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ABSTRACT

Early warning systems based on standoff detection of biological aerosols require real-time signal processing of a large
quantity of high-dimensional data, challenging the systems efficiency in terms of both computational complexity and
classification accuracy. Hence, optimal feature selection is essential in forming a stable and efficient classification
system. This involves finding optimal signal processing parameters, characteristic spectral frequencies and other data
transformations in large magnitude variable space, stating the need for an efficient and smart search algorithm.
Evolutionary algorithms are population-based optimization methods inspired by Darwinian evolutionary theory. These
methods focus on application of selection, mutation and recombination on a population of competing solutions and
optimize this set by evolving the population of solutions for each generation. We have employed genetic algorithms in
the search for optimal feature selection and signal processing parameters for classification of biological agents. The
experimental data were achieved with a spectrally resolved lidar based on ultraviolet laser induced fluorescence, and
included several releases of 5 common simulants. The genetic algorithm outperform benchmark methods involving
analytic, sequential and random methods like support vector machines, Fisher's linear discriminant and principal
component analysis, with significantly improved classification accuracy compared to the best classical method.

Keywords: standoff bioaerosol measurements, pattern recognition, feature selection, feature extraction, genetic
algorithms, Bayesian normal classifier.

1. INTRODUCTION

Today there are several methods for identifying biological substances using microbiological techniques [1]. Although
these are precise techniques, they are quite slow compared to optical techniques which give response within seconds.
Efforts to develop equipments for rapid standoff detection of biological substances exist in several nations [2-4]. The
Norwegian Defence Research Establishment (FFI) has built an experimental lidar [5-6] for the purpose of near real time
standoff detection and classification of biological aerosols. By analyzing laser-induced fluorescence from different
biological aerosols, a classifier can detect biological aerosol clouds and potentially classify the threat. A pattern
recognition system of low classification error rate is demonstrated for data acquired during a field test where five
different simulants were released: BG (Bacillus Atrophaeus) and BT (Bacillus Thuringensis) as simulants for
encapsulated bacteria, OV (Ovalbumin) for simulating toxins, MS2 (Bacteriophague MS2) for simulating virus and EH
(Pantoea Agglomerans) as simulant for vegetative bacteria.

1.1. Feature optimization

The training of a classifier is based on features, i.e. measured characteristics describing the substances in consideration.
Hence, the selection of good features is important in terms of classification accuracy. In spectral data analysis the
objects to classify are the fluorescence spectra (light measurements spanned by channels representing different
frequency ranges across the spectrum of visible light). In this relation, feature selection aims at localizing the spectral
ranges of significance, selecting channels able to discriminate the different substances and ignoring the rest. Figure 1
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shows normalized fluorescence spectra of the five different simulants used in this study and demonstrates frequency
ranges of dissimilar discriminative ability.
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Figure 1: Key fluorescence (normalized) of the five simulants used along with the demonstration of dissimilar discriminative abilities
in different frequency ranges, motivating feature selection. In ranges a and c the spectra are easier to distinguish than in range b
having several intersecting points. This indicates that the features are more discriminative in ranges a and ¢ than in range b.

The high number of spectral channels (112 channels) yields high dimensionality data, making analysis of fluorescence a
challenging task. This difficulty is shown in Figure 2 by a typical noisy sample of a lidar observation. The optimization of
feature selection and feature extraction is expected to improve classification accuracy, extracting characteristic
information from the non-discriminative data of already extracted features. This involves searching for characteristic
subsets of the channels and other class discriminative transformations of the data sets.
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Figure 2: Fluorescence of the five simulants (multiple colors) and one lidar observation (red).

In this paper feature extraction is used as a general transformation of a data set; hence, signal processing can be
referred to as feature extraction. This can be linear or nonlinear transformations and can result in both down-sampling
the dimensionality or projecting the data to a higher-dimensional space. The familiar data transformations Principal
Component Analysis (PCA) [7] and Fisher's Linear Discriminant (FLD) [7] focus on linear combinations of features
representing each class or discriminating the classes, respectively, and are examples of data transformation methods
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down-sampling the dimensionality. High-dimensionality projections can be exemplified by Support vector machine
(SVM) [7], projecting the data to an often much higher-dimensional space where two classes can be discriminated by a
hyper plane with an optimized distance margin to each class.

Feature selection is the selection of a subset of the originally provided features. This set is used to train the classifier
with observational data spanned by the features and is essential for the quality of a classifier, both in improving
classification accuracy when selecting characteristic features and in down-sampling the dimensionality by ignoring
specific dimensions of the extracted feature set. Recently, feature selection has been of increased interest as the
growing computational capacity opens for solving high-complexity problems, involving a large amount of features.
Moreover, the demand for real-time processing makes limiting of features important for efficient algorithms and are
often vital within automatic systems.

1.2. Scope and objective

In this paper we apply genetic algorithms (GAs), an evolutionary search technique, on the combinatorial optimization
problem of finding an optimal transformation of the dataset. The study involves classification of the five common
simulants. Background (non-harmful substance) is an additional class, resulting in a 6-categorial classification problem.
The experimental data used for training and testing the classifier were achieved with a spectrally resolved lidar and
consist of 112 channels.

The linear Bayesian normal classifier is used, assuming independently observed samples, multivariate Gaussian class-
densities and equally correlated features for all classes which in practice is the use of the Mahalanobis distance [7] to
classify a sample. The only known condition as regards the classification problem is that the features of spectral data
are correlated [8]. Nevertheless, the adaptive algorithm will adjust to these assumptions and calculate the classification
error to each solution.

1.3. Instrument

The FFI-developed lidar is based on ultraviolet laser-induced fluorescence. A UV laser pulse at 355 nm is emitted from
the lidar and backscattered light is collected by a 12" telescope. The backscattered light collected is focused into an
optical fiber and transmitted to the spectrally resolved detection system. This system consists of a spectrograph and an
intensified CCD camera which records the received spectrum between 350 nm and 700 nm after each laser pulse (10 Hz
pulse rate). The camera has an adjustable gain that can be varied from 0 to 1000 by adjusting the voltage across the
intensifier stage, and can be rapidly turned on and off for range gating.

The backscattered light is recorded in 141 spectral channels. Elastic scattering and Raman scattering by atmospheric
constituents dominate the inelastic scattering (fluorescence) and often lead to saturation. The signal in this spectral
range (wavelengths shorter than 420 nm) is therefore discarded before the rest of the spectrum is normalized. A typical
spectrum is shown in Figure 3, indicating the discarded wavelengths below the dotted line. Thus, the data sets contain
112 channels, corresponding to 2.5 nm per channel.
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Figure 3: Example of lidar output from 350 to 700 nm. The elastic backscatter signal is damped several orders of magnitude by a
CG385 color glass. The dotted vertical line shows the lower limit of used fluorescence in this work.

2. FEATURE OPTIMIZATION USING GENETIC ALGORITHMS

This section aims at explaining methodology concerning feature optimization involving pattern recognition and genetic
algorithms, one class of evolutionary algorithms.

2.1. Pattern recognition

Pattern recognition is the act of taking an action based on observed feature measures describing an object. The
function controlling these actions is the classifier which can be defined based on observations representing the
different classes. Using this technique we say that the classifier is trained; based on the measured features connected
to each observed sample (i.e. a fluorescence spectrum) the classifier calculates a density function for each class.

Let xe R" be one observed sample of n measured features. Given a training set X, . € M ™™ (m*n -matrix where m

train

is the number of samples) containing samples describing each of the classes, a classifier

c: X Y

train

is created, where Y is the set of real labels connecting each sample in the training set to its respective class. The
classifier is now trained and able to classifying an arbitrary sample xeR", that is

c:R"—>Y.

The selection of a subset of features or a transformed set of features will create a different classifier and will,
depending on the discriminative quality of the features, probably have classification accuracy different from the one
utilizing all the available features. The classifier using a subset or transformed set of features is similarly created as
follows.

Given a subset of the features s {1,2,...,n}, let X, €M "™ be the transformed training set containing the selected

train

features (columns of the original set X

train

). The classifier is now trained and created as
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c:X Y.

train
After training, this mapping can classify an arbitrary sample xe R, that is,
c: RV Y.

By comparing estimated labels to the key labels when classifying a second data set (test data) we get the classification
accuracy utilizing the selected features or feature transformation.

2.2. Decision variable space

The decision variable space defines the range and restrictions of the transformation search, which aims at improving
classification accuracy.

These are selected to be parameters for

e Channel selection:
s€{0,1}'"?, where s, =1 if channel i is selected, and 0 otherwise.
e  Channel binding:
be {0,1}“2 , Where b, =1 if channel i is to be bound to the next channel, and 0 otherwise. Bounded channels
are simply the mean of the channel signals which form new features.
e Time integration:
te {0,1}*, where tis a k -bit binary number representing interval size for time integration. Let¢_, =/ be the
real number coded by the binary number ¢ . This part of the data transformation integrates the signal in
intervals of / samples, smoothing the signal.

real

Any candidate solution of a transformation is now a specific set (s, b, t) and will aim at selecting characteristic channels
and increasing the SNR by integrating the signals in frequency and time. These parameters are assumed to be non-
independent; therefore the search for an optimal combination involves a large solution space and most likely a non-
analytic problem structure. In search for the optimal combination we have used genetic algorithms, one of few
optimization methods able to handle this optimization problem.

2.3. Genetic algorithms

GAs is one of the most popular classes of evolutionary algorithms [9-10]. These are stochastic optimization methods
which improve a set of solutions influenced by a quality measure called the fitness function. The optimization process is
based on the concept of environmental adaptation, the chance for a solution to survive over time.

The GAs are able to handle large search areas without having to search through all solutions. Guided by the fitness
function, the evolutionary operators ensure that high performance solutions are preserved over time. These operators
are selection, crossover and mutation.

2.3.1. Solution representation

Genetic algorithms use chromosomes for representing solutions, a string (usually) of binary bits coding the parameters
spanning the decision variable space. Figure 4 gives an example of a chromosome, consisting of the three parameter
vectors s, b and t which code for a data transformation. The genetic algorithm will evolve a set of these candidate
solutions over time and seek the optimal parameters which give the best fitness value, in this relation being the
classification error rate.
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Figure 4: A chromosome representing a solution involving three parameter vectors s, b and t, coding for a data transformation.

Example

Consider a data set of 4 channels and 6 samples, i.e. 6 observed fluorescence spectra spanned by 4 channels,

and a chromosome c coding the signal processing

The first four bits coding for channel selection imply channel 2, 3 and 4 to be selected. The next four bits code for
channel binding and in this example channel 2 and 4 are coded to merge with the next channel. Channel 2 is to be
bound to channel 3, which is a valid event since channel 2 and 3 are actually part of the selected subset. Since channel
4 is the last channel this binding is ignored. The resulting data after channel selection and binding is

1
E(alz + al}) a,

1
E(azz + azs) Ay

b, b,

1 by by,

D > (a5, +ay) ay _ b, b,
%(au ta,) ay I;: Z:

bg b

1
E(asz + a53) asy

1
E(asz +tag) ag

The transformed data set D consist of only two features. Last, the data set is smoothed over time coded by the last
four bits in the chromosome, coding the number 3. The data set is now integrated in intervals of three, with a moving
average.

2.3.2. Fitness evaluation

The fitness evaluation of each chromosome solution involve transforming the training data and test data, training the
classifier on transformed training data and testing the performance of the classifier by counting the error classifications
from the transformed test data set.
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For each chromosome, do

1. Decode :extract and decode parameters s,b and ¢

2. Transform data: training data and test data are transformed separately, based on the parameters s, t and b.

f(s.1,b) : X SX

data data

3. Train classifier: based on transformed training data

g(s.1,b): X, >5Y

traindata

4. Fitness evaluation: Count number of misclassifications among samples from the transformed test data set. This is
given by the error function

Eeab = z VA7)

xe X,

testdata

where y, ., is simply an indicator function returning value 1 if estimated label is not identical to the key label.

2.3.3. Optimization with a genetic algorithm

One iteration of a genetic algorithm is illustrated in Figure 5. A population P with a constant number of chromosomes
is evaluated and ranked by calculating fitness. Then, it is reproduced calling evolutionary operators, forming a new
population. Over time, this solution set will presumably evolve towards an optimal solution, providing the best
parameters evaluated by the fitness function. Genetic algorithms cannot guarantee the finding of an optimal solution,
but the presence of elitism (explained in Operators) will guarantee weak optimization, i.e. F(y,,,)>F(y,)where F'is

the fitness function and y, is the best solution at generation T .

Figure 5: Sketch of one iteration of a genetic algorithm. A population of solutions is evaluated by the fitness function before it is
reproduced calling evolutionary operators.
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Through testing and learning, the genetic algorithm can simultaneously optimize the three parameters, guided by the
fitness function. The pseudo code of the employed optimization algorithm using a genetic algorithm is as follows:

e Generate an initial population F, of N chromosomes and an empty population O, of N-N_, . chromosomes

elites

where N

elites
e  For each generation T, do
Evaluate fitness of each chromosome ce F, .

is the chosen number of elites guaranteed survival for each generation.

2. Rank P, based on fitness.
3. Copy N, elites (best solutions) from B. to B,,.
4. Perform selection from P. to form a parent population of N —-N_,  chromosomes, based on fitness

ranking. Make one copy of the parent population and randomly permute the order of chromosomes in the
two identical parent populations.

5. Perform bit-wise crossover by selecting parents in pairs, one from each of the two permutated parent
populations, and randomly select bits from the two. Save the offspring in O, .

6. Mutate the leftover parent solutions from one parent population not being exposed for crossover, and
save the offspring in O, .

7. Fill the rest of the slots in P,

T+1

with the reproduced Q, .

2.3.4. Operators

Prior to the reproduction of the population, the candidates for reproduction are carefully selected by the selection
operator. The selection is influenced by the solutions’ classification accuracy and ensures that the solutions of high
fitness have a greater chance of survival than the solutions of poor fitness. Selection also preserves the best solutions
of each generation (elites). This elite-mechanism ensures that the best solution of each generation never is degraded,
guaranteeing weak optimization.

When solutions are selected they are candidates for reproducing the new population. Some of the candidates are used
for crossover; reproducing an offspring solution by randomly selecting bits from two parent solutions as exemplified in
Figure 6.

0/{1/0(0|1|0|1|0|0|1
1/{1|{1(0{0(1(0|21|1|1

Figure 6: Crossover of two parent solutions. The offspring’s bits have 50% probability of being selected from one parent or the other.

Further, another part of the reproduction candidates are mutated. Mutation flips a small part of a solution (usually just
a single bit, called ‘bit-wise mutation’, from 0 to 1 or reversely) as shown in Figure 7.

10011@1110 10011@1110

Figure 7: Bit-wise mutation of a chromosome, changing one single bit from 0 to 1.

2.4. Data and optimization parameters

All training data are achieved during (controlled) semi-closed chamber releases of simulants while test data are
achieved from both chamber and open air releases. For each solution, the classifier is trained with all together over
14000 samples representing the six different classes of spectra. Furthermore, the trained classifiers are tested on
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approximately 60 000 samples of test data. All test data contain a number of background samples. Therefore, we do
not need a separate test data set for background. A detailed overview of training data and test data is given in Table 1.

Table 1: Number of time samples for training data and test data

Simulant Training data Test data
BT 3516 608

BG 1001 13971
oV 2694 17589

Background 2499 -

MS2 2550 17430
EH 2354 11761
Sum 14614 61359

The parameters used in the genetic algorithm are shown in Table 2. Several runs with different parameters have been
performed, resulting in the selected set. The large amount of decision variables involves a large population size so that
the random initial population has solutions spread across large parts of the decision variable space. The selection
method and low number of elites are chosen to prevent too quick convergence which could lead to local optima.
Scattered crossover involves selecting bits randomly from parent chromosomes and the crossover rate involves 80 % of
the remaining slots in the next population to be offspring of crossover (after the five elites are copied). The remaining
slots in the next population are offspring of mutation where the mutation rate gives the probability of every single bit
in a chromosome to be mutated.

Table 2: Evolutionary parameters

Operator Value/Rate/Method
Cross-over Scattered
Cross-over rate 0,8
Mutation Bitwise
Mutation rate 1/chromosomelength
Selection Rank fitness selection
Elites 5
Population size 1000
Generations 40

All data are normalized with the Euclidean norm, shown in Figure 8 and Figure 9 representing training data and test
data for BT, respectively.
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3. RESULTS

The results show that feature optimization with GAs gives significantly improved classification error rate, from 40 % to
only 7 %. The iterative improvement provided by the GA is shown in Figure 10, where the blue points are the best
solutions for each generation and the green points are mean fitness of the entire population of solutions. The
improvement of the best solution for each generation indicates the finding of a potentially optimal solution already at
generation 27 with a classification error of 7 %. The decreasing gap between each generation's best fitness and mean
fitness shows continued improvement even after generation 27 and is an indication of convergence for the set of
solutions.

Classification errar: 7 %
0.5 T T T T T T T
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Figure 10: Optimization of classification error rate with genetic algorithms
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Figure 11 shows the optimal solution of channel selection with GA, visualized by the gray bars. The solution shows that
channels and bound intervals are selected from frequencies spread across the entire spectrum. Nevertheless, we make
note of the algorithm's special points of interest, being the most discriminating frequency ranges. These are the ranges
around the peak of the amplitude, after the cross point section around channel 25, and the interval from channel 35 to
55. The optimal solution integrates the signal over 56 time samples, near maximal size for smoothing the signal.

Figure 12 visualizes which of the selected channels that are bound in addition to the selected channels. Here, the white
bars are the single selected channels (at full resolution) and the white bars followed by gray bars are the bounded
intervals (reduced resolution). The bars show that the bound channels are the channels located at the peak, after the
cross points and in the mid range frequencies, a possible indication of the significance of integrating the signal where
the spectra have more or less equal derivative and selecting characteristic channels solely at frequencies surrounding
cross points, preserving its discriminative content.

Classification errar; 7 %. # Channels: 39. Time integration: 56 samplesfinterval
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Figure 11: Visualizing channel selection of the optimal solution. The gray bars are the selected channels.
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Figure 12: The white bars show selected channels and the white bars followed by gray bars show bound intervals.

The benchmark results are shown in Figure 13, demonstrating advantage for the methods handling solutions of high
flexibility (blue), and low performance for methods of more restricted solutions (green). The figure shows performance
of the primitive feature selection method forward feature selection (FFS) (keep adding the best feature until no
improvement), FLD, PCA and SVM in combination with the Bayesian linear classifier, meaning the methods are used to
transform the data while classification is performed with the Bayesian linear classifier. For these benchmark methods,
the training data and test data are preconditioned because these methods do not allow for signal processing. For this
reason several parameters were tested and the most efficient processing in terms of low classification error was time
integration of 10 time samples per interval and channel binding over 20 uniformly spread intervals covering the entire
fluorescence spectrum.

Random search is the best solution of 40 000 randomly generated solutions of the exact same coding for channel
selection, channel binding and time integration as the solutions in the genetic algorithm. Compared to FLD as the best
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classical dimensionality reduction method, the solution found with the genetic algorithm is more than three times
more effective in terms of classification error, and compared to random search the same performance is more than
twice as effective.

SVM is performed using a radial basis kernel. A plausible reason for the low performance of this classifier is that SVM is
only directly applicable for 2-categorial problems. Therefore, the classifier has to reduce the multi-class problem to
several binary problems and compare the outcome.

Classification error in percentage
45 - 40%
40 -
35 -

4 27 %

ol ©24%  24%
20 - 18% 17%
15 -
10 - 7%

5 _
o1 0
G &

Figure 13: Relative performance of several data transformations combined with the linear Bayesian normal classifier.

4. CONCLUSION

The results show that simultaneous optimization of feature extraction and feature selection employing genetic
algorithms gives a significant improvement in performance of the biological aerosol classification system and
outperforms all benchmark methods tested. To our knowledge, this is a novel application of feature optimization using
evolutionary algorithms in the field of biological warfare standoff detection. Compared to the raw data classification
error of 40%, the error is reduced to 7% using the genetic algorithm.

The advantage of GA as an optimization method of finding an optimal data transformation is partly due to the flexibility
when coding the decision variable space of the problem. This claim is supported by the good performance of random
search having same solution flexibility as the GA and being more accurate than all other benchmark methods (next
after GA). This may be an indication that the optimization problem of selecting features combined with feature
extraction for spectral data classification is indeed combinatorial with non-independent decision variables, a condition
making it difficult for more established optimization methods to handle.
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