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Abstract:  In this paper a new analytic 
decomposed transfer function (DTF)  for 
spaceborne SAR (Synthetic Aperture Radar) 
processing is calculated using the stationary 
phase approximation and Taylor’s series 
expansion. The DTF copes with large Doppler 
centroid variations and executes range cell 
migration correction, secondary range 
compression, azimuth compression and higher 
order effects. A fourth-order (DTF4) and a fifth-
order (DTF5) algorithm have been implemented 
using segmented block processing.  It is shown 
that the DTF4 yields high quality 3-look target 
responses at azimuth resolution 0.3 m and range 
resolution 0.5 m at low squint (yaw=0.3º) for X-
band. At higher squint (yaw=7.5º)  the DTF5 has 
to be used to obtain adequate image quality. 

 

                          I.   INTRODUCTION      

    In [1] it was stated that the hyperbolic phase 
history used for airborne SAR is not sufficient for 
processing of spaceborne SAR data with azimuth 
resolution of some decimeters.  This was later 
confirmed by several papers [2,3,4]. The EETF4 
(Extended Exact Transfer Function fourth-order) 
algorithm was originally developed in [5]  using the 
stationary phase approximation (SPA) for 
calculation of the 2-D transfer function.  The 
azimuth filter in this algorithm has recently been 
selected for KOMPSAT-6 SAR processing [6].  In 
[7] the EETF4 was adapted to spaceborne bistatic 
SAR processing. The EETF4 algorithm was able to 
cope with range variations in the Doppler 
parameters, however, some degradation was 

observed with increasing squint because of 
invariable parameters for the range cell corrections 
within one block. The EETF4 algorithm was not 
decomposed as  they did in [8] where the 2-D 
transfer function of  fourth-order  was elegantly 
decomposed in components that identify the 
azimuth modulation (AZ), range cell migration 
(RCM), the secondary range cell migration (SRC) 
and higher order terms (residual phase) (HIGH). In 
the algorithm in [8], a fourth-order phase history 
based on the sum of two hyperbolic phase histories 
was introduced for a bistatic SAR. They used the 
method of series reversion (MSR) to calculate the 
stationary point instead of  solving  polynomial 
equations as we do in this paper. In [9] they 
combined the Doppler range model from [5] and 
the MSR from [8] to avoid complicated expressions 
for the exact transfer function. In this approach 
they assume small Doppler centroids and variations 
in range. In [2] they propose a velocity scaling 
algorithm (VSA) which performs better than the 
traditional hyperbolic range model. They ignore the 
third- and fourth-order terms when they do the 
stationary phase approximation. Another approach 
for processing very high resolution spaceborne 
SAR was presented in [4]. They use a numerical 
approach resembling the motion compensation for 
airborne SAR  in order to cope with non-hyperbolic 
azimuth phase history. 

    Most of the algorithms developed for very high 
resolution SAR assume that the platform is yaw 
steered and assume a small Doppler centroid and a 
slight variation over range. In [10] they compared 
three well known algorithms:  the range-Doppler 
algorithm (RDA) [11], the chirp-scaling algorithm 
(CSA) [12]  and the monochromatic  wavenumber-
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domain algorithm (MWA) [13]. They found that 
the MWA was a good candidate for block 
processing when the Doppler centroid variation 
over range is large.   

     The algorithm proposed here uses fourth-order 
and fifth-order azimuth phase history and solves 
analytically polynomial equations to calculate the 
2-D transfer function. We decompose the phase 
function by Taylor’s series expansion of the 
stationary point solution. We identify the same 
components in the decomposed function as they did 
in [8], and we call the algorithm the Decomposed 
Transfer Function of fourth-order (DTF4)  and 
fifth-order (DTF5). The 2-D transfer function is 
calculated as in [5]  for the fourth-order azimuth 
phase history and for the fifth-order phase history 
in a similar way. In the last case a fourth-order 
equation has to be solved instead of a third-order 
equation in each point. The expressions for the 
transfer function are more complex than for most of 
the algorithms in the literature, however, the ability 
to process azimuth resolution down to 10 cm or 3-
look 30 cm resolution and block processing with 
large Doppler centroid variations should be an 
advantage.  The algorithm may be well suited for 
parallel computing and has been implemented with 
8 cores using OpenMP library in Windows. 
However, an analysis of the computational 
efficiency has so far not been done. The DTF4 or 
DTF5 could be implemented for staring spotlight 
processing of  TerraSAR-X data where non-
hyperbolic phase history may be needed  [4]. 

     This paper is organized as follows. In Section 
IIA the Exact Transfer Function from [5]  is briefly 
reviewed. The calculation of the DTF4 is shown in 
Section IIB. In Section IIC the calculation of the 
fifth-order ETF is done and the calculation of 
DTF5 is shown in Section IID. We present the 
implementation by showing the flow diagram of 
the algorithm in Section IIE. Simulation examples 
and the achieved performance of the DTF 
algorithm are given in Section III. Finally, in 
Section IV novel properties of the algorithm are 
compared with other state-of-the-art algorithms. 

 

 

 

 

 II   FOURTH-ORDER AND FIFTH-ORDER DTF 
ALGORITHM   

A.  Exact Transfer Function (ETF) 

If we omit some constants the exact transfer 
function (ETF) can be written as in (38) in [5]  
   

( ) ( ){ } ( )*, ; exp expETF r a r r r aH R j t j tω ω j = F    

                                                                              (1) 

( ){ }expr r rj tΦ    is the Fourier transform of the 

transmitted signal and rt is the range time. R is 

slant range and  the phase function ( )*
atϕ  in (1) is 

evaluated at the stationary point solution *
at     

                              

 ( )* * *22 ( ) r
a a a at R t t

c
ωπϕ ω

λ
 

= − − 
 

          (2)                                       

where ( )aR t is the range migration as a function of 
the azimuth time at . aω and rω are the azimuth and 
range frequency, respectively.  In (2) there is a 
minus sign in the parenthesis instead of a plus sign 
as in [5]. c  is the speed of light and λ  is the radar  
wavelength.  In [8] they decomposed the phase 
function in the 2-D spectrum. To better understand 
the decompositions to be derived below the reader 
may review page 16 in [8]. In a similar way  
we decompose the azimuth phase function *( )atϕ  
above in the following manner 

        
( ) ( ) ( )
( ) ( )

*
00 ,

, ,
DTF a AZ a RM r a

SRC r a HIGH r a

t kCϕϕ  ω ϕ ω ω

ϕ ω ω ϕ ω ω

= + + +

+
        

                                                                 (3) 

where 2k π
λ

= and 00C  is a constant which shall be 

defined later. ( )AZ aϕ ω  is the azimuth modulation 

term, ( ),RM r aϕ ω ω  represents the range cell 

migration, ( ),SRC r aϕ ω ω  is the secondary range 
cell migration and the last term ( , )HIGH r aϕ ω ω
represents higher order terms. We shall in this 
paper decompose the phase function in (3) with 
fourth-order and fifth-order azimuth phase 
histories. 
  

B. Calculation of  Fourth-Order DTF                            
 
     If we model the range migration ( )aR t  with a 
polynomial function in (2), the phase function in 
the fourth-order ETF can be written 
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( ) ( ) ( ) ( )( )2 3 4* * * * *
4 1 2 3 4

*

2

2

ETF a a a a a

r
a a

t c t c t c t c t

t
c

ϕ

ωπ ω
λ

= + + + ⋅

 
− − 

 

                                                                                                                                                                             

                                                                              (4) 
where 1c , 2c , 3c  and 4c are parameters defined in 
(10). We decompose this phase function as 
      

( ) ( ) ( )
( ) ( )

*
4 00 4 4

4 4

,

, ,
DTF a AZ a RCM r a

SRC r a HIGH r a

t kCϕϕ  ω ϕ ω ω

ϕ ω ω ϕ ω ω

= + + +

+
                                            

                                                                (5) 
and write the DTF4 as    
                       

( ) ( ){ }
( )

4

*
4

, ; exp

exp

DTF r a r r r

DTF a

H R j t

j t

ω ω

j

= F ⋅  

  


           (6)                        

We insert (5) into (6) and get 
( ) ( ){ }

( ) ( )
( ) ( )

4

00 4 4

4 4

, ; exp

,
exp

, ,

DTF r a r r r

AZC a RCM r a

SRC r a HIGH r a

H R j t

kC
j

ω ω

j ω j ω ω

j ω ω j ω ω

= F ⋅  

 + + + 
   +   

0

                                                                            

                                                                             (7) 
The sum of the of the decomposed phase functions 
in the exp  function in (7) appears as a product of 
decomposed transfer functions       
         

( )
( ) ( ) ( )
( )

2
4 2 00

4 4 4

4

, ; exp( / 2 ) exp( )

; , ; , ;

, ;

DTF r a r

AZC a RCM r a SRC r a

HIGH r a

H R j b jkC

H R H R H R

H R

ω ω ω

ω ω ω ω ω

ω ω

= − ⋅

⋅ ⋅ 
 
⋅  

                                                                            (8) 
In (8) we have also used a linear chirp with rate 2b  
as the transmitted signal in (7).  
     Now we shall find the expression for the 
different terms in the fourth-order decomposed 
function. Then we must find the stationary point of  
derivative of  (4) using the azimuth time at  
                              

( )2 3
1 2 3 4

22 2 3 4 0r
a a a ac c t c t c t

c
ωπ ω

λ
 

+ + + ⋅ − − = 
 

                                   

                                                               (9) 
where     

1 12
c aλ
= −     2 22

c aλ
= −     3 32

c aλ
= −     

4 42
c aλ

= −                                                         (10) 

1a  is the Doppler centroid, 2a  is the Doppler 
frequency rate, 3a  is the third Doppler parameter 
and , 4a  is the fourth Doppler parameter. Assume 
that 2 3 0q p+ < , then there are three stationary 
point solutions ((66-68) in [5])                        

* 3

44a

c
t y

cδ= −                                                    (11)                                        

where    0,
3 3

orπ πδ = −  and                    

 
3

1 212 cos cos ( )
3

y p p qδ δ
−−

  
= − − − ⋅ +      

      (12)                                 

We introduce a variable x  defined by               
                                                          

3
2( )x p q

−
= − − ⋅                                                   (13) 

 
where p  and q are given in (63, 64) in [5]) 
                                 

2
3 2

4 4

1 1
16 6

c c
p

c c
 

= − + 
 

                                       (14)                                                             

         
3

3 2 31
2

4 4 4
4

1 1
8 64 16 216

a

r

c c cc
q

c c c c
c

ω
ωπ

λ

 
= + − − 

   − 
 

                                                                                                          

                                                                            (15) 
We approximate x as 
                                      

2 2
2 1 2 2 a r a

p q
x p q p q

ck
ω ω ω= + +                          (16)                              

where 
                                 

3
3 2 31

1 2
4 4 4

1 1
8 64 16

c c cc
q

c c c
 

= + − 
 

                          (17)                   

2
432

q
c

λ
π

= −                                                      (18)                            

3/2
2 ( )p p= − −                                                     (19)     

For 2 3 0q p+ >  the solution is given by Cardano’s 
formula ((65) in [5]) instead of (12). We omit the 
calculations here. We  take the third derivative of 
(12) and take a third-order Taylor’s series 
expansion of yδ                    

( ) ( )

( )

2
0 1 2

3
3

1( )
2

1
6

m m

m

y x y y x x y x x

y x x

δ = + − + − +

−
       (20)             

We define a point mx where the Taylor polynomial 
is generated                                               

max min( ) / 2mx x x= +                                           (21)      
where maxx  and minx are the min and max values of 
x . The coefficients of (20) are then given by 
                                        

( ) ( )1
0 1

1cos cos
3m my y x p xδ δ− = = +  

          (22)                                                                 
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( ) ( ) ( )
1

' 1 2
1 1

1 1cos cos 1
3 3m m my y x p x xδ δ −− = = + −  

                                                                            (23)                                                             
 
                

( )

( )

( )
( )

( )

1

12

''
2 1

1

3
2 2

1 1cos cos
3 3

11
13 sin cos
3

1

m

m

m

m

m

x

x
y y x p

x

x x

δ

δ

δ

−

−

−

−

  − + ⋅    
 − + 

= =    + ⋅   
 
 − 

                                                                                                                                                      

                                                                          (24) 
                                                    

( ) ( )'''
3 1

1 ' ' ' '
3my y x p A B AB C D CDδ= = + + +                    

                                                                          (25)                                                                   
                                        

( ) ( )
1

1 2 2
1 1' sin cos 1
9 3 m mA x xδ

−−   = + − −     
                               

                                                                          (26) 
                                                                            

( ) 22' 2 1 mB x x
−

= −                                             (27)                                    
                                                        

( ) ( )
3 5

2 22 2' 1 3 1m mC x x x
− −

= − − −                          (28)                                                                              

( ) ( )
1

1 2 2
1 1' cos cos 1
3 3 m mD x xδ

−−   = + − −     
                

                                                                         (29)                        
If we put the approximation for x  in (16) into (20) 
it can be shown that 
                                    

2 2 2 2
0 1 2 3 4 5

3 3 2 3 3 3
6 7 8 9

( ) a r a a r a r a

a r a r a r a

y x T T T T T T

T T T T
δ ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω

= + + + + +

+ + + +
                                                                         (30) 

We define 1 2 1x p q= , 2 2 2x p q=  and 2 2
3

p q
x

ck
=

and write (16) as 
                                          

1 2 3a r ax x x xω ω ω= + +                                     (31)                            
It can be shown that the T coefficients in (30) are  
given by the expressions in (70)-(79). We have 
found that we can omit some of the terms in (30) to 
obtain adequate image quality. We retain 

0 1 2 3 6, , , ,T T T T T  and insert (30) into (11) and then 
insert (11) into (4). The phase function of the DTF4 
can be written as (5) 

     
( ) ( ) ( )
( ) ( )

*
4 00 4 4

4 4

,

, ,
DTF a AZ a RCM r a

SRC r a HIGH r a

t kCϕϕ  ω ϕ ω ω

ϕ ω ω ϕ ω ω

= + + +

+
     

                                                                        (32) 
where the different terms are given by 

                  
( ) ( ) ( )

( )

2 3
4 01 0 02 1 03 3

12
4

04 6 0
5

( , )AZ r a a a a

n
a n a

n

kC T kC T kC T

kC T kC

ϕ ω ω ω ω ω

ω ω
=

= − + − + − +

− +∑
                                                                        (33)                
            

( ) ( ) ( )

( ) ( )

4

1 1 1 2
00 11 01 12 02 2

10 12
1 1

1 0 0
3 11

( , )RCM r a

a a

n n
n n a n a r

n n

c C kC c C kC c C T

kC c C c kC

ϕ ω ω

ω ω

ω ω ω

− − −

− −

= =

=

 − + − + − −
+ − − 


∑ ∑
                                                                       (34)                       

( ) ( )
4

8 10
1 1 1 2

11 2 1 1
2 9

( , )SRC r a

n n
a n n a n a r

n n
c C kC c C c C

ϕ ω ω

ω ω ω ω− − −

= =

=

 − + − −  
∑ ∑

                                                                       (35) 

( )

( )

( ) ( )
( )

1 2
4 22

6
1 1 7 1 8 3

3 2 27 28
3

1 3 1 4 1 5 1 6 4
33 44 34 35 36

1 4 5
44

( , )HIGH r a a

n
n n a a a r

n

a a a a r

a r

c C

kC c C c C c C

c C kC c C c C c C

c C

ϕ ω ω ω

ω ω ω ω

ω ω ω ω ω

ω ω

−

− − −

=

− − − −

−

= − +

− − − 

 + − + − − − +
 − 

∑

                                                                      (36) 
where (33) represents the azimuth modulation 
(AZ4) of the DTF4, (34) is the range cell  
migration  (RCM4), (35) is the secondary range 
cell migration (SRC4) and (36) is higher  
order effects (HIGH4). The mnC - coefficients are 
given by the expressions in (80)-(114). 

 
C. Calculation of the Fifth-Order ETF 

 
      The phase function of the fifth-order ETF is 
given by 
   

( ) ( ) ( ) ( ) ( )2 3 4 5* * * * * *3 52 4
5 1

*

2 3 4 5

2

ETF a a a a a a

r
a a

a aa a
t a t t t t t

t
c

ϕ λ

ωπ ω
λ

 
= + + + + ⋅ 

 
 

− − 
 
                                                                     (37) 
where 5a is the fifth Doppler parameter. We 
decompose this phase function as 
 

( ) ( ) ( )
( ) ( )

*
5 00 5 5

5 5

,

, ,
DTF a AZC a RCM r a

SRC r a HIGH r a

t kCϕϕ  ω ϕ ω ω

ϕ ω ω ϕ ω ω

= + + +

+
     

                                                                    (38) 
Now we shall find the expression for the different 
terms in the decomposed function of fifth-order. 
Then we must find the stationary point of the 
following equation 
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( )2 3 4
1 2 3 4 5

22 2 3 4 5 0r
a a a a ac c t c t c t c t

c
ωπ ω

λ
 

+ + + + ⋅ − − = 
 

                                                                  (39)
  
This is a fourth-order equation,  and analytical 
solutions exist. The Norwegian mathematician  
Niels Henrik Abel proved in 1824 that the fifth-
order polynomial  equation has no general  
algebraic solution like the second-, third- and 
fourth-order equations, hence,  if we want  a  
sixth-order phase history, numerical methods must 
be used to solve a fifth-order equation if  
we want to find the stationary point . To solve the 
quartic  equation in (39) we use the  
solution given in  Wolfram  Mathworld  [14].  We 
rewrite (39) as 
                         

4 3 2 0Z AZ BZ CZ D+ + + + =                    (40)                                             
where we use Z as the unknown instead of at  and 
define the coefficients   

           4

5

4
5
c

A
c

=  , 3

5

3
5
c

B
c

=  , 2

5

2
5
c

C
c

= , 

1

5
5

5 210

a

r

c
D

c
c

c

ω
ωπ

λ

= −
 

− 
 

                         (41) 

The quartic equation in (40) can be transformed to 
a cubic equation 
           

3 2 2 2( 4 ) (4 ) 0Y BY CA D Y BD C A D− + − + − − =  
                                                                    (42) 
We define 

1a = , b B= − , ( 4 )c CA D= − ,
2 2(4 )d BD C A D= − −                              (43) 

The solutions of the cubic equation in (42) are  
given by [15] 
 
If  2 30 q p≤ +    
                                                                               
Y u v= +                                                     (44)                  
                                        

1
1 3

2 3 2( )u q q p
 

= − + + 
 

                             (45)                                                                                                

1
1 3

2 3 2( )v q q p
 

= − − + 
 

                              (46)               

if   2 3 0q p+ <                         
3

1 212 cos cos ( )
3

Y p p q δ
−−

  
= − − − ⋅ +      

         

                                                                   (47) 
where  

                                                                        

0,
3 3

orπ πδ = −                                             (48) 

                                                                      
3

2

1 1
27 6 2

b bc dq
a aa

 = − + 
 

                            (49)                  

                                                           
21

9 3
b cp
a a

 = − + 
 

                                       (50) 

The solutions of the quartic equation in (40) are  
then given by 
                                                                        

1,2
1 1 1
4 2 2

Z A R F= − + ±                              (51)                                                                                                         

                                                                

3,4
1 1 1
4 2 2

Z A R E= − − ±                              (52)

                                                   
1
321

4 3
bR A B y = − − + 

 
                             (53)         

where                                                                          

3
by Y= −                                                     (54)                           

where Y is the solution of the cubic equation in 
(87)  and  

( )
1

1 2
1 2F F F R−= +                                       (55)                                                                       

( )
1

1 2
1 2E F F R−= −                                        (56)               

2 2
1

3 2
4

F A R B= − −                                     (57)              

( )3 1
2

1 4 8
4

F AB C A R−= − −                         (58)                         

The minimum of the four solutions appear to be the 
physical reasonable solution for the  
stationary point 
                                                                 

*
1 2 3 4min( , , , )at Z Z Z Z=                              (59)             

This solution is put into (37) to calculate the fifth-
order ETF (ETF5). We have implemented  
an EETF5 algorithm in the same way as the EETF4 
algorithm was implemented in [5]. 
 

D.  Calculation of Fifth-Order DTF   
                                                      

We see from (41), (43), (49) and (50) that both p  
and q  are functions of rω  and aω . We  
insert the cubic solution (47) into (54) and expand a 
Taylor’s series in two dimensions 
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00 10 0 01 11

2 2 3
20 02 30
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03 21

2
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m m

y y y q q y p p y q q p p

y q q y p p y q q
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y q q p p
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+ − + − + − +
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− −
                                                                    (60) 
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                                                                  (61) 
3
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The Taylor’s series expansion is generated at the 
point  ( , )m mq p .  Now, let ( )z y  be one of the 
solutions 1 2 3, ,Z Z Z  or 4Z . We then make a 
Taylor’s series expansion of ( )z y  
                   

2 3
0 1 2 3

1 1( ) ( ) ( ) ( )
2 6m m mz y z z y y z y y z y y= + − + − + −

                                                                  (63)  
  where my is the point where the series is 
generated. When we insert (60)  into (63) we get   
after a very tedious calculation  that the stationary 
point * ( )at z y=  is a polynomial  function  
of the two variables aω and rω , hence,  the  
decomposed phase function of fifth-order  
(DTF5) can be written as 
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where  (65)-(68) correspond to (33)-(36)  for the 
DTF4. The decomposed transfer  
functions  for  DTF5 are generated in the same way 
as for DTF4 in (7).We don’t give the  
expressions  for  the mnC -coefficients because they 
are much more complicated than for the  
fourth-order case and  would take many pages to 
write down here. However, the equations  
above have been implemented to do DTF5 
processing and the results will be shown in Section 
III. 
 

E. Implementation 
 
Fig.1 shows the flow diagram for the DTF4 
algorithm. The first box indicates that the raw data 
are divided into main blocks followed by a 2D FFT 
on each block. We shall now distribute the 
decomposed transfer functions in (8) in the boxes 
in the flow diagram. The complex conjugate of  a 

linear range chirp, 
2

2/2rj r be ω− ,  and the higher order 
transfer function *

4 ( , , )HIGH r a mH Rω ω  are 
multiplied with the raw data in the 2-D frequency 
domain. We use a linear range chirp here , 
however, the transmitted range signal may be of 
arbitrary form. Then the secondary range 
correction, *

4 ( , , )SRC r a mH Rω ω , and the bulk 

azimuth compression filter, ( )*
4 ,AZ a mH Rω  , are 

multiplied in this domain followed by an inverse 
FFT in range. All of these transfer functions are 
calculated at the center of the main block, mR . We 
could have done the range cell migration correction 
in the time domain. However, we want to use the 
decomposed functions in the frequency domain. 
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Fig. 1   Flow diagram of the DTF4. The flow diagram for DTF5 is the same with 4 replaced by 5. 
 
We have selected an implementation with division 
of the main blocks into sub-blocks in range.  
Division into sub-blocks may not be necessary for a 
SAR that is yaw steered with small Doppler 
centroid variations. This increases  the processing 
speed. The division into main blocks and sub-
blocks is dependent on SAR parameters, especially 
the squint,  and is not easy to calculate by a simple 
formula. A study of the point target responses as 
we do in Section III is preferable.  We do a forward 
FFT and then multiply by the range cell migration 
correction transfer function, *

4 ( , )RCM r aH ω ω  . Then 
the  inverse range FFT is taken of all sub-blocks. 
The residual azimuth compression

*
4 ( , , )az a n mH R Rω∆ , is now performed for all 

azimuth lines in the main block. We calculate the 
azimuth transfer function at mR  and at range nR   
on both sides of the center in the main block.The 
residual azimuth compression filter is the given by 
                         

* *
4 4 4( , , ) ( , ) ( , )az a n m az a n az a mH R R H R H Rω ω ω∆ =       

                                                                 (69)                      
Finally, an inverse azimuth FFT is performed in 
each line in the main block. For the DTF5 
algorithm we replace *

4 ( , )RCM r aH ω ω  with 

*
5 ( , )RCM r aH ω ω , *

4 ( , )SRC r aH ω ω  with
*

5 ( , )SRC r aH ω ω  and so on. 
     When faster update of Doppler parameters is 
required at high squint, it may be advantageous to 
execute the  secondary range correction , the bulk 
azimuth compression and  the higher order terms 
correction in the sub-blocks where range cell 
migration correction is done. This shows that the 
decomposition of the transfer function  makes a 
good flexibility to select the best  implementation 
method  depending on how Doppler parameters 
need to be updated. 

 
              III.  SIMULATION EXAMPLES 
 
    We simulate raw data point targets as described 
in [7]. The simulations here are done  for a 
monostatic SAR, however, simulation for bistatic 
SAR can be done as in [7]. TABLE  I shows the 
SAR parameters used in the simulations here. The 
algorithm is a generic algorithm, it can be 
implemented for stripmap, sliding spotlight or 
staring spotlight. We therefore use a complex PRF 
slightly larger than the azimuth bandwidth as is 
usual for stripmap processing. If the algorithm 
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should be used for spotlight processing, merging of 
several  azimuth spectra is needed since the PRF is 
much lower. We denote the different looks: look -
1, look 0 and look 1. The total length of 3 looks is 
10.2 s. TABLE II shows the Kepler elements for 
the orbit  used in the simulations.  We do 
simulations for two cases,  one with quite small 
Doppler centroids at low squint  at 0.3yaw = a  

( 0.0pitch =  , 0.0roll =  ) and one case with higher 

squint  and large Doppler centroid at 7.5yaw = a . 
The definition of the attitude reference system used 
in the simulation  can be found  in reference  [19] 
in [5]. The five Doppler parameters are shown in 
TABLE III and TABLE IV for the two cases in the 
corners of a block with 1000 range x 1000 azimuth 
pixels. (Az=1, Ra=1) is near range early azimuth 
corner, (Az=1000,Ra=1) is near range late  
azimuth. We can see that the  Doppler centroid 1f  
changes 4.96 Hz from near to far range in the block 
in TABLE III and  112.42 Hz in TABLE IV. The 
large Doppler  centroid variation  in range  is the 
main reason for  division in sub-blocks to do range 
cell migration correction. We also note that all odd  
Doppler parameters, 1f , 3f  and 5f  have higher 

values  at higher squint. The 5f  parameter is 
included in DTF5 and  therefore performs better 
than DTF4 at higher squint as we shall demonstrate  
later. In both cases we see that all Doppler 
parameters change only slightly from early  
azimuth to late azimuth. In order to concatenate 
sub-blocks in range direction and  azimuth blocks  
in azimuth direction exactly we can perform the 
azimuth and range stretch operations described in 
[7].  
      Fig. 2 shows a 3-look DTF5 processing of a 
block with size 1000 range x 1000 azimuth  pixels 
and 9 point targets PT1-PT9. PT5 is in the center of 
the main block and  5 sub-blocks are used here for 
performing range cell migration correction. 
TABLE V shows the mean and standard deviations  
of the quality  parameters of the 9 PTs. The mean 
azimuth resolution is 1.29 pixels which 
corresponds to 0.34 m.  We have used Hamming 
window with coefficient 0.7  and then the 
theoretical azimuth  resolution is given by ground 
speed of the beam divided by the azimuth 
bandwidth. 
 
 

 
 
TABLE I   SAR parameters used in the simulations 
for a monostatic case . 
 
RF-center frequency (GHZ) 9.6  
Range chirp bandwidth (MHz) 300  
Sampling frequency (MHz) 370 
PRF(Hz) 26700  
Azimuth filter length 1 look (s)   3.4  
Azimuth filter length 3 looks (s)    10.2  
 

 
TABLE  II  The Kepler elements for the orbit of 
the SAR. 
 
  
a : Semimajor axis (m) 6886008 
i : Inclination (°) 98.0 
e : Eccentricity 0.001 
ω : Argument of perigee (°) 90.0 
Ω : Ascending node (°) 0.0 

M : Mean anomaly (°) 270.07 

 
   TABLE  III  The five Doppler parameters for 0.3yaw = a  for X-band SAR in the corners of  
the block processed here of size with size 1000 x 1000 pixels.  
  
Az  Ra  ( )Range m  1

1( )f s−  2
2 ( )f s−  3

3 ( )f s−  4
4 ( )f s−  5

5 ( )f s−  
1 1 548880.04 244.73 -6357.386 -0.04095 0.57604 -0.00001198 
1000 1 548880.46 244.76 -6357.379 -0.04095 0.57605 -0.00002425 
1 1000 549284.83 249.69 -6352.549 -0.04217 0.57474 -0.000011819 
1000 1000 549285.26 249.72 -6352.542 -0.04217 0.57475 -0.000024348 
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TABLE IV The five Doppler parameters for 7.5yaw = a  for X-band SAR in the corners  
of the block processed here with size 1000 x 1000 pixels. 
 
Az  Ra  ( )Range m  1

1( )f s−  2
2 ( )f s−  3

3 ( )f s−  4
4 ( )f s−  5

5 ( )f s−  
1 1 548880.53 21293.16 -6344.671 -5.7511 0.56910 0.001284 
1000 1 548880.96 21293.19 -6344.664 -5.7511 0.56911 0.001271 
1 1000 549285.33 21405.58 -6339.708 -5.7728 0.56774 0.001287 
1000 1000 549285.76 21405.61 -6339.701 -5.7727 0.56776 0.001273 
 
 
 

 
 
Fig. 2  3 look DTF5 processing of one main block 1000 x 1000 pixels showing 9 point targets. 
 
 
TABLE V  Quality parameter measurements of point targets in Fig.2 processed with DTF5 
 

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

mean 19418 -16.00 1.29 1.25 -0.003 -0.01 
stdev 256.6 0.19 0.04 0.01 0.066 0.024 

 
 
In this  case the theoretical azimuth resolution is  
7098 m/s / (6355 Hz/s * 3.4 s) = 0.33 m. The 
measured and  theoretical range resolution is  

0.51 m and 0.50 m, respectively. If we had real data 
we could make 9 looks to get an azimuth resolution 
approximately equal to the ground range resolution 
and reduce speckle.  The mean  azimuth error 
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position of the nine PTs  is -0.003 pixels and the 
standard deviation is only 0.066 pixels, which 
means that all pixels are very well positioned 
compared to the position of the point targets in the 
raw data. The range positions are also very well 
positioned with one one hundredth of a pixel size 
accuracy.  

     Fig. 3A shows PT2 and PT5  with EETF5 
processing of the outer look -1.  
The quality parameters  are given in TABLE VI. 
The peak amplitude of PT2 which is near   
the  block boundary is 18426. This is 94.1 % of 
PT5 which is in the center of the block. The  

azimuth and range resolutions of PT2  are both 
degraded compared to PT5. The azimuth  
resolution is increased 5.6 % and the range 
resolution 9.5 %. DTF4 processing yields  
practically the same image quality as  DTF5 for 
look -1 and is shown in Fig 3B where 5 sub- 
blocks in range are used in the processing. There is 
only a small difference  between  the quality 
numbers  of PT5 and PT2 as shown in TABLE VII. 
Fig 3C shows 3-look  processing  and 5 sub-blocks 
in range with either DTF5 or DTF4. The quality 
parameters of PT2 and  PT5 are almost the  same in 
TABLE VII and  TABLE VIII.  These examples 
show that DTF  

 
 

 
 
Fig. 3 EETF and DTF processing of point targets PT2 and PT5 at 0.3yaw = a  . Image A: EETF5 look -1. 
Image B: DTF5, DTF4 look -1. Image C: DTF5,DTF4 3 looks. 
 
 
TABLE VI  Quality parameter measurements of point target PT2 and PT5 Fig. 2 which are  
zoomed in Fig. 3A.  Processing with EETF5. 
 

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth  res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

PT5 19568 -15.14 1.25 1.26 0.04 -0.01 
PT2 18426 -15.79 1.32 1.38 -0.02 -0.62 
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TABLE VII Quality parameter measurements of point targets in Fig. 3B. DTF4 or DTF5  
processing of look -1 using 5 sub-blocks in range. 
 

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth  res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

PT5 19573 -15.16 1.25 1.26 0.03 -0.01 
PT2 19398 -15.53 1.27 1.29 0.00 -0.06 

 
 
TABLE VIII   Quality parameter measurements of point targets in Fig. 3C.3-look processing  
with DTF4 or DTF5 and 5 sub-blocks in range. 
 

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth  res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

PT5 19542 -16.05 1.27 1.25 0.00 0.01 
PT2 19532 -15.91 1.26 1.27 0.01 -0.03 

 
 

 
 
 
 
Fig. 4  EETF and DTF processing of point targets PT2 and PT5 at 7.5yaw = a  . Image A: EETF5 look -1. Image 
B: DTF4 3-look. Image C: DTF5 3-look.  
 
processing improves the  quality compared to 
EETF at   0.3yaw = a .  Furthermore, the   
measured azimuth resolution is  
(1.26*7098/26700)=0.33 m for  DTF4 and DTF5 
processing which is the same as the theoretical 
resolution (see calculation above)  to mm 

accuracy.The same is found for the range 
resolution.  
     Fig. 4 shows the processing  of  PT2 and PT5 at  

7.5yaw = a . Fig. 4A  shows the point targets  
processed with  EETF5 for  look -1.  The quality 
parameters are given in TABLE  IX. We  



12 
 

can see that the peak amplitude of PT2 is 
substantially reduced compared  to PT5  
(15318/19410=78.9 %). The processing with DTF5 
for look -1 and 1 sub-block in range  is quite 
similar to that of  EETF5 look -1. The peak 
amplitude for PT5 is 19499 and that for PT2 is 
15145. This means  that  the sub-block processing  
in the DTF5 improves the quality. The azimuth 
resolution is degraded from 1.28 pixels to 1.52  
pixels  and the range resolution is degraded from 
1.16 to 1.57 pixels.  Fig. 4B shows the point targets  
processed with 3-look  DTF4. The quality 
parameters are given in TABLE X. The peak  
amplitudes of both targets  are reduced to about 
15500 and the azimuth resolution reduced to 1.78 
pixels. Fig. 4C shows  processing with the DTF5.  
The quality parameters are given in  TABLE XI. 
Now,  the peak amplitudes of both point  targets are 
around 19500 which is almost the same as 

processing at 0.3yaw = a  in Fig. 3C. The azimuth 
resolution is also  almost the same as in Fig. 3C 
(TABLE VIII). These examples show that DTF5 
processing  achieves the same quality parameters  
as the  theoretically calculated  quality parameters, 
while DTF4 yields  substantially reduced quality at  
this squint. The point target near the block 
boundary (PT2) is severely blurred using the 
EETF5, as is shown in TABLE IX. 

    It has been shown above that the quality 
parameters of point targets within one main block 
using DTF5 is very good for the low squint and 
high squint case. However, we do a final test to 
check the quality of a point target exactly on the 
corners of four adjacent  main blocks and also 
adjacent sub-blocks. PT9 is the same target as in 
Fig. 2. Fig. 5A showns the block boundaries 
between four adjacent main blocks   (az1,ra1), 
(az2,ra1), (az1,ra2)  and (az2,ra2).  

 
 
TABLE IX  Quality parameter measurements of point targets in Fig.4A. Look -1 processing  
with EETF5. 
 

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth  res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

PT5 19410 -15.78 1.28 1.16 0.13 0.09 
PT2 15318 -16.69 1.52 1.57 0.85 -1.41 

 
 
TABLE X Quality parameter measurements of point targets in Fig.4B. 3-look processing  
with DTF4 and 10 sub-blocks in range. 
 

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth  res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

PT5 15518 -15.21 1.78 1.22 0.40 -0.01 
PT2 15523 -14.96 1.77 1.21 0.63 -0.01 

 
 
TABLE XI  Quality parameter measurements of point targets  in Fig. 4C. 3-look processing  
with DTF5 and 10 sub-blocks in range. 
  

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth  res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

PT5 19490 -16.37 1.27 1.18 0.02 -0.01 
PT2 19597 -15.87 1.24 1.16 0.12 0.02 
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Fig.  5. Point targets P9 and P10 processed with DTF5. Image A: look 0 , 0.3yaw = a , Image B: look 0 , 

7.5yaw = a . 
 
 
TABLE XII Quality parameter measurements of point targets in Fig. 5A. Block boundaries  
between blocks (az1,ra1), (az2,ra1), (az1,ra2) and (az2,ra2) are shown. Processing of look 0  
with DTF5. 
 

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth  res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

PT9 19837 -15.74 1.22 1.24 0.09 0.03 
PT10 19856 -15.60 1.22 1.24 0.10 0.03 

 
 
TABLE XIII  Quality parameter measurements of point targets  in Fig. 5B. Block boundaries  
between blocks (az1,ra1), (az2,ra1), (az1,ra2) and (az2,ra2) are shown. Processing of look 0  
with DTF5. 
 

 Peak  
amplitude 

ISLR 
(dB) 

Azimuth  res 
(pixels) 

Range 
res (pixels) 

Err pos 
Az(pixels) 

Err pos 
Ra(pixels) 

PT9 19278 -16.84 1.27 1.21 -0.01 -0.01 
PT10 19631 -17.55 1.24 1.17 0.05 0.02 

 
 
Point target  PT10 is the processed  target at the 
common point of the four corners. Fig. 5A  
and 5 B show processing for 0.3yaw = a and 

7.5yaw = a , respectively. The quality parameters  
for Fig. 5A are given in  TABLE XII and  those for 
Fig 5.B are given in TABLE XIII. We see  
that for both for 0.3yaw = a and for 7.5yaw = a   
that the quality of the point target PT 10  in  
the common point of the corners  is almost the 
same as for PT 9. 
 

 
 
 
        IV.  NOVEL PROPERTIES OF THE DTF  
ALGORITHM 

     The EETF4/EETF5 algorithms are based on 
analytical solutions to the SPA problem  using  
non-hyperbolic phase functions. All operations  
except for the azimuth compression  are done by a 
single 2D filter. This makes the algorithms degrade 
with increasing squint due to larger variation of the 
Doppler parameters, especially the Doppler 
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centroid. The range cell migration correction was 
embedded in one 2D filter and small blocks were 
required for larger squint angles. The 
decomposition of the transfer function made in  [8] 
inspired the decompositions made in DTF4/DTF5. 
In [8] they avoided the SPA by using the MSR 
method  with a fourth-order  phase function that 
was approximated from a hyperbolic phase 
function. Furthermore, they removed the linear 
range cell migration when doing the MSR. Hence, 
for the first time the SPA for a non-hyperbolic  
azimuth phase function has been solved here using 
a  fifth-order  polynomial.  Furthermore, for the 
first time both the DTF4 and the DTF5 have been 
decomposed  in analytical expressions. It is then 
possible to study the degradations of each of the 
decomposed functions   when Doppler parameters 
are invariant. Especially, the range cell  migration 
and  the secondary range cell migration correction  
can be updated more frequently at demanding  
geometry which means  increasing squint angle.  

      Until recently, the hyperbolic azimuth phase 
history has been sufficient for processing of  
spaceborne SAR data. The RDA, CSA and MWA 
algorithms mentioned in the introduction make use 
of the hyperbolic phase functions since a simple 
solution exists for solving the SPA problem.  The 
staring spotlight SAR processing algorithm in [4] 
computes the correction to a hyperbolic range 
history by using numerical methods . The 
TerraSAR-X satellite is totally yaw steered, which 
keeps the both the Doppler centroid and its 
variation very small. The CSA algorithm is 
therefore still effective because this algorithm may 
use only one block in range. However, a numerical 
approach for generation of 2D filters may slow 
down the algorithm. Since TerraSAR-X is yaw 
steered the DTF4 algorithm could be implemented 
as a staring spotlight processing algorithm using 
subapertures as is done in [4]. When the Doppler 
centroid variation is small, large blocks can be 
used. The DTF algorithms may be less efficient 
than the CSA algorithm  for low squint, however, 
for squints with large Doppler centroid variations 
in range, the CSA may be less suitable than the 
DTF algorithms. In  [10] they concluded that the 
CSA algorithm may not be particularly suitable at 
large squint.  Furthermore, the DTF algorithms can 
have a general range chirp form, while the standard  
CSA is based on linear chirp. Finally, it should be 
mentioned that the DTF algorithms will be less 
efficient with increasing  squint and Doppler 

parameter variations because blocks need to be 
reduced in size in range. In addition, the azimuth 
blocks size must be increased with higher accuracy. 

     In the future we may expect more  clusters of 
SAR satellites. Interesting for target recognition 
would be to use several satellites to look at the 
same area simultaneously with  different look and  
squint angles. The DTF algorithm could be a 
candidate for processing of images with resolution 
of a few decimeters  at  large squint. Although the 
analytical calculation of the DTF filters is quite 
cumbersome for a person, the efficiency  may be 
very good compared to numerical computation of 
filters. The precision of the processing  using DTF4 
or DTF5 should  be an advantage  at higher squint.   

 
 
                       V.  CONCLUSIONS 
 
A new algorithm, called DTF tailored for 
spaceborne SAR processing, taking into account 
nonhyperbolic phase history at large integration 
times, has been developed, implemented, and 
tested. The DTF has been calculated fully 
analytically using the stationary phase 
approximation by solving fourth-order (DTF4) and 
fifth-order (DTF5) polynomial equations followed 
by Taylor’s series expansion of the stationary point 
solution for decomposition of the phase function.  
The  DTF4 yields high quality point target 
responses at low squint with 3-look azimuth 
resolution 0.3 m while the DTF5 has to be used at 
larger squint with large Doppler centroid 
variations. The algorithm is well suited for parallel 
computation and has been implemented using 
OpenMP in Windows.  
 
 
 
APPENDIX A. T-COEFFICIENTS OF THE DTF4 

 

It can be shown that the T coefficients in (30) are  
given by 

2 3 2
0 0 1 2 3 1 1 2 1

3 2 2
2 1 3 1 3 1 3 1

1 1 1
2 6 2
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6 2 2

m m m
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= − + − + +

− + − +
    

                                                                    (70) 
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                                                            (71)      
2

2 1 3 2 1 3 2 3 3 1 3

2
3 1 3 3 3

1
2

1
2

m

m m

T y x y x x y x x y x x

y x x x y x x

= + − +

− +
                        

                                                                         (72)                           
2 2 2

3 2 2 3 1 2 3 2
1 1 1
2 2 2 mT y x y x x y x x= + −                  (73)                                   

4 2 2 3 3 1 2 3 3 2 3mT y x x y x x x y x x x= + −                  (74)                                  
                                            

2 2 2
5 2 3 3 1 3 3 3

1 1 1
2 2 2 mT y x y x x y x x= + −                  (75)                           

2
6 3 2

1
6

T y x=                                                      (76)               

2
7 3 2 3

1
2

T y x x=                                                   (77)                                                                                       

2
8 3 2 3

1
2

T y x x=                                                   (78)      

3
9 3 3

1
6

T y x=                                                      (79)              

 
APPENDIX B. C-COEFFICIENTS OF THE DTF4 
 
 ( )2 3 4

00 1 0 2 0 3 0 4 02C c T c T c T c T= + + +               (80)                          

( )2 4
01 1 1 2 0 1 3 0 1 4 02 2 3 4C c T c T T c T T c T= + + +     (81)                                               

2 2 2
1 3 2 1 2 0 3 3 0 3 3 0 1

02 3 2 2
4 0 3 4 0 1

2 3 3
2

4 6

c T c T c T T c T T c T T
C

c T T c T T

 + + + + +
=   + 

                                                                       (82)
  

3 2
1 6 2 1 3 2 0 6 3 1 3 0 6

03 3 3 2
3 0 1 3 4 0 6 4 0 1 4 0 1 3

2 2 3
2

6 4 4 12

c T c T T c T T c T c T T
C

c T T T c T T c T T c T T T

 + + + + +
=   + + + 

                                                                       (83)
  

2 3 2
2 3 2 1 6 2 1 3 3 0 3 3 0 1 6

04 4 2 2 2 2
4 1 4 0 3 4 1 6 4 0 1 3

2 3 3 6
2

6 12 12

c T c T T c T T c T T c T T T
C

c T c T T c T T c T T T

 + + + + +
=   + + + 

                                                                       (84) 
               

2 2
2 3 6 3 1 6 3 1 3 3 0 3 6

3 2 2
05 4 1 3 4 0 3 6 4 0 1 6

2
4 0 1 3

2 3 3 6

2 4 12 12

12

c T T c T T c T T c T T T

C c T T c T T T c T T T

c T T T

 + + + +
 

= + + 
 + 

  

                                                                        (85) 
             
 

2 3 2
2 6 3 3 3 0 6 3 1 3 6

3 3 2 2
06 4 1 6 4 0 3 4 0 6

2 2
4 1 3 4 0 1 3 6

2 3 6

2 4 4 6

6 24

c T c T c T T c T T T

C c T T c T T c T T

c T T c T T T T

 + + + +
 

= + + + 
 + 

                                                                                          

                                                                       (86) 
                                         

2 2 3 2
3 3 6 3 1 6 4 1 3 4 1 3 6

07 2 2
4 0 3 6 4 0 1 6

3 3 4 12
2

12 12

c T T c T T c T T c T T T
C

c T T T c T T T

 + + +
=   + + 

                                                                       (87) 
 
                     

2 4 2 2 2
3 3 6 4 3 4 1 6 4 1 3 6

08 2
4 0 3 6

3 6 12
2

12

c T T c T c T T c T T T
C

c T T T

 + + +
=   + 

                                                                     

                                                                      (88)            
( )3 3 3 2

09 3 6 4 3 6 4 0 6 4 1 3 62 4 4 12C c T c T T c T T c T T T= + + +                                                                                         
                                                        (89)                                                   

( )3 2 2
0,10 4 1 6 4 3 62 4 6C c T T c T T= +                     (90)

                                                                    
( )3

0,11 4 3 62 4C c T T=                             (91)                    
                                                    

( )4
0,12 4 62C c T=                                           (92)                                                            

( )2 3
11 1 2 2 0 2 3 0 2 4 0 22 2 3 4C c T c T T c T T c T T= + + +                                                                                                                                                                                                                                                                                                                                                       

                                                                     (93)                         
( )2

12 2 1 2 3 0 1 2 4 0 1 22 2 6 12C c T T c T T T c T T T= + +                                
                                                                    (94) 

2 2
2 2 3 3 1 2 3 0 2 3 4 0 2 3

13 2
4 0 1 2

2 3 6 12
2

12

c T T c T T c T T T c T T T
C

c T T T

 + + +
=   + 

                                                                    (95) 
3

2 2 6 3 0 2 6 3 1 2 3 4 1 2
14 2

4 0 2 6 4 0 1 2 3

2 6 6 4
2

12 24

c T T c T T T c T T T c T T
C

c T T T c T T T T

 + + + +
=   + 

                                                                    (96) 
           

2 2
3 2 3 3 1 2 6 4 1 2 3

15 2
4 0 2 3 4 0 1 2 6

2 6 12
2

12 24

c T T c T T T c T T T
C

c T T T c T T T T

 + + +
=   + 

   

                                                                     (97) 
2 2

3 2 3 6 4 1 2 6 4 1 2 3
16

4 0 2 3 6

6 12 12
2

24
c T T T c T T T c T T T

C
c T T T T

 + + +
=  

 
     

                                                                     (98) 
( )2 2 2

17 3 2 6 4 2 3 4 0 2 6 4 1 2 3 62 3 4 12 24C c T T c T T c T T T c T T T T= + + +

                                                                     (99) 
 ( )2 2

18 4 2 3 6 4 1 2 62 12 12C c T T T c T T T= +            (100) 

( )2
19 4 2 3 62 12C c T T T=                                  (101) 

( )3
1,10 4 2 62 4C c T T=                                      (102)                    

( )2 2 2 2
22 2 2 3 0 2 4 0 22 3 3 6C c T c T T c T T= + +         (103) 

( )2 2
23 3 1 2 4 0 1 22 3 12C c T T c T T T= +                   (104) 

( )2 2 2 2
24 3 2 3 4 1 2 4 0 2 32 3 6 12C c T T c T T c T T T= + +  

                                                                  (105) 
( )2 2 2

25 3 2 6 4 0 2 6 4 1 2 32 3 12 12C c T T c T T T c T T T= + +   
                                                                   (106) 
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 ( )2 2
26 4 2 32 6C c T T=                                     (107) 

( )2
27 4 2 3 62 12C c T T T=                                  (108) 

( )2 2
28 4 2 62 6C c T T=                                     (109)                

( )3 3
33 3 2 4 0 22 2 4C c T c T T= +                         (110) 

( )3
34 4 1 22 4C c T T=                                       (111)                    

( )3
35 4 2 32 4C c T T=                                       (112)                  

( )3
36 4 2 62 4C c T T=                                       (113)                    

( )4
44 4 22 4C c T=                                          (114)            
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