototype each second), by 

using the defined BERM and BRAT messages, see Table 4.1. 

 

In order for the transmitter end of each one-way link to know the quality of the link, the last 

recorded BER data needs to be fed back.  The BER data is to be fed back by in-band signaling, 

however this is not yet implemented in the prototype. 

4.3.5.6 Spectrum Sensing Feedback Within a Network 

Each agent may make better decisions if, in addition to its own observations, it is informed about 

the observations made by the other agents in the same network.  In terms of the exchanging of 

and cooperation on gathering sensing data, this is referred to as cooperative sensing in the 

literature.   Such cooperative sensing is deferred to future work. 

4.3.5.7 Spectrum Proposals 

Spectrum proposals are made as described in 4.3.4.3.  The spectrum proposals are sent to the 

other nodes within a network using the PROP message, see Table 4.1. 

4.4 The MILKOG Forwarder 

The MILKOG Forwarder is a separate program that is targeted to do fast forwarding of data 

to/from the SDR platform to/from other node entities.  It is implemented as a Visual Studio c++ 

multi-threaded Windows console program. 

 

The Forwarder contains the following functionality: 

 

 The UDP reception of data from a data source (e.g. a video server), and the reformatting 

and TCP/IP socket transmission of this data to the SFF SDR platform.  The reformatting 

includes putting redundancy in the data stream, such that each block of video data is 

actually sent 3 times.  This is in order to compensate somewhat for the lack of error 

correction in the communication waveform. 

 The TCP/IP forwarding of commands from the MILKOG agent to the SFF platform. 

 The reception of data from the SFF SDR platform, including block synchronization of the 

data stream.  For BER test data, BER is calculated and sent to the MILKOG agent each 

second.  For payload data (e.g. video), the data is reformatted and sent to the data sink 

(e.g. to the video client).  Since the payload data contains each video block occurring 

three times, the Forwarder in the reformatting process selects which data bytes to keep. 



 30 FFI-rapport 2012/00419 

 

4.5 The COM Functionality 

The COM functionality is implemented on a Small Form Factor (SFF) SDR platform, purchased 

from Lyrtech Inc.  The SDR platform consists of three major modules: Digital processing 

module, Data conversion module and a RF module.  A simplified block diagram of the SFF SDR 

platform is presented in Figure 4.9.  

 

 

Figure 4.9 Simplified block diagram of SFF SDR 

 

The Digital processing module consists of one Texas Instruments System on Chip (SoC) and a 

Field-programmable Gate Array (FPGA) from Xilinx. The SoC includes one General Purpose 

Processor (GPP) and one Digital Signal Processor (DSP).  On the purchased SFF SDR platform 

the GPP runs with a fixed Ethernet communication software that moves data from / to the 

Ethernet port to/from the DSP.  Communication between the SDR platform and a host PC is 

achieved via FTP, through the Ethernet connection. The Data conversion module converts the 

digital processed signal in the FPGA to and from an analogue representation. These analogue 

signals are converted to and from RF by the RF module, with a RF range of 250MHz to 1GHz. 

For more information about the SFF SDR see appendix IV.  

 

The following software was used to program the SFF SDRs DSP and FPGA.  

 

DSP development software: 

 Code Composer studio v.3.3 

 Real Time Workshop 

 

  



  
 

FFI-rapport 2012/00419 31  
 

 

 

FPGA development software: 

 MATLAB R2008a  

 Xilinx ISE Design Suite 10.1.03 IP update 3 

 Xilinx System Generator for DSP 10.1.3.1386. 

 

Code Composer Studio is an integrated development environment for Texas Instruments 

embedded processor family, which includes C/C++ compilers. The SFF SDR is programmed by 

C-code and the compiled .out file is stored in an onboard flash memory. The DSP may also be 

programmed by Simulink, via Real Time Workshop.  Real Time Workshop is a Simulink coder 

that generates and executes C and C++ code from Simulink diagrams, state-flow charts and 

MATLAB functions.   

 

Xilinx System Generator is a Digital Signal Processing tool for Xilinx ISE Design Suite, enabling 

the use of MATLAB for designing Xilinx FPGAs, via specific Xilinx blocksets integrated in 

Simulink. The high-level programming in Simulink makes the implementation of complex 

hardware designs an easy task for designers, and Xilinx System Generator compiles the 

completed design to a .bit FPGA configuration file. This configuration file is stored in the same 

onboard flash memory as the .out DSP file. The GPP came with a default streamGPP.iae 

configuration file, stored in the same flash memory, that streams data from/to the Ethernet 

connection to/from the DSP. When the SFF SDR platform reboots, the GPP, DSP and FPGA are 

loaded with their respectively configuration files, from the onboard flash memory.  

4.5.1 PHY 

For the COM waveform in MILKOG, our goal has been to adopt a waveform that has the 

potential to conform to the spectrum model described in Section 2.3. This implies that the 

waveform should allow flexibility in using a set of frequency segments ∆  {1..M}. To adapt to 

different SNR levels, it additionally should be possible to use different modulation and/or coding 

in each of the frequency segments. 

 

One way of approaching the above goals is to use several, individually configured, narrowband 

waveforms running in parallel.  Another way, and one which is frequently seen in cognitive radio 

test-bed implementations, is Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-

OFDM), which allows a set of sub-channels within an OFDM waveform to be deactivated. With 

the popularity of OFDM in current wireless systems as well as in cognitive radio research, and 

since Lyrtech had a base example waveform available at a moderate cost of $1000, it was decided 

to proceed with OFDM.     

 

The OFDM waveform obtained from Lyrtech is mainly defined as functionality to be deployed in 

the SFF SDRs FPGA. The design has configurable parameters, enabling the possibility to 

generate new FPGA bit files with different parameter sets (such as different modulation, different 

number of sub-channels, different sets of nulled sub-channels etc.). 

 

Some minor modifications have been done to the waveform, but the main structure is kept the 

way it was delivered from Lyrtech. The design has the potential to be turned into a real-time 



 32 FFI-rapport 2012/00419 

 

configured NC-OFDM one, but due to the amount of work involved it is currently used with a 

static number of sub-channels activated. This subsection is based on the documentation supplied 

with the Lyrtech example OFDM waveform [6]. 

4.5.1.1 Description of the Base OFDM Waveform 

OFDM is a multicarrier modulation or multiplexing technique that takes a high rate data stream 

and divides it into N parallel low rate data streams, and sends them simultaneously over N sub-

channels. A block diagram of the COM transceiver architecture is shown in Figure 4.10. 

 

 

Figure 4.10 Transceiver block diagram 

 

The information bits are modulated by a Quadrature Amplitude Modulation (QAM), according to 

the constellation diagram shown in Figure 4.11.  

 

 

Figure 4.11  4-QAM Constellation Diagram with Gray Coding. 

 

The high rate QAM-symbols, of rate Rs symbols per second, are subdivided into N parallel data 

streams, each with a rate of Rs /N. An N-point Inverse Fast Fourier Transform (IFFT) centers 

each low rate QAM-symbol on a sub-channel     relative to the carrier frequency. According to 

[7] the spectrum of the output OFDM waveform may be written as 

 



  
 

FFI-rapport 2012/00419 33  
 

 

 

     
 

   

     

 
 
  

   
 
 

            

  
 (4.3) 

 

where     are the QAM-symbols with a finite duration of          . If    is set to      each 

sub-channel will be zero at the centre of every other sub-channel, and they are set to be 

orthogonal, as shown in Figure 4.12 where N=8.  

 

 

Figure 4.12 Frequency spectrum of an OFDM-signal with 8 sub-channels (N=8). 

 

Figure 4.12 shows how the OFDM waveform contains all the QAM-symbols, and how they are 

spaced in frequency.  

 

The OFDM waveform is implemented on the digital processing module‟s FPGA, giving it a 

reconfiguration possibility. The IFFT size can vary from 64 sub-channels to 2048, where a default 

configuration of 64 is used. The model also allows a use of other modulation forms (16- or 64-

QAM), but the default modulation of 4-QAM is used. Other parameters that are reconfigurable 

are the symbol rate, number of unused sub-channels and general packet structure. One downside 

to the Lyrtech OFDM waveform is that it`s implemented in such form that the radio parameters 

cannot be changed after the FPGA configuration file is loaded to the platform. This is not ideal 

for a cognitive radio, where it`s desirable to configure the radio parameters instantaneously 

according to the surrounding environment. For instance would it be desirable to individually 

change the modulation type on each sub-channel and switch on and off unused sub-channels, 

without having to reloading a configuration file.  

 

A total of nine OFDM blocks, of size 64, are spaced in time and put together to form a packet to 

be transmitted through the communication channel. These are preceded by a cyclic prefix, to 

reduce the Inter-Symbol Interference (ISI). The two first OFDM blocks are dedicated to AGC, 

packet detection and block boundary acquisition. The next two are channel estimation pilots, 

dedicated to a coarse Carrier Frequency Offset (CFO) estimation. These blocks also contain 

unused sub-channels at DC and band edges allowing for non-ideal filters in the analog front end. 



 34 FFI-rapport 2012/00419 

 

Continuous frequency training pilots are also embedded in specific sub-channels for a fine CFO 

estimation and sampler offset tracking, as well as to estimate and correct the common phase error 

portion of phase noise. The total packet structure is summarized in Figure 4.13.  

 

 

Figure 4.13 Default packet structure 

 

Figure 4.13 shows how one packet consists of 5 data blocks, where each block holds 48 QAM-

symbols. This means that one packet transmits 5*48=240 QAM-symbols, which according to 

Figure 4.11 equals 480 bit or 60 Byte. The total OFDM-packet is then pushed forward to the 

DAC and antenna, for transmission through the communication channel.  

 

According to Equation (4.3) one sub-channel will occupy              of the frequency 

spectrum, where    is the QAM-symbol rate. This means that the total OFDM waveform 

occupies         of the frequency spectrum. The OFDM waveform is implemented with a 

QAM-symbol rate of 20 MSymbols/s, generating a total spectrum usage of 20MHz.   

 

The received OFDM-packet is detected via block boundary detection after down conversion to 

baseband, which does a correlation to a known PN-sequence in time domain. When the received 

samples coincide with the known sequence, a large peak occurs. This peak is compared to the 

average received power and a threshold, which determinates if a packet is present. A coarse 

estimate of CFO is also performed in the block boundary detection module.  After packet 

detection and coarse CFO estimation the cyclic prefix is removed on each OFDM-waveform, 

before the packet is demodulated by performing a Fast Fourier Transform (FFT). This is the 

inverse operation of an IFFT, and the QAM-symbols modulated by the IFFT in the transmitter, is 

the output of the FFT in the receiver. Post the FFT operation a fine CFO estimation is performed, 

by using the continuous frequency training pilots in the packet. All the sub-channels will be 

rotated by same the amount in one OFDM block, and the amount of angular rotation from one 

block to the next is proportional to the CFO. After the fine CFO, every QAM-symbol is 



  
 

FFI-rapport 2012/00419 35  
 

 

 

demodulated according to the constellation diagram in Figure 4.11, and the information bits are 

obtained.  

4.5.1.2 Modifications Done to the Waveform 

To improve the communication performance some minor modifications are done to the 

waveform. The packet structure has been modified, where the number of unused sub-channels in 

the upper and lower sideband has been increased from respectively 4 to 8 and 5 to 9. To transmit 

the same amount of data, it`s been added one more data block of size 64 to the total OFDM 

symbol, increasing the total symbol length. The new packet structure is summarized in Figure 

4.14.  

 

 

Figure 4.14 Modified packet structure 

 

Figure 4.14 shows how the OFDM packet transmits the same amount of data, with 6 data blocks 

of 40 QAM-symbols, resulting in a total data amount of 60Byte (60*40=240 QAM symbols = 

480 bit = 60 Byte). The threshold value for the block boundary detection in the receiver structure 

has also been tuned, to give the best communication performance regarding BER and receiving 

sensibility. 

4.5.2 MAC 

For reasons of simplicity, and inspired by elements in the 802.22 standard, the Medium Access 

Control (MAC) in the prototype system is a time controlled one only.  Each node has relative 

accurate knowledge about a common absolute time, reached through sending time-stamped 

SYNC messages to all nodes in the local network, as explained previously in 4.3.5.4.   

(Alternatively, in a future version, the establishment of a common absolute time may be 

accomplished through the use of GPS receivers).   

 

  



 36 FFI-rapport 2012/00419 

 

For a local network with N nodes, a chosen fundamental time interval T is split into N+1 equal 

slots 

  
 

   
 

 
(4.4) 

where   is divided into a transmit time    followed by a guard time   , such that t=     .   

 
 

The slots are numbered 0..N.  Each node sends in one of the slots, in correspondence with its 

sequence number in the local network (i.e. the node having the lowest node number sends in slot 

0, the node having the highest node number in the local network sends in slot N-1. )   Slot N is a 

sensing slot, where none of the nodes are transmitting and all of the nodes are instead sensing the 

spectrum noise levels.  The sequence is illustrated in Figure 4.15. 

 

The transmit/receive/sense state is controlled by the agent SW itself, inside the continuous DSA 

loop.  This is also for implementation convenience only, one could argue that it is a detail at a too 

low level for the agent SW to really need to bother with. 

 

The simple MAC implementation in the prototype is reflecting that we have not put a large 

emphasis on this in the prototype work, partly because we have an electronic warfare viewpoint.  

It is expected that practical, deployed systems will have much more advanced MACs. 

 

 

Figure 4.15 Illustration of the time controlled MAC of each local network, in the prototype 

implementation, for a local CRN network with 3 nodes. The complete circle 

corresponds to a time interval T.   

MAC Lowest # node

Guard time

Second lowest # node

Guard time

Highest # node

Guard time

Sensing

Guard time



  
 

FFI-rapport 2012/00419 37  
 

 

 

4.6 The Sensing Functionality 

The sensing functionality is implemented by using energy detection. This detection method 

computes the received energy and compares it to a preset threshold λ. If the received energy 

exceeds this threshold, a signal is present. The principle is shown in Figure 4.16.   

 

 

Figure 4.16 Principle energy detection 

 

If      describes the received signal over the finite interval        , the total energy may 

be calculated as [8] 

          
   

   

 (4.5) 

This equation summarizes the received power         over a given time interval ΔT, specified by 

N and the sampling frequency Fs (ΔT=N/Fs). Over the same finite interval, equation (4.5) may be 

written as 

                 
   

   

 

 

(4.6) 

The only difference between equation (4.5) and (4.6), is that equation (4.5) calculates the energy 

over the next N samples, whereas equation (4.6) calculates the energy of the last N samples. For a 

real time system equation (4.6) is the only realizable, and may be expressed as  

 

               
   

   

                               

 

and be implemented by using the structure in Figure 4.17 

 

 

(4.7) 

 

 

 

 

Figure 4.17 Moving Energy Calculator. 

 

  



 38 FFI-rapport 2012/00419 

 

This structure is implemented on the SFF SDR platform`s FPGA design, alongside the COM 

functionality, and the calculated Energy is sent to a custom register for threshold comparison by 

the DSP. The structure is implemented with N=4096 and a FPGA speed of 80MHz, resulting in a 

time interval ΔT of 51.2 µs (4096/80 MHz = 51.2 µs). 

 

The Moving Energy Calculator is the simplest form for energy detection, and calculates the 

energy in full signal bandwidth 20MHz. To extract information about where the energy is located 

in frequency, a Frequency Energy Calculator is implemented alongside in the FPGA design. By 

using Parseval‟s theorem  [8] the Energy may be calculated as 

 

  
 

 
        
   

   

 

 

(4.8) 

where      is the Discrete Fourier Transform of      and        . To compute the 

energy in equation (4.8), the structure in Figure 4.18 is implemented. This figure shows how an 

input signal is transformed to a frequency representation by a FFT-algorithm, squared to form a 

power spectrum and scaled to represent the energy in each frequency bin, over the calculated time 

interval ΔT. 

 

 

Figure 4.18 Frequency Energy Calculator 

 

The FFT-algorithm is implemented with a length of 4096, resulting in a time interval ΔT of 51.2 

µs and a frequency resolution of 19.53 kHz, when the FPGA runs at 80 MHz. Since the signal 

bandwidth is limited to 20MHz by the analogue RF front end, only 1024 of the total 4096 FFT-

calculations represent the signal bandwidth. Therefore only 1024 FFT-calculations are pushed 

forward to the DSP for threshold comparison. By studying these 1024 FFT-calculations, the DSP 

is able to determine where the energy is located within the signal bandwidth of 20 MHz, with a 

frequency resolution of 19.53 kHz (20 MHz/1024 = 19.53 kHz). 

4.7 The ES Functionality 

The ES functionality is implemented by performing a spectrum monitoring based on energy 

sensing. When monitoring is enabled, the MILKOG GUI allows the user to specify a frequency 

span and a number of spectrum segments to be monitored.  If the segment size is a multiple of 20 

MHz, the Moving Energy Calculator is enabled.  For monitoring smaller segments the Frequency 

Energy Calculator is used, down to a minimum segment size of 19.53 kHz.  

 



  
 

FFI-rapport 2012/00419 39  
 

 

 

Before the ES data is displayed in the MILKOG GUI, the sensed energy in each segment is 

averaged, to minimize variability in the energy calculations.  When the Moving Energy 

Calculator is enabled, the DSP reads 1000 energy calculations for each segment, and sends the 

average energy of each segment to the ES monitor.  When the Frequency Energy Calculator is 

enabled, the FPGA calculates the energy in each segment 10 times, and sends the averaged 

energy of each segment to the ES monitor via the DSP.  

4.8 The EA Functionality 

The EA functionality has been implemented as a reactive jammer.  The reactive jammer has a 

look-through phase, in which it scans the spectrum to discover emitters, and a jamming phase, in 

which it performs the jamming.  The jamming is full signal-band jamming. 

 

The MILKOG GUI allows the user to specify the spectrum interval in which to scan for emitters.  

The scanning starts at the lower limit of the spectrum interval, and then increments with 10MHz 

until the frequency is outside the specified interval.  For each frequency setting, the RF chain is 

allowed to settle for 0.5 milliseconds.  Then 50 values are measured, with a wait interval of 1 

microsecond between each value, using the moving energy functionality in the FPGA.  The EA 

jammer functionality then selects the highest sensed emitter as the target for the jamming.  If no 

emitters are found above a certain threshold, the jammer is not activated. 

 

When the reactive jammer is activated, the MILKOG agent SW initiates a new jamming look-

through phase approximately each second.   The duration of the look-through phase depends on 

the size of the scanning spectrum interval.  As an example, if the allowed EA spectrum band is 

between 400 and 600MHz, the theoretical look-through time is 21 ∙ 0.55 milliseconds. 

 

The jammer waveform is implemented by using a white noise generator in the SFF SDR 

platform`s FPGA design. To set the noise bandwidth approximately equal the signal bandwidth 

(20 MHz), a lowpass filter is used for spectrum shaping. This filter has a passband from DC to 10 

MHz and a stopband from 14 MHz, which gives a 3-dB bandwidth of 22.8 MHz after up 

conversion to RF.   

 

Obviously, for a reactive jamming pattern to be effective, the look-through phase needs to be far 

shorter than the one implemented here.  Also, a practical reactive jammer needs to be able to 

target multiple emitters instead of just one, and should be able to also use far narrower 

bandwidths.  Reactive jamming will be explored further in future work. 

4.9 The Traffic Source and Sink 

The traffic source and sink both utilize the open source video server and client VLC from 

www.videolan.org.  This enables a nice visual demonstration of communication link quality, with 

minimum implementation effort.   

 

The dataflow is illustrated in Figure 4.19.  VLC captures the video+audio from the PC camera 

and microphone, then sends it to the Forwarder.  The Forwarder reformats the video stream to the 

http://www.videolan.org/


 40 FFI-rapport 2012/00419 

 

default packet sizes handled by the SFF SDR platform and sends it over on the TCP connection.  

The data is then reformatted again to be sent in 60-byte packets over the OFDM waveform, to 

other nodes in the network.  The Forwarder on the receiving nodes formats the data back into the 

packet sizes expected by the video client.  To compensate somewhat for the lack of error 

correction in the communication waveform implementation, the Forwarder sends each video 

block three times. 

 

 

Figure 4.19 Dataflow from data source (VLC videostreamer) to data sink (VLC video client). 

 

For the case of node 1, the video server is started using the command line sequence in Figure 

4.20.  This makes VLC send a UDP video+audio stream to IPv4 address 192.168.1.10 port 

50020, which is the port that the „receive from data source‟ thread in the Forwarder is listening to.  

The command sequence to create the video client is provided in Figure 4.21. 

 

 

Figure 4.20 Command sequence to VLC to create the video streamer. 

 

 

Figure 4.21 Command sequence to VLC to create the video client. 

5 Prototype Verification Tests 

To document the prototype verification tests, 3 nodes were put together to form a radio network. 

Each radio node was set up with a MILKOG SW-agent and connected together via an IP control 

network for spectrum decisions, as specified in Chapter 4 and Figure 4.1. QoS data and payload 

data was sent between the radio nodes according to the RF setup displayed in Figure 5.1.   

 

Figure 5.1 shows how each node is connected though a communication channel, via attenuators 

and splitters/combiners. The number displayed inside these boxes illustrates the attenuation on 

each component. In addition a spectrum analyzer and a signal generator were added, to act as 

respectively a spectrum displayer and a jammer/signal generator.  In the RX section the 

attenuators were tuned to give the best communication performance, with respect to BER and 

missed packages percentage.  

  

c:\Dev\Videolan\VLC\VLC dshow:// 

:sout=#transcode{vcodec=DIV3,vb=200,scale=0.1,acodec=mp3,ab=32,channels=2,samplerate=44100}

:udp{dst=192.168.2.10:50020} :no-sout-rtp-sap :no-sout-standard-sap :ttl=1 :sout-keep 

c:\Dev\Videolan\VLC\VLC udp://@192.168.1.10:50000 



  
 

FFI-rapport 2012/00419 41  
 

 

 

The following components were used for the prototype verification tests: 

 

 3 Lyrtech SFF SDR radio nodes. 

 1 Rohde & Swartz FSW Signal and Spectrum Analyzer (2Hz – 8GHz). 

 1 Rohde & Swartz SMIQ-06B Signal Generator (300kHz – 6.4GHz). 

 2 Mini-Circuits ZFSC-4-1-S+ splitters/combiners. 

 2 Narda 4747-60 step attenuators (DC – 18GHz).  

 1 Hewlett Packard 355C UHF step attenuator (DC – 1000MHz). 

 Various Mini-Circuits 15542 attenuators of different values. 

 Various coaxial cables. 

 

 

Figure 5.1 RF setup 

5.1 COM Functionality Tests 

5.1.1 Test Pattern Bit Rate and Bit Error Rate Measurements 

The purpose of this test was to examine the MILKOG`s QoS data, when a test pattern was sent 

between the radio nodes.  

 

 Prior to monitoring QoS data, the following initializations were done:   

 

 The RF network was set up according to Figure 5.1.   

 RX/TX control was set to „Receive (constantly)‟. 

 



 42 FFI-rapport 2012/00419 

 

Node 1 and 2 were then set up to send QoS data between each other, by setting the RX/TX 

control to „Transmit (constantly)‟ in turn. The results of these tests are displayed in Figure 5.2. 

 

Figure 5.2 shows how the bit rate between the nodes exceeds 2,25 Mbps, with a BER at 0.00% 

missed package percentage of 0. The bit rate difference between Figure 5.2.a and 5.2.b is because 

the displayed rate is the accumulated bit rate, not the instantaneous bit rate.  The snap shot in 

Figure 5.2 is taken when the accumulated bit rate increase has leveled off.  

 

By default the MILKOG SW agent uses a transmission frequency of 480 MHz. A snapshot of the 

spectrum analyzer, see Figure 5.3, displays the transmission frequency and spectrum usage, when 

QoS data is transmitted between the radio nodes.  

 

 

 

 

Figure 5.2 QoS data. a) Node 2 to node 1.  b) Node 1 to node 2 

 

Figure 5.3 shows how the waveform uses more frequency resources than the 20MHz predicted in 

waveform description in subsection 4.5. The main reasons for this are believed to be image 

frequency components generated in the analogue frequency up conversion and sideband effects 

generated by the OFDM algorithm.   

 

 

Figure 5.3 Frequency spectrum of QoS data, with center frequency at 480MHz. 

 

a) 

 

b) 



  
 

FFI-rapport 2012/00419 43  
 

 

 

5.1.2 Video Transfer Test 

The purpose of this test was to visually demonstrate the MILKOG`s communication link quality, 

when payload data was sent between two radio nodes.  

 

 Prior to sending payload data, the following initializations were done:   

 

 The RF network was set up according to Figure 5.1.   

 RX/TX control was set to „Receive (constantly)‟. 

 A video client and a video server were started at each node.   

 

First, node 1 was set to „Transmit (constantly)‟, enabling the video client and server to send live 

video and audio from node‟s webcam.  A snapshot of the received video on node 2 is displayed in 

Figure 5.4.a. Thereafter, node 2 was set to „Transmit (constantly)‟.  A snapshot of the live video 

on node 1 is displayed in figure 5.4.b.  The default transmission frequency of 480MHz was used 

for these tests. 

 

a) Video stream on node 1, from node 2 b) Video stream on node 2, from node 1 

    

Figure 5.4 Visual demonstration of communication link quality. 

 

Figure 5.4 shows that the video is transferred with acceptable quality. The video resolution 

displayed in Figure 5.4 is 160x120, which is quite poor when taking into account the bit rate of 

2.25Mbps. The main reason for this low resolution is that the waveform has no bit error 

correction algorithm.  Each video block is transferred 3 times, and the video block that is the most 

similar to another block is displayed. If convolutional error correcting codes and a Viterbi 

decoder had been included, the resolution would be far better. 

5.2 COM DSA Test:  

5.2.1  Avoiding a Slow Follower Jammer 

The purpose of this test was to verify that MILKOG‟s DSA functionality, when the COM channel 

was being jammed, was able to change to a new unjammed frequency.   

 

  



 44 FFI-rapport 2012/00419 

 

Prior to applying the jamming signals, the following initializations were done:   

 

 The RF network was set up according to Figure 5.1.   

 Node 1 and node 2 were associated in a network by using the radio network 

configuration menu in node 2  

 DSA was enabled on both nodes 

 Spectrum band start was set to 400MHz, band stop to 600MHz and number of segments 

to 10. 

 RX/TX control was set to „Time controlled TX/RX‟ to enable the time controlled MAC 

previously described. 

 

After these initial steps and prior to applying jamming, the MILKOG agents of node 1 and node 2 

had coordinated to use a center frequency of 530 MHz, refer to Figure 5.5 a). 

 

Jamming was then applied at this center frequency, using a 40MHz wide flat spectrum signal, 

with a generator power output of -1.4dBm.  It was observed that the COM center frequency now 

changed to 590 MHz, see Figure 5.5 b), and that the noise jamming was observable in the sense 

spectrum.   

 

Acting as a slow follower jammer, we adjusted the jammer center frequency to the new COM 

frequency, i.e. 590 MHz.  It was observed that the COM center frequency changed back to 530 

MHz, see Figure 5.5 c).   

 

Tuning the jammer once again to 530 MHz, the COM center frequency changed to 590 MHz once 

again, see Figure 5.5 d). 

 

The exact time required for MILKOG to change its COM frequency was not measured, however 

the response was in the order of several seconds.  The slow response is primarily due to our 

primitive MAC, where one TX-RX-SENSE MAC cycle in the prototype (with two nodes 

connected) is approximately 5+5+5 seconds.   

 

In conclusion, it was verified that basic DSA functionality was able to initiate frequency changes 

when being jammed, and correctly establish communication between the two nodes in a new, 

unjammed spectrum segment.  However, it is clear that the slow DSA response of the system 

does not make the system suitable for coping with a fast follower jammer, and that faster 

responses and/or more advanced strategies are beneficial. 

5.3 ES Functionality Test:  Energy Spectrum Monitoring 

The purpose of this test was to verify that MILKOG, when enabled as an energy spectrum 

monitor, was able to detect and display frequency resources in use. 

 

  



  
 

FFI-rapport 2012/00419 45  
 

 

 

Prior to applying the power spectrum monitoring, the following initializations were done:   

 

 The RF network was set up according to Figure 5.1.   

 Monitoring was enabled on node 2. 

 ES frequency start was set to 300MHz, frequency stop to 400MHz and number of 

segments to 100. 

 The signal generator was set up with a 20MHz wide flat spectrum signal, with a generator 

power output of -1.4dBm, centered at 350MHz. 

 

To verify the frequency spectrum generated by the signal generator, the spectrum analyzer 

displayed the same frequency area as set prior in the MILKOG agent, se Figure 5.6.  

 

  



 46 FFI-rapport 2012/00419 

 

  

  

  

 

Figure 5.5 DSA test. a) Jammer off, COM  freq. 530MHz.  b) Jammer at 530MHz, COM moved 

to 590.  c) Jammer at 590, COM moved to 530. d) J. at 530, COM moved to 590.    

 

a) 

 

b) 

 

c) 

 

d) 



  
 

FFI-rapport 2012/00419 47  
 

 

 

Figure 5.6 shows how the signal generator generates a flat spectrum with a bandwidth of 

approximately 20MHz. The parameter setting of 100 frequency bins over a span of 100MHz 

gives a spectrum resolution of 1MHz. This enables the MILKOG`s frequency energy calculator, 

since the frequency resolution is less than 20MHz. The monitored energy spectrum on the 

MILKOG agent is displayed in Figure 5.7. 

 

 

Figure 5.6 Spectrum usage of signal generator with flat spectrum 

 

Figure 5.6 and 5.7 shows the same frequency spectrum displayed both on the spectrum analyzer 

and in the GUI of the MILKOG agent.   There is a slight different in the spectrum shape, 

especially where the spectrum increases and falls off. The main reason for this is the length of the 

FFT used for the spectrum calculations. The frequency resolution in the spectrum analyzer is 

much finer, resulting in a larger FFT calculation noise for the spectrum displayed on the 

MILKOG agent.  

 

 

Figure 5.7 Electronic Surveillance Monitor, with frequency resolution of 1MHz. 

 

The signal displayed in Figure 5.6 was also monitored by the moving energy calculator. This 

energy calculator is enabled when the frequency bin width ≥  20MHz. Therefore, the frequency 

span was increased to 300 - 900 MHz, with a total of 30 frequency bins, giving a frequency 

resolution of 20MHz. This monitored spectrum is displayed in Figure 5.8, where the signal at 

350MHz spans over three frequency bins.  

 



 48 FFI-rapport 2012/00419 

 

 

Figure 5.8 Electronic Surveillance Monitor, with frequency resolution of 20MHz. 

5.4 EA Functionality Test:  Reactive Jamming 

The purpose of this test was to verify that MILKOG, when enabled as a reactive jammer, was 

able to place its jamming signal on top of a payload signal in a given frequency range. 

 

Prior to applying the reactive jamming, the following initializations were done:   

 

 The RF network was set up according to Figure 5.1.   

 Node 1 and node 2 were associated in a network by using the radio network 

configuration menu  

 DSA was enabled on both nodes 

 Spectrum band start was set to 400MHz, band stop to 600MHz and number of segments 

to 10. 

 RX/TX control was set to „Time controlled TX/RX‟ to enable the time controlled MAC 

previously described. 

 A video client and a video server were started at each node. 

 

The two nodes were observed to transmit video signals to each other, with a typical observed 

peak bit rate on node 1 of 1.8E6 bits/second, and typical BER of 0.0%, see Figure 5.9. 

 

 

Figure 5.9 Node 1 GUI, prior to the reactive jamming. 

 

   



  
 

FFI-rapport 2012/00419 49  
 

 

 

 

Figure 5.10 Non-jammed spectrum, network here operates at 590 MHz. 

 

To enable jamming, the following configurations were then done to node 0, which was to act as 

the reactive jammer:  

 

 Spectrum band start 400MHz, band stop 600MHz, jamming ON, reactive jamming (see 

Figure 5.11). 

 

On the spectrum analyzer we observed that the jamming signal followed the spectrum changes of 

the payload signal.  The video stream was observed to be partly broken down, with very few 

updates to the video pictures.   

 

 

Figure 5.11 The settings of the reactive jammer.     

 



 50 FFI-rapport 2012/00419 

 

 

Figure 5.12 Reactive jamming test.     

 

The MILKOG GUI on node 1, see Figure 5.13, reported a peak bit data rate of 5.8E6 bits/second, 

which implies that there is still some data coming through on the link, but the majority of the 

packets are lost.  The reason for the jamming not being 100% effective is partly the look-through 

interval of the jamming functionality, in which the jammer is quiet such that the receiver can look 

for jamming targets.  With the reactive jamming spectrum band set at 400 to 600MHz, the 

measured look-through interval was 41 milliseconds (out of a total of approximately 1 second).  

For a jammer to be used in real environments, both the look-through and the jamming duration 

need to be reduced.   

 

 

Figure 5.13 Reactive jamming test, BER and bit rate observation on node 1.     

 

Another reason for the jamming not being 100% effective is that the jamming signal is 

(approximately 20dB) lower than the OFDM signal.  This is probably a minor issue, the jammer 

output may be improved by tuning the digital-to-analog converter gain of the jammer.  

Jammer signal 



  
 

FFI-rapport 2012/00419 51  
 

 

 

6 Lessons Learnt from the MILKOG Prototype Development 

6.1 Lyrtech SFF SDR HW Experiences 

The Lyrtech SFF SDR platform was selected as the platform-of-choice for MILKOG based on a 

formal tender process initiated in November 2009.  The evaluation criteria was a weighted 

balance of technical specifications, cost, time of delivery, training, support and vendor references.   

 

We have made the following positive experiences with the SFFs: 

 

 The SFFs have sufficient digital processing power and Ethernet interface performance  to 

run broadband waveforms (in our case above 2 Mbit/second works fine (on two of the 

platforms, see below)). 

 The SFF is well documented, and the platform is well integrated with the design tools 

(see Section 6.2). 

 

We have observed the following issues: 

 

 There are platform-to-platform variability issues that we do not currently understand, and 

that prevent us from using all of our five platforms in all roles (COM-ES-EA).  Two of 

the five platforms are working in full speed (2MBits/second+) with the COM waveform.  

With the other three platforms the COM transmit speed is significantly slowed down.  

Our hypothesis is that the issues we observe are related to clock synchronization. 

 We have had one platform that was repaired within the warranty period, and one unit that 

became defective outside of warranty and that was repaired at FFI.   2-3 spare RF 

modules are also defective (outside of warranty).    

 The quality of the support provided has been variable but often slow and inadequate. 

 The FPGA on the platform (Xinlinx Virtex IV) is too small to simultaneously include 

both the OFDM waveform functionality and all the ES and EA functionality that we 

would like to include 

6.2 SFF Design Tools Experiences 

As explained in Section 4.5, the software tools are well integrated and documented. By following 

demos and model-based design tutorials provided by Lyrtech, it was easy to learn how to program 

and implement own functionality in the SFF SDR.   

 

We have made the following positive experiences with the SFF SDR design tools: 

 

  Simulink and Xilinx System Generator offer a high-level block based FPGA 

programming, without needing to know VHDL. 

 The integration with MATLAB allows the use of MATLAB code within the FPGA 

design. (Also possible to use C code and VHDL). 

 Since the FPGA design is implemented in Simulink, simulation of the design is an easy 

task. 



 52 FFI-rapport 2012/00419 

 

 Flexibility is provided in the programming of the DSP, either standard c-code using Code 

Composer or graphical programming using Simulink. 

 

We also experienced some drawbacks with the design tools: 

 

- The generation of a new FPGA configuration bit file takes a fair amount of time with 

Xilinx System Generator . 

- Memory problems causing MATLAB to crash when simulating the FPGA design.  

6.3 Pros and Cons of FPGA PHY 

The OFDM waveform was implemented on the SFF SDRs FPGA, alongside EA and ES 

functionality. The EA and ES functionality was made from scratch, while the OFDM waveform 

was based on a Lyrtech example. 

 

We made the following positive experiences while implementing the desired functionality: 

 

 The platform FPGA has allowed us to run a high-speed broadband OFDM waveform, at 

the same time as ES and EA functionality is implemented. 

 Relatively easy to modify the following parameters on the OFDM waveform; number of 

unused sub-channels, number of data blocks in each OFDM symbol and the OFDM 

symbol rate.  

 Allowed us to implement two types of sensing functionalities, one narrowband FFT-

based and one broadband moving average based.  

 

The following negative experiences were made during the implementation process: 

 

- The OFDM waveform is implemented in such form that a fast reconfigurable complex 

waveform (with e.g. many optional modulations) is difficult to construct.  

- The documentation of the example OFDM waveform was partly insufficient, resulting in 

some confusion about the waveform functionality.  

- Cumbersome handling of the connection bus between the DSP and the FPGA, especially 

while implementing the FFT-based energy sensing.  

6.4 Distributed Node SW Architecture 

As was illustrated in Figure 4.1, each MILKOG node is implemented as a distributed system, 

where the different parts are connected through Ethernet.  Part of the processing occurs on a 

multicore PC, and other parts of it on the DSP and FPGA of the SFF platform. 

 

The primary reasons why this approach was selected, were:  

 

 It was found to be practical to implement the agent SW on a PC, such that we were 

able to have a proper Windows GUI on it.  



  
 

FFI-rapport 2012/00419 53  
 

 

 

 The distributed approach makes it easy to add more signal processing platforms to 

each node 

 The SFF required data in/out to go through its Ethernet interface 

 

There are some drawbacks with the selected architecture: 

 

 It is not possible to have very precise time control from the MILKOG agent and to the 

DSP and FPGA processing parts.  This is due to the long communication path from the 

agent to the DSP on the SFF:  The MILKOG agent sends its command to the Forwarder, 

which sends it to the GPP on the SFF, which forwards it to the DSP.  The long path 

introduces significant latency and latency variation.    

 Since the system has many interacting processes and communication paths, failure 

analysis gets more time-consuming than with a simpler system. 

7 Planned Expansions of MILKOG  

7.1 Functionality Improvement for Practical Tests 

The MILKOG system described in this report is aimed at laboratory-environment type tests only.  

In order to be able to use the system to demonstrate operational benefits in more realistic 

environments, several improvements are needed: 

 

 reduction of the minimum occupied bandwidth of the communication mode:  The current 

version of the system occupies 20MHz minimum.  However, to obtain temporary 

frequency assignments for several times 20 MHz for field tests is somewhat unrealistic.  

Bandwidths below e.g. 2 MHz would be easier to handle in field test environments. 

 get rid of wirebound administrative traffic:  The current version runs administrative 

traffic on Ethernet connections, for more practical tests this traffic needs to be wireless.   

To limit the work associated with this, a suggestion is to make this communication in-

band using the same waveform as for the payload communication. 

 improve the automatic gain control: With the current prototype, only a „fine adjustment‟ 

AGC is present and receive signals within a fairly narrow range is needed.  A course 

AGC has been partly implemented.  For more practical tests, this course AGC needs to be 

optimized and put in action. 

 

The following improvements are advantageous: 

 

 add error-correction coding, for improved quality-of-service with practical use of the 

system 

 investigate if the possibilities for non-contiguous OFDM, with individual suppression 

and/or modulation of the carriers in the OFDM waveform:  This enables better adaptation 

to the spectrum conditions, but due to significant parts of the waveform residing in FPGA 

code, this is a comprehensive task. 

 include other waveforms, such as e.g. the NATO narrow-band waveform 



 54 FFI-rapport 2012/00419 

 

7.2 Cognitive Architecture and Optimization Methodology 

The decision functionality in the current version of MILKOG is based on a state machine and 

simple programmed rules (if-then-else type).    In the future work, we will focus on more 

advanced reasoning and decision making. 

 

While cognitive architecture research in itself has matured for quite some time, with a number of 

different architectures having been suggested and downloadable software existing, cognitive 

architecture research in cognitive radio is not that mature.  Most approaches rely on simple 

architectures, such as based on the OODA loop.  Cognitive architecture for cognitive radio is 

therefore an area where there are possibilities for fundamentally new research. 

 

With FFIs significant in-house competence on genetic algorithms, it is natural to include and test 

this in MILKOG.  However, the concept of using genetic algorithms as part of the cognitive 

engine of a cognitive radio is not new from a scientific point of view, it has been suggested, tested 

and also patented by Virginia Tech [9]. 

7.3 Systems of Communication Nodes and Jamming Nodes 

A significant portion of what makes multi-agent systems, of which cognitive radio systems are a 

special case, complex to analyze, is the interactive reaction patterns:  A decision within one agent 

inflicts on decisions within other agents that again changes the environment for the first agent and 

may cause it to reevaluate its decision. 

 

Game theory is a mathematical tool to study such systems of interacting agents.  There exists a 

vast literature on this subject. 

 

We expect to study node interaction by using both simulation models, which enables to study 

many-node-scenarios, and the MILKOG prototypes, which may provide real-scenario experience 

with few-node scenarios. 

7.4 Reactive and Proactive Jamming 

There are at least two ways of achieving superiority on the electromagnetic battlefield:  One is to 

have superior speed in reactive responses.  The other way is to have superior planning of smart 

strategic and tactical moves. 

 

In the work so far we have demonstrated that the multifunction concept enables us to create 

sophisticated reactive jammer capabilities.  We plan to continue this research, and try to answer 

central questions such as how fast such reactive responses can be made, and how targeted they 

can be made.  E.g. how should one block adversary communication but not affect own 

communication. 

 

Central in proactive jamming is the ability to create plans for electronic attack activities, and to 

modify plans as new information is observed. 

 



  
 

FFI-rapport 2012/00419 55  
 

 

 

Both reactive and proactive jamming are closely connected to the study of cognitive architectures:  

Reactive jamming benefits from cognitive architectures with fast reasoning and ones that may 

compile reasoning into fast (“sub-conscious”) reaction patterns.  Proactive jamming requires a 

cognitive architecture with good reasoning and planning capability. 

7.5 MILKOG Databases 

The MILKOG architecture assumes that there is a reachable infrastructure with three types of 

databases:  One for prioritized communications (e.g. broadcasters) that are non-cognitive or that 

for good reasons should not be challenged by a cognitive radio node.  The second is for 

aggregated monitoring data.  The third is for electronic attack tasks.  Neither of these databases 

have been focused nor prototyped in the work so far.   

 

The databases represent infrastructure that, as viewed from each SW agent, creates an 

environment with persistence and aggregation of information.  In multi-agent systems in general, 

at least some authors claim that communication with the environment is beneficial, something 

which is frequently illustrated with examples from biology and from human societies.   

 

The spectrum database is of particular interest for the near term future.  In order to allow 

cognitive radio nodes into military bands, spectrum managers are likely to want to maintain 

control and need an assurance that the cognitive nodes do not interfere with other prioritized 

military traffic.  Having a spectrum database that the cognitive nodes may download information 

from on a regular basis, may contribute to this assurance.  In a transition phase, or as required 

from spectrum managers, the cognitive radio nodes may also upload their decisions to such a 

database. 

 

The activity should both investigate how COM and EA databases could be integrated in 

operations planning concepts in general, and suggest how they could be practically implemented. 

8 Conclusions 

This report documents efforts taken to investigate, design and develop multifunction radio units.  

The multifunction term in this case points to the combination of COM and EW on the same 

processing platform.    The development has been carried out using commercially available 

software defined radio platforms from Lyrtech Inc, and a combination of high-level and lower-

level design tools.   

 

The main hypothesis motivating this work has been that having such multifunction radio units, 

provides a higher level of flexibility for the use of the units, and that the units may contribute e.g. 

in an electromagnetic monitoring role while simultaneously fulfilling their communication role.  

A further hypothesis has been that a SW agent in each node, managing both COM and EW 

functionalities simultaneously, may provide more coordinated and hence more effective COM 

and EW.  

 



 56 FFI-rapport 2012/00419 

 

We have suggested an architectural environment for multifunction nodes, and an internal 

architecture for the SW agent and the multifunction nodes themselves.  A prototype SW agent, 

managing the COM, ES and EA functionality and including a subset of the architecture, has been 

developed for purposes of verification and experimentation. 

 

For dynamic spectrum access experimentation, we have adapted an OFDM waveform application, 

where the basis has been bought from Lyrtech, to run at above 2 Mbits/ second.  The waveform 

application has been integrated with an open-source video server and video monitor.  We have 

not included error correction in the waveform application. 

 

The agent SW makes spectrum decisions for the COM functionality, but only based on simple 

rules (if-then-else) at this stage.   

 

The first hypothesis above (“flexibility”) has been practically demonstrated e.g. by the units being 

capable of monitoring the spectrum while communicating, and also by the combination of the 

monitoring and jamming capability to enable reactive jamming.   

 

While the work in this report has provided some support for and suggested an architecture for the 

second hypothesis above (“better coordination”), this hypothesis clearly needs to be further 

analyzed and verified.  This will be addressed in the future work on cognitive architectures and 

optimization. 

  

The requirement to actually design and develop multifunction units, relative to just doing a paper 

exercise or using simulation models, meant that a lot of time had to be spent purchasing 

platforms, tedious design details and a wide range of issues also outside the core issues of 

cognitive radio and multifunction radio nodes.  This time spent on practical issues that are not in 

themselves central research tasks is the main drawback of this type of „design paradigm‟ research 

methodology. 

 

An important benefit of the practical approach is that the prototypes allow us to verify principles 

in a close-to-real system environment.  The prototypes also allow us to demonstrate working 

principles for military operations personnel, and to trigger discussions as to what their needs and 

concerns are with these types of systems.     

 

Also, with exercises that are purely simulation oriented, simplifications and assumptions are very 

often made, some of which may actually be real issues.  As an example, a majority of  cognitive 

radio publications neglect the administrative communication between radio nodes, merely 

assuming that agent decisions are somehow instantly communicated to other nodes/agents.  Our 

approach e.g. shows that the administrative communication between cognitive radio nodes, 

enabling coordination between receivers and transmitters and between neighboring nodes, is a 

real and laborious issue and that much attention needs to be devoted to it as it is a vulnerability 

that may be targeted by attackers.  Also it shows that the speed of the administrative 

communication is important, e.g. when operating in reactive mode.  Clever and efficient schemes 



  
 

FFI-rapport 2012/00419 57  
 

 

 

for such administrative communication need to be included into a practical system to be used in a 

military context. 

 

The prototyping approach also has given us very valuable experience with software defined radio 

development in general, which we may draw upon in later EW projects.  

 

We have outlined five candidate topics for future MILKOG work: 

 

 Improve the general functionality further to enable practical tests of the system 

> to test system features in more realistic environments and discuss and get 

feedback from military operations personnel 

 Cognitive architecture and COM-EW optimization 

>  to study coordination in the system and enable smarter defensive and offensive 

action 

 Study systems of communication and jamming nodes 

>  defensive and offensive strategies in a game theoretic context 

 Reactive and proactive jamming 

> superiority through speed of action or through the quality of the decisions 

 MILKOG databases  

> to investigate wide area coordination and concerted action and to protect non-

cognitive communications 

 

In the fields of spectrum management, communications planning and electronic warfare there is 

clearly a need for coordination and concerted action.  Our hope is that the principles outlined for 

MILKOG, and the experimentation tool constituted by the MILKOG nodes, will be steps 

contributing towards this need.   

 

  



 58 FFI-rapport 2012/00419 

 

References 

 [1]  J. Mitola III and G. Q. Maguire, Jr., "Cognitive Radio: Making Software Radios More 

Personal," IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Aug.1999. 

 [2]  "Department of the Air Force" Cognitive Jammer, RFI-PKS-001-201020-1-2010 

 [3]  Preston Marshall, "DARPA Progress Towards Affordable, Dense, and Content Focused 

Tactical Edge Networks," in MILCOM 2008 2008. 

 [4]  David Keil and Dina Goldin, "Indirect Interaction in Environments for Multi-Agent 

Systems," in Environments for Multi-Agent Systems II Springer Berlin / Heidelberg, 2006, 

pp. 68-87. 

 [5]  VideoLan - VLC http://www.videolan.org24-2-2012 Accessed: 5-3-2012 

 [6]  Lyrtech Inc., "SISO FlexOFDM documentation," 2010. 

 [7]  Simon R.Saunders and Aljenadro Argòn-Zavala, "Overcomming Wideband Fading," in 

Antennas and Propogation for Wireless Comminication Systems, 2 ed John Wiley & Sons, 

Ltd, 2007, pp. 414-435. 

 [8]  John G.Proakis and Dimitri G.Manolakis, Digital Signal Processing, 4 ed Upper Saddle 

River, New Jersey 07458, 2007. 

 [9]  A. B. MacKenzie, P. Athanas, C. W. Bostian, R. M. Buehrer, L. A. DaSilva, S. W. 

Ellingson, Y. T. Hou, M. Hsiao, Jung-Min Park, C. Patterson, S. Raman, and C. daSilva, 

"Cognitive Radio and Networking Research at Virginia Tech," Proceedings of the IEEE, 

vol. 97, no. 4, pp. 660-688, Apr.2009. 

[10]  Lyrtech Inc., "Small Form Factor SDR Evaluation Module/Development Platform User`s 

Guide," 2010. 

 

 

 

 

http://www.videolan.org24-2-2012/


  
 

FFI-rapport 2012/00419 59  
 

 

 

Abbreviations 

AGC   Automatic Gain Control 

API   Application Programming Interface 

BER   Bit Error Rate  

CFO   Carrier Frequency Offset  

CNR   Combat Net Radio 

COM   Communication  

DSA   Dynamic Spectrum Access  

DSP   Digital Signal Processor  

EA   Electronic Attack  

EAD   Electronic Attack Database 

ES   Electronic Surveillance 

ESD   Electronic Surveillance Database 

EW   Electronic Warfare  

FCC   Federal Communications Commission 

FFT  Fast Fourier Transform  

FPGA   Field-Programmable Gate Array  

FTP   File Transfer Protocol 

GPP   General Purpose Processor  

GPS   Global Positioning System 

GUI   Graphical User Interface  

IFFT   Inverse Fast Fourier Transform  

IP   Internet Protocol  

IPv4   Internet Protocol version 4 

ISI   Inter-Symbol Interference  

MAC   Media Access Control  

MAS    Multi-Agent Systems  

MILKOG    Military Cognitive Radio 

OFDM    Orthogonal Frequency Division Multiplexing  

NC-OFDM    Non-Continuous Orthogonal Frequency Division Multiplexing 

PC    Personal Computer 

PN    Pseudo-random Noise 

PPCD    Primary and Prioritized COM Database  

QAM    Quadrature Amplitude Modulation  

QoS    Quality of Service 

SFF SDR    Small Form Factor Software Defined Radio 

SDR    Software Defined Radio  

SoC    System on Chip  

SW   Software 

RF    Radio Frequency  

RX    Receiver 

TX    Transmitter 



 60 FFI-rapport 2012/00419 

 

UDP    User Datagram Protocol 

VHDL    VHSIC Hardware Description Language 

VLC   Media player/streamer from VideoLan 

WNAN   Wireless Network After Next   



  
 

FFI-rapport 2012/00419 61  
 

 

Appendix A Overview of MILKOG Administrative Messages 

Table A.1 An overview of the implemented administrative command messages in the MILKOG 

system.   

Network association: 
Discovery type 
message.  Sent to 
all node numbers.   

IP-
addres
s of the 
sender 
of the 
messa
ge 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the port 
number 
of the 
to-node 

LSB of 
the port 
number 
of the 
to-node 

PING\0 (Not 
used) 

(Not used) 

The response to a 
received PING 
message. 

IP-
addres
s of the 
sender 
of the 
messa
ge 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the port 
number 
of the 
to-node 

LSB of 
the port 
number 
of the 
to-node 

PONG\0 (Not 
used) 

(Not used) 

Request from 
sender node to 
receiver node to 
join his logical 
network. 

IP-
addres
s of the 
sender 
of the 
messa
ge 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the port 
number 
of the 
to-node 

LSB of 
the port 
number 
of the 
to-node 

JOIN\0 (Not 
used) 

(Not used) 

Response to 
JOIN, an 
accepted JOIN 
request 

IP-
addres
s of the 
sender 
of the 
messa
ge 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the port 
number 
of the 
to-node 

LSB of 
the port 
number 
of the 
to-node 

JACK\0 (Not 
used) 

(Not used) 

Network update 
notification sent to 
all nodes in the 
logical network, 
following any 
change of the 
logical network. 

IP-
addres
s of the 
sender 
of the 
messa
ge 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the port 
number 
of the 
to-node 

LSB of 
the port 
number 
of the 
to-node 

UPDN\0  81: Total number of nodes in the 
network (unsigned char) 
82…140: The node numbers of the 
nodes in the network (up to Total 
number of nodes) 

Disconnect 
message sender 
node from 
network. 

IP-
addres
s of the 
sender 
of the 
messa
ge 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the port 
number 
of the 
to-node 

LSB of 
the port 
number 
of the 
to-node 

DISC\0 (Not 
used) 

(Not used) 

Spectrum proposal: 
Message 
explanation 

Bytes 
0..15 

Byte 16 Byte 17 Bytes 
18..33 

Byte 34 Byte 35 Bytes 
36..40 

Bytes 
41..80 

Bytes 81..140 

Send a spectrum 
proposal . 

IP-
addres
s of the 
sender 
of the 
messa
ge 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the port 
number 
of the 
to-node 

LSB of 
the port 
number 
of the 
to-node 

PROP\0  81: Number of segment values in the 
PROP (nmbr) 
82: Number of first segment 
83: Power value of first segment 
84: Number of second segment 
85: .. 
81+2*nmbr: Power value of last 
segment 
2*nmbr+1: Utility of solution  
 
 

Local parameters exchange messages: 
Message 
explanation 

Bytes 
0..15 

Byte 16 Byte 17 Bytes 
18..33 

Byte 
34 

Byte 35 Bytes 
36..40 

Bytes 
41..80 

Bytes 81..140 

Local 
communication 

IP-
address 

MSB of 
port 

LSB of 
port 

IP to-
address 

MSB 
of the 

LSB of 
the port 

COMP\0 (Not 
used) 

81..84: DSA start frequency 
85..88: DSA stop frequency 



 62 FFI-rapport 2012/00419 

 

parameters  of the 
sender 
of the 
messag
e 

number 
of the 
sender 

number 
of the 
sender 

port 
numbe
r of the 
to-
node 

number 
of the 
to-node 

89..92: Number of segments 
93..96: Segment width 
 

Local electronic 
attack 
parameters  

IP-
address 
of the 
sender 
of the 
messag
e 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the 
port 
numbe
r of the 
to-
node 

LSB of 
the port 
number 
of the 
to-node 

EAPA\0 (Not 
used) 

81..84: EA start frequency interval 0 
85..88: EA start frequency interval 1 
89..92: EA start frequency interval 2 
93..96: EA stop frequency interval 0 
97..100: EA stop frequency interval 
1 
101..104: EA stop frequency interval 
2 
105: Jamming type 
106..108: Jamming interval 0..2 
active (Active=JAMON, non-
active=JAMOFF) 
 

Local electronic 
surveillance 
parameters  

IP-
address 
of the 
sender 
of the 
messag
e 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
number 
of the 
sender 

IP to-
address 

MSB of 
the 
port 
numbe
r of the 
to-
node 

LSB of 
the port 
number 
of the 
to-node 

ESPA\0 (Not 
used) 

81..84: ES start frequency 
85..88: ES stop frequency 
89..92: ES number of bins 
93..96: ES bin width 
 

Time synchronization: 

Message 
explanation 

Bytes 
0..15 

Byte 16 Byte 
17 

Bytes 
18..33 

Byte 
34 

Byte 35 Bytes 
36..40 

Bytes 
41..80 

Bytes 81..140 

Send the node’s 
current time (to 
other nodes in 
the current 
network) 

IP-
addres
s of 
the 
sender 
of the 
messa
ge 

MSB of 
port 
number 
of the 
sender 

LSB of 
port 
numbe
r of the 
sender 

IP to-
address 

MSB of 
the 
port 
numbe
r of the 
to-
node 

LSB of 
the port 
number 
of the 
to-node 

SYNC\0 (Not 
used) 

81..88: Time sample  (DWORD) 

 

 

  



  
 

FFI-rapport 2012/00419 63  
 

 

 

Appendix B The Formation of Local Networks 

The network formation procedure in MILKOG is a radio-operator initiated procedure: 

 

1)  The radio operator which takes the initiative, starts the „Radio Network Configuration‟ 

dialogue in the MILKOG agent software.   

2) The radio operator selects the „Detect available MILKOG nodes‟.  This initiates a 

sequence of „PING‟ messages through the coordination channel.  MILKOG agents that 

receive the „PING‟, confirms by responding with a „PONG‟.  The dialogue will show the 

numbers of the radio nodes that have sent confirmations.   

3) Next, the radio operator highlights the radio nodes with which to form a network, then 

selects „Try connecting MILKOG nodes‟.  This initiates a sequence of „JOIN‟ messages 

through the coordination channel.  Nodes that accept the invitation, respond with „JACK‟, 

and update their LOCALNET structure.  The initiating node also updates its LOCALNET 

structure as it receives the „JACK‟ messages. 

Here, it is assumed that LOCALNET is a traditional Combat Net Radio all-hear-all type 

network.  Hence, if node 1 asks node 2 and 3 to join the LOCALNET, we also want node 

2 and 3 to understand that they belong to the same network.   This, as well as other 

dynamic changes of the network, is facilitated through: 

4) Each time an agent makes a change to its LOCALNET, it sends a network update 

message „UPDN‟ to all its previous state and current state LOCALNET peers.  The 

„UPDN‟ contains a list of all the node numbers in the network (with the exception of the 

initiator).  The „UPDN‟ is handled in the following way:   

a. The receiving agent checks the „UPDN‟ node numbers relative to his 

LOCALNET structure.   

b. If all the „UPDN‟ numbers are in LOCALNET, do nothing. 

c. If a number is found that is not in LOCALNET, then JOIN is sent to this node.  

As above, nodes that accept the invitation, respond with „JACK‟, and update their 

LOCALNET structure.  The initiating node also updates its LOCALNET 

structure as it receives the „JACK‟ messages. 

5) Disconnection of nodes from the network is to be facilitated through the „DISC‟ message 

(reserved, not implemented), with a list of node numbers to disconnect included in the 

message. 

6) Each time a change is done to LOCALNET, the change is visualized in the 

„Communications Monitor‟ dialogue window. 

 

 

 

 

 

 

 

  



 64 FFI-rapport 2012/00419 

 

Appendix C Hardware Description of SFF SDR 

All data and the figure in this subsection are obtained from [10]. Figure C.1 illustrates the module 

structure of the SFF SDR, consisting of the Digital processing module, the Data conversion 

module and the RF module.   

 

 

Figure C.1 Hardware block diagram SFF SDR platform 

 

The Digital processing module consists of two main components, one DSP System on Chip (SoC) 

from Texas Instruments (TMS320DM6446) and a FPGA from Xilinx (Virtex-4 SX35). The SoC 

contain one 594-MHz DSP (C64x+) and one 297-MHz General Purpose Processor (GPP) 

(ARM926EJ-S). Communication between the DSP and FPGA is handled by a protocol called 

Video Processing Subsystem (VPSS), containing a Video Processing Front and Back End 

(VPFE/VPBE). VPFE serves as an input interface to the DSP, with a depth of 16 bit running at 

75MHz. VPBE has an equal depth of 16 bit, but runs at half the rate 37,5MHz as an output 

interface from the DSP.   

 



  
 

FFI-rapport 2012/00419 65  
 

 

 

The Data conversion module converts the digital processed signal to an analogue representation 

and vice versa. A dual-channel 16 bit 500MSPS DAC from Texas Instruments (DAC5687) 

converts the digital signal to an analogue representation, and two 14 bit 125MSPS ADC from 

Texas Instruments (ADS5500) performs the reversed operation. The Data conversion module is 

also equipped with two external clock inputs (ADC and DAC), one 10 MHz onboard reference 

clock and a reference clock input for synchronization. In order to control the ADC and DAC a 

FPGA from Xilinx (Virtex XC4VLX25) is included. To provide the ADC, DAC and FPGA with 

their desired clock frequencies, a Phase Locked Loop (PLL) is included.  

 

The RF module works as a half-duplex transceiver, with a RF range of 250 MHz to 1 GHz. It is a 

tunable RF module where the RX section is composed of a three stage superheterodyne receiver, 

with a final Intermediate Frequency (IF) at 30MHz and a selectable signal bandwidth of 5MHz or 

20MHz.  The TX section of the RF module is a 2 band (250-500MHz and 500-1000MHz) 

quadrature mixer.  All the frequencies are kept stable with a PLL. 


