
Robust Web Services in Heterogeneous
Military Networks

Ketil Lund, Espen Skjervold, Frank T. Johnsen, Trude Hafsøe, Anders Eggen
Norwegian Defence Research Establishment (FFI)

{ketil.lund,espen.skjervold,frank-trethan.johnsen,trude.hafsoe,anders.eggen}@ffi.no

Abstract

NATO Network Enabled Capability is first and foremost about achieving better
interaction between the different actors involved in military operations. This implies
more efficient exchange of information. Consequently, the NATO information
infrastructure will consist of a federation of systems, including a plethora of different
information and communication systems, as well as a mix of new and legacy
systems. NATO recommends a service-oriented architecture approach based on Web
services to enable such a federation.

In this paper, we explain how the communication protocols normally used in Web
services are unsuited for disadvantaged and heterogeneous networks. We then
present our prototype proxy, which enables the use of standard, unmodified Web
services across all network types including tactical networks with low data rate and
frequent disruptions. It is designed to work with existing security mechanisms, and
also offers further optimizations in the form of optional plug-ins.

1. Introduction

NATO and the member nations are migrating towards NATO Network Enabled
Capability (NNEC). The NATO policy is to adopt civil standards as far as possible in
order to be able to procure commercial off-the-shelf (COTS) products. International
standards are important for the members to agree on common solutions and for the
industry to compete under equal conditions. Two important recommendations made
in the NNEC Feasibility Study (NNEC FS) [1] are that the information infrastructure
should be implemented as a service-oriented architecture (SOA), and that IP should
be used as a common network protocol in all network types. A SOA is most
commonly realized through Web services, using XML formatted documents. This
technology is defined in a number of standards, and while this standardization work
is still ongoing, Web services remain the most adopted SOA implementation
technology. By providing a standardized way of describing interfaces and data
formats, Web services enable loose coupling of information consumers and
producers, which means that each nation is free to implement clients and services
according to its own requirements and preferences. If the military requirements
cannot be met by civil standards, specialized military solutions must be developed
and issued as NATO standardized agreements (STANAGs).

It is not realistic to expect all NATO nations to adopt the same systems, and there
will always be legacy systems that must be integrated and need to co-exist with

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

contemporary systems. Therefore, the NATO nations must instead agree on
standardized descriptions of interfaces and data formats, and leave it to each nation
to implement the interfaces according to the specifications. By implementing such
clients and services using Web services, and according to the agreed standards and
formats, interoperability between nations is ensured. In addition, the use of Web
services means that using COTS software in many cases is a viable solution,
contributing to reduced cost and development time.

However, Web services use XML, and the XML documents tend to be large, causing
significant overhead. This represents a problem when trying to extend Web services
into tactical networks. In addition, the transport protocol normally used in Web
services implementations, TCP, is not suited for networks characterized by high
delay and frequent disruptions.1 This is of particular importance when considering
users in the field who may only communicate with others over disadvantaged grids,
i.e., tactical communication systems with low data rate, high delay, and frequent
disruptions.

2. Web Services in Heterogeneous Networks

In Web services, all communication is based on sending XML-based SOAP
messages.2 A SOAP message is an "envelope" consisting of a header and a body.
The header contains information related to the handling of the message, such as
addressing and security information, while the body contains the application data.
In regular Web services, SOAP messages are transmitted using the HTTP protocol,
which in turn uses the TCP protocol for reliable transfer of the messages. This
protocol set is not suited for use in disadvantaged grids, and the main question is
how to enable the use of Web services in disadvantaged networks and across
heterogeneous networks. Through our research on Web services in disadvantaged
grids, we have found that this question can be broken down into three requirements
that must be met:

1. Reduce the network traffic generated by Web services
2. Remove the dependency on end-to-end connections
3. Hide network heterogeneity

2.1 Addressing Web Services Overhead

The first problem is related to the amount of network traffic generated by Web
services. It is necessary to reduce both the size of the individual messages, and the
number of messages being transmitted. XML is a rather verbose language, and
tends to produce much larger messages than binary formats do. Using techniques

1 There exist optimizations for TCP, such as TCP Reno and TCP Vegas, that might alleviate
the delay problem. However, these do not handle disruptions. For a comparison of TCP
varieties, see [2].

2 One exception to this is REST Web services, which do not rely on SOAP. However, SOAP is
a better solution with respect to maintaining security, which is why we focus on SOAP Web
services in this paper.

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

such as compression will reduce the size, and thus the bandwidth requirements of
each individual message, but will not reduce the number of messages sent between
nodes. In our work, we have looked at several ways of limiting the number of
messages: 1) employing caching near the clients, which allows for reuse of older
messages; 2) using the publish/subscribe paradigm, where clients subscribe to
information instead of requesting it, allowing the same message to be sent to
multiple clients; and 3) employing content filtering to ensure that only relevant data
is transmitted.

2.2 End-To-End Connections

The second issue is that regular Web services depend on a direct, end-to-end
connection between the client and the service. TCP is connection-oriented, and
designed for wired networks, which means that the control mechanisms are
designed for handling congestion, and much less for handling errors. In tactical
networks with high error rates and high latencies, the congestion control of TCP will
therefore cause sub-optimal utilization of the network due to frequent connection
timeouts. When multiple networks are interconnected (see Figure 1), TCP’s need for
establishing an end-to-end connection increases this problem; each traversed
network adds delay, increasing the risk of connection timeout. Similarly, HTTP is
synchronous, which means that when a SOAP request is sent, the HTTP connection
is kept open until the SOAP response is returned in the HTTP acknowledgement
message. If the connection times out the SOAP response cannot be routed back to
the service consumer.

Figure 1: HTTP and TCP establish end-to-end connections

The obvious solution to this problem is to replace HTTP and TCP with other, more
suitable protocols. However, this requires modifying the application software.
Alternatively, an extra communication layer can be introduced. Within this layer,
hidden from the applications, more suitable protocols can be used (e.g., tactical
protocols such as STANAG 4406 Annex C & E), that are able to withstand long and
variable round trip times, and have little communication overhead.

By implementing this extra communication layer in a proxy solution, standards
compliance can be retained. A proxy is a node in the network between a client and a
server through which the network traffic passes. A proxy can be used for several

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

purposes, such as caching, firewalling and content adaptation. For example, HTTP
proxies have been popular on the Internet for years, since they lower response
times when surfing the WWW. Web services proxies follow the same principle as
HTTP proxies, in that they function as a "middle man" between the provider and the
consumer of the service. However, they do not just understand the HTTP protocol,
they must be able to recognize and process SOAP as well. We have developed an
initial SOAP proxy prototype [3], that we extend further in this paper.

Introducing an extra communication layer means increased flexibility when it comes
to selecting which transport mechanism(s) to use. Additionally, using this approach
means that the end-to-end connection dependency is removed in favor of a per-
hop-behavior. In this case, the application software can often be left unmodified.
However, there is a possibility for information corruption along the route, which may
not be detected without an end-to-end connection. Also, since packets are
acknowledged on a per-hop basis, you do not get end-to-end reliability. These two
issues can be mitigated if the client uses application level solutions for error control
and reliability. For example, using XML signatures will ensure that any modifications
to a SOAP message is detected by the receiver, despite the lack of end-to-end error
control. Furthermore, using for example the WS-ReliableMessaging specification
provides application level acknowledgements, which mean that you do not need an
end-to-end connection on the transport layer to acknowledge delivery. Thus, client
software must use the appropriate Web services specifications to add the desired
level of resilience to their SOAP messages.

2.3 Network Heterogeneity

The third problem arises when heterogeneous networks are interconnected. In
disadvantaged grids it is not uncommon to experience data rates of less than 1000
bits/s [4]. In particular, when several users are using the network simultaneously,
the effective data rate can become very low because resources are shared.
Connecting such networks to faster networks introduces a risk that the gateway
between the networks has to drop packets due to its buffers filling up faster than
the packets can be transmitted out onto the lower capacity network. This problem
can be countered by introducing store-and-forward capabilities into the network. In
addition, a store-and-forward capability can help alleviate the problems that arise
from frequent communication disruptions, which can prevent a message from being
delivered immediately. Having store-and-forward support can ensure that the
message is not dropped and subsequently having to be retransmitted.

When traversing heterogeneous networks, different communication protocols may
be required. This means that a message traversing several networks may have to
use multiple different protocols on its way from sender to recipient. Therefore, it is
necessary to add store-and-forward on the application layer, and not on the
network layer.

3. Delay and Disruption Tolerant SOAP Proxy

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

In our previous work [5], we have focused on how to reduce network traffic through
the use of techniques such as compression and content filtering. We now extend
this work, by introducing response caching and publish/subscribe, to further reduce
network traffic. We have implemented all these mechanisms, combined with the
techniques discussed above, in a proxy prototype.

Our prototype middleware system, called the Delay and Disruption Tolerant SOAP
Proxy (DSProxy), addresses many of the challenges associated with utilizing Web
services in disadvantaged and heterogeneous networks. This proxy is an
implementation of a wide array of principles and mechanisms that tackle different
aspects of these challenges. The proxy software is designed to be modular, and its
functionality can be divided into core functionality and optional plug-ins. The core
functionality includes the basic optimizations that are required to make standard
Web services work in tactical networks, while the optional plug-ins provide further
optimizations such as caching and publish/subscribe support. A key difference
between the two types of functionality is that the core functionality does not rely on
inspecting the SOAP messages that pass through the proxy. The plug-ins, on the
other hand, might require inspecting data, or rely on making small modifications to
clients and Web services.

3.1 Core Functionality

The DSProxy is a proxy for Web services, and is designed to handle all types of
information and traffic flows that are suited to be implemented as Web services.
Some types of data, such as voice flows or other types of information with strict real
time demands are likely to require other forms of optimizations beyond what can be
supported by standard Web services.

The DSProxy system comprises multiple proxy instances deployed in a network, and
forms what is known as an overlay3 network (see Figure 2). The nodes that
constitute the overlay network communicate with each other and exchange
information about their state and the environment in which they operate, in order to
maintain the overlay. The proxy is a lightweight solution that can be deployed
locally on any node in the network. The largest benefit will be achieved if the
proxies are deployed both on nodes that bridge networks, and in any node that
communicates over a disadvantaged grid.

3 An overlay network is a logical organization of nodes that form a virtual network on top of
physical networks.

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

Figure

The DS
by an a
first c
configu
make
dynam
allowin
distribu
shortes
overlay

For the
in case
has mo
is a sm
SOAP
add 11
hop so
due to
slightly
the ove
as few

In ord
networ
in the
consum
betwee
the inf
storing

 2: A DSPr

SProxy ove
administra

case, ther
uration. T
autonomo
ic overlay

ng them t
uted amon
st routes t
y reacts by

ese reason
es where a
ore latency
mall proce
messages
1ms proce
 the SOAP
 the fact t
y longer th
erlay reco
 proxies a

der to ena
rks, the DS
network.

mers and
en the pa
formation
g informat

roxy overl

erlay can b
ator; or 2)
re is a
he second
ous decisio
y, proxies
to be disc
ng the ov
through th
y reconfig

ns, using a
a multi-ho
y compare
ssing pen
 add 3 m

essing time
P header c
that the m
han using
nfiguratio
s possible

able end-
SProxy sys
Instead o
producers
rties by in
 and retra
ion at inte

ay networ

be mainta
) Dynamic
human in
d case wa
ons regar
s advertis
covered b
verlay mem
he overlay
uration to

an overlay
op network
ed to invok
alty per o

ms process
e (this is
can be insp
messages f
 the direct
n algorith
.

-to-end co
stem offer
of relying
s as show
nitiating s
ansmitting
ermediate

rk

ined in on
c configura
n-the-loop
arrants fu
rding over
se their
y neighbo
mbers, wh
. If netwo
 address t

y adds resi
k is stable
king a We
overlay no
sing time,
because t
pected). A
follow the
t route. Ho
m which e

onnections
rs store-an
on end-to

wn in Figu
single-hop
g or re-ro
 nodes, a

ne of two w
ation by th
p respons
urther disc
rlay recon
presence
oring prox
hich use t
rk conditio
these chan

ilience to a
, then goi
b service d

ode hop: I
 whereas
they need
Additionally
 shortest
owever, th
ensures th

s across
nd-forward
o-end conn
re 1, the
 connectio

outing wh
dded robu

ways: 1) M
he proxies
sible for
cussion, b
nfiguring a

by broad
xies. Topo
the inform
ons chang
nges.

a dynamic
ng throug
directly. T
In each pr
compress
 to be dec
y, some la
overlay pa
his effect
hat the me

multiple
d capabilit
nections b
 nodes re
ons betwe
en encou
ustness is

Manual con
s themselv
creating

because th
and routin
dcasting m
ology infor
mation to c
e, then th

c network.
gh the prox
This is beca
roxy, unco
sed SOAP
compresse
atency can
ath, which
will be mi

essages ar

and hete
ties at eac
between in
elay the in
een proxie
ntering fa
 introduce

nfiguration
ves. In the

a usable
he proxies
ng. In the
messages
rmation is
create the
e dynamic

 However
xy overlay
ause there
ompressed
messages

ed in each
n be added
h might be
tigated by
re sent via

rogeneous
ch instance
nformation
nformation
es, storing
ailures. By
ed into the

n
e
e
s
e
,
s
e
c

,
y
e
d
s
h
d
e
y
a

s
e
n
n
g
y
e

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

network. The messages are stored locally, either in memory or on a storage
medium on the node. Once the message is successfully relayed to the next proxy,
the message is removed from the storage.

By eliminating the need for end-to-end connections, one is no longer required to use
the TCP-protocol for information exchange; one is free to choose more suitable
transport protocols instead. As illustrated in Figure 2, SOAP is used as a pervasive
message format, but the underlying protocols can be replaced on a per-hop basis
depending on the network characteristics and the quality of specific links between
the DSProxy nodes. This feature, together with the store-and-forward capabilities,
enables efficient traversal of multiple heterogeneous networks, while hiding the
underlying heterogeneity from the end users. For any particular Web services
invocation, the request may traverse a series of different networks, dealing with
different link qualities and utilizing different transport protocols. By utilizing
compression, SOAP and XML-based information exchange is made possible even in
networks with severely restricted data rates. Our prototype uses GZIP compression,
but due to the modular design of the proxy, support for additional algorithms can be
included later.

A key concern is standards compliancy, and our prototype interoperates with COTS
Web services software without modification. The system accepts regular incoming
Web services invocation requests over HTTP and TCP, and is able to relay such
requests to proxies, and finally to Web services endpoints, as shown in Figure 2.

The TCP connection from the client is terminated at the first DSProxy, meaning that
the TCP request from the client is acknowledged immediately. This allows the TCP
connection between the client and the first proxy to be kept open for the entire
duration of the invocation process, and it will not time out, regardless of how long it
takes for the service to respond. Once the response message is available, it is
returned to the client using the same connection.

By placing the first proxy as close to the client as possible, preferably on the same
physical machine/device, challenges associated with TCP and disadvantaged grids
are avoided. This deployment scheme ensures store-and-forward capabilities
throughout the network. Likewise, for the last communications hop, between the
last proxy in the chain and the Web service, standard HTTP and TCP is used,
allowing interoperability with existing Web services without requiring any
modifications. By simply modifying the URLs used by clients to invoke Web services,
the communication is routed through the overlay network. Any instructions to the
proxies are specified as extra parameters added to the URL. Apart from the
modified URL, both Web services clients and services are unaware of the presence
of the DSProxy system.

3.2 Security

Security is a key concern in all military networks, and the increased information flow
between systems that is central to the NNEC vision demands flexible security
solutions. Current security policies tend to require IPsec or link layer cryptography,

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

while Web services security mechanisms can provide end-to-end application layer
security.

The DSProxy core functionality is designed to work with existing security
mechanisms, ensured by the core functionality of the proxy being content agnostic.
The proxies will not parse, inspect or interpret the body parts of SOAP messages,
which allows for end-to-end security through encryption. Because the information
needed to route the messages is located in the SOAP header, there is no need to
decrypt the messages being transported. If a Web service client relies on encrypting
the entire SOAP message, a new SOAP envelope can be wrapped around the original
message, placing routing information and DSProxy parameters within the
unencrypted SOAP header. This is done by the first proxy in the chain, which gets
this information from the modified invocation URL provided by the client. Because
the SOAP header is unencrypted, the system remains compatible with the various
Web services security related standards (see [6] for a survey of these). Also,
because the DSProxy system does not require any special behavior by protocols
part of the IP stack, it can also be used with lower layer security mechanisms, such
as IPsec and link layer cryptography.

While the DSProxy core functionality works together with end-to-end security
solutions, the optional advanced functionality described below, such as response
data caching and the publish/subscribe mechanism, require all intended recipients
to be able to decrypt the response message targeted towards one specific client.
Because COTS Web services are unaware of these modes of operation, they will
encrypt a given response message using the key designated for the client
responsible for the actual invocation. In order to make this work with multiple
clients, one should rely on group keys distributed to all intended recipients.

3.3 Optional Plug-ins

In many types of tactical scenarios it is a common situation that multiple
information consumers require the same information, provided by the same
information producers. This can be applications such as blue force tracking, weather
forecasts or sensor data. In order to optimize bandwidth requirements for such
scenarios, the DSProxy system supports response data caching, which offers a kind
of economy of scale when serving multiple clients requesting the same information.
By caching response data messages at multiple nodes in the network, clients may,
depending on the degree of time-criticality of the information, suffice with cached
response data. This means that, instead of having the chain of proxies relay the
Web services invocation message all the way to the actual Web service and invoking
it, a proxy along the way may determine that it has a valid cached response for the
request, and return it to the client. Because caching behavior is specified by each
client by appending a parameter to the Web service endpoint URL, the client is in
control of if and when cached response data will suffice, and how old these
messages may be. While a client may request response data caching on a per
request basis its availability is not guaranteed, because the caching behavior is
configured for each DSProxy. This configuration option is critical for proxies running

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

on limited devices, which may lack the system resources needed for extensive
caching.

For contexts in which multiple consumers subscribe to services expected to produce
response messages that change very little over time, great size and bandwidth
reductions can be achieved by only sending the message differences between
proxies. Once a DSProxy has received a response message from another instance, it
is able to reconstruct the next response message using only the difference between
the messages. However, this requires the proxies to keep state information, since
they need a previous message to deduce the new message from using the
differential information. An example of such a scenario is when multiple consumers
subscribe to a blue force tracking service. While the messages produced by the Web
service in response to invocations comprise HTTP headers, SOAP headers, and SOAP
bodies, all that may have actually changed between two subsequent responses may
be the units’ location coordinates. Experiments have demonstrated that such
messages containing hundreds of bytes of information can be reconstructed without
loss using differences consisting of merely tens of bytes.

While standard Web services are based on the request/response paradigm, this is
not always the best choice for disadvantaged grids. For time-critical information,
clients have to poll Web services frequently, which may lead to wasted polls and
added network traffic. In such situations, it makes sense to have the information
producers push the information to the consumers as soon as it becomes available.
The DSProxy system enables such publish/subscribe mechanisms to be used
together with standard Web services software, requiring only minimal modifications
to be made to the clients [7]. In order to subscribe to a Web service, a parameter is
added to the URL before routing the request through the overlay network. This
parameter instructs all proxies along the invocation path to treat the request as a
subscription, and the last proxy in the chain initiates a polling cycle to the actual
Web service (see Figure 3). This proxy sends an ordinary request to the Web service
at regular intervals, and compares the response to the previous response, in order
to see whether the data has changed.

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

Figure 3: Standard, request/response-based Web services client and server
engaging in publish/subscribe communication using the DSProxy overlay network

Placing the last proxy on the same physical machine as the Web service, means that
polling only burdens the internal machine resources, and no traffic is transmitted
across the network. Once this proxy discovers that new information is available
(i.e., the response from the Web service has changed), it notifies its subscribing
proxies by initiating an outgoing connection. Once the information arrives at the
first proxy in the chain, it is made available for the client to retrieve. As standard
Web services clients lack the ability to accept incoming connections, the client is
required to poll the first proxy regularly, to obtain updated information. This
typically involves wrapping the Web services invocation calls in a loop structure.
This loop must also handle when the poll returns without new data. Again, placing
the first DSProxy on the client machine avoids added network traffic. As with
response data caching, economies of scale are achieved when several clients
subscribe to the same information, since one proxy can subscribe on behalf of many
clients, as well as on behalf of other proxies.

Publish/subscribe specifications like WS-Notification and WS-Eventing are emerging,
but they are not yet in widespread use, compared to regular Web services. WS-
Eventing is supported by the DSProxy, and support for WS-Notification is under
development. However, the DSProxy publish/subscribe mechanism works with non-
publish/subscribe Web services, allowing already existing software to utilize
publish/subscribe.

3.4 Field Trials

Our proxy was tested in a series of live field trials at Combined Endeavor in
September 2009, with promising results. During these experiments, the DSProxy
system was deployed in a small combined setup consisting of four networks that
were interconnected using IP on the network level and the proxies on the

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

application level. Figure 4 shows the network setup used during these experiments,
where we interconnected the Norwegian and NATO C3 Agency (NC3A) networks.
Interoperability between the nations was provided using the tactical
communications standard (TACOMS) for federated networking, and the common
Region C (RG C) Combined Endeavor backbone. The DSProxy was deployed in the
gateways between the networks, and on each individual node within the Norwegian
MANET. This deployment meant that not only did the proxy ensure successful
information exchange between the networks, but it also enabled Web services
communication within the MANET, where most of the tactical communication took
place. This meant that the tactical users did not have to concern themselves with
whether or not they were connected to the rest of the network when sending
information.

Figure 4: Combined Endeavor experiment setup

5. Related Work

In [8], a solution employing proxy servers for disruption tolerant networking (DTN)
is presented. This work uses proxies to translate from applications’ native use of
end-to-end transport protocols to network level DTN messages. This solution allows
standard TCP and UDP software to take advantage of DTN without modification.
However, the solution relies on network level DTN support.

Faucher et al. [9] introduce an experimental Web services proxy aiming to
overcome the challenges associated with disadvantaged grids. Their proxy handles
SOAP sent over HTTP/TCP. The authors argue that XML compression will enable the
proxy to perform better in tactical networks, but they have not implemented this.

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

Metzger et al. [10] have created a proxy adding delay tolerance to the XML-based
Jabber protocol. Jabber is mainly used for chat, but a SOAP extension which allows
Jabber to carry Web services traffic exists. Their prototype system does not support
dynamic joining of group members, limiting its use to pre-configured static users.

6. Summary

In this paper we have discussed the importance of Web services for realizing NNEC.
Web services, being based on standards, are central to the NNEC vision because the
technology provides interoperability between applications - it enables the NATO
nations to interconnect their command and control systems and share information
in a functional and cost-efficient manner.

Further, we have highlighted issues related to adopting Web services technology in
military networks, and identified ways of mitigating these issues. In particular, we
have introduced a network of proxies that add delay tolerance to SOAP, in addition
to employing other overhead-reducing measures. We have implemented a prototype
solution, and shown that it makes it feasible to employ Web services in tactical
networks in a field trial.

At Combined Endeavor 2009, we have shown that our prototype enables the use of
unmodified Web services software across heterogeneous, tactical networks, and that
it also can augment the functionality of such Web services by introducing support
for subscription based services.

7. References

[1] P. Bartolomasi, T. Buckman, A. Campbell, J. Grainger, J. Mahaffey, R. Marchand,
O. Kruidhof, C. Shawcross, and K. Veum, “NATO Network Enabled Capability
Feasibility Study,” Version 2.0, October 2005.

[2] S. Papanastasiou, “Investigating TCP Performance in Mobile Ad Hoc Networks,”
VDM Verlag, May 2008.

[3] E. Skjervold, T. Hafsøe, F. T. Johnsen, and K. Lund. “Delay and disruption
tolerant web services for heterogeneous networks,” IEEE MILCOM, Boston, MA,
USA, October 2009.

[4] J.-C. St-Jacques, “Challenges for a distributed collaborative environment
functioning over mobile wireless networks,” NATO IST-030/RTG-012 Workshop on
Role of Middleware in Systems Functioning over Mobile Communication Networks,
2003.

[5] K. Lund, A. Eggen, D. Hadzic, T. Hafsøe, and F. T. Johnsen, “Using Web Services
to Realize Service Oriented Architecture in Military Communication Networks,” IEEE
Communications Magazine 46(10), October 2007, pp 47-53.

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

[6] N. A. Nordbotten, “XML and Web Services Security,” FFI-report 2008/00413,
http://rapporter.ffi.no/rapporter/2008/00413.pdf

[7] E. Skjervold, T. Hafsøe, F. T. Johnsen, and K. Lund, “Enabling Publish/Subscribe
with COTS Web Services across Heterogeneous Networks,” 4th International
Workshop on Architectures, Concepts and Technologies for Service Oriented
Computing (ACT4SOC 2010), Athens, Greece, July 2010.

[8] K. Scott, “Disruption tolerant networking proxies for on-the-move tactical
networks,” In IEEE MILCOM 2005, Vol 5, October 2005, pp 3226 — 3231.

[9] R. Faucher et al., “Guidance on proxy servers for the tactical edge,” The MITRE
corporation, MITRE Technical Report, MTR 060175, September 2006.

[10] R. Metzger and M.C. Chuah, “Opportunistic information distribution in
challenged networks,” CHANTS '08: Proceedings of the third ACM workshop on
Challenged networks, San Francisco, California, USA, 2008, pp 97 – 104.

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

KETIL LUND (ketil.lund@ffi.no) is a scientist at the
Norwegian Defence Research Establishment (FFI), where he
has been working since 2006. His research interests include
Service Oriented Architectures, Web Services, Quality of
Service, and middleware. At FFI he is currently working
within the area of secure pervasive SOA. He received his
Ph.D. in informatics from the University of Oslo.

ESPEN SKJERVOLD (espen.skjervold@ffi.no) is a research
scientist at the Norwegian Defence Research Establishment
(FFI), engaged in theoretical research and practical
development in areas such as distributed systems and
Service Oriented Architecture. Skjervold is also a part of
FFI’s team of professionals aiming to support and refine
FFI’s common systems design and development practices.
Skjervold holds a master’s degree in Distributed Systems
and Computing (2007, MSc DISC) from Brunel University of
London.

FRANK T. JOHNSEN (frank-trethan.johnsen@ffi.no) received
his Cand.scient. degree from the University of Oslo (UiO) in
2002. Following this he has been working with networks
and distributed systems at UiO, until he started work as a
scientist at the Norwegian Defence Research Establishment
(FFI) in 2006. At FFI he is currently working within the area
of secure pervasive SOA. His research interests include
Web Services, Quality of Service, and middleware.

TRUDE HAFSØE (trude.hafsoe@ffi.no) is a scientist at the
Norwegian Defence Research Establishment (FFI), where
she has been working since 2006. Before coming to FFI she
worked with content distribution systems at the University
of Oslo (UiO). She received her Cand.scient. degree from
UiO. Her research interests are Web Services, Quality of
Service, and network protocols.

ANDERS EGGEN (anders.eggen@ffi.no) received his M.Sc.
degree in computer science from the University of Oslo in
1991. Since 1992 he has been employed by the Norwegian
Defence Research Establishment (FFI), where he is currently
a principal scientist. He has worked on many aspects of
communication and application protocol evaluation and
design, as well as security and SOA solutions for military
systems. He has contributed significantly in technical
standardizations activities, and has been editor to both IETF
and NATO standards.

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

Figure 1: HTTP and TCP establish end-to-end connections

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

Figure

 2: A DSPrroxy overl

ay networ

rk

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

Figure 3: Standard, request/response-based Web services client and server
engaging in publish/subscribe communication using the DSProxy overlay network

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

Figure 4: Combined Endeavor experiment setup

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/MCOM.2010.5594680

