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This article develops probability equations for an asset value through time, assuming continuous correlated differentiable Gaussian
distributed noise. Ito’s (1944) stochastic integral and a generalized Novikov’s (1919) theorem are used. As an example, the
mathematical model is used to generalize the Black and Scholes’ (1973) equation for pricing financial instruments. The article
connects the Kolmogorov (1931) probability equation to arbitrage and to how financial instruments are priced, where more
generally, the mathematical model based on differentiable noise may improve or be an alternative for forecasts. The article
contrasts with much of the literature which assumes continuous nondifferentiable uncorrelated Gaussian distributed white noise.
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1. Introduction

Essential in the pricing of financial instruments is Black and
Scholes’ [1] partial differential equation, which is based on
white noise and the Ito [2] stochastic integral. Differential
equations with continuous nondifferentiable uncorrelated
Gaussian distributed noise, also known as the Wiener process
or Brownianmotion, are widespread in science [3, 4]. The Kal-
man–Bucy filter [5, 6] in navigation is one application of white
noise and the Ito [2] stochastic integral. The filter has a proce-
dure for estimating the state of a system that satisfies a linear
differential equation based on a series of noisy observations.

The noise in this article is continuous and differentiable
with nonzero correlation time, which allows the Riemann–
Stieltjes integration. Correlation time is the amount of time
for the noise signal to repeat in a statistical sense. Differen-
tiable noise enables forecasts in a strong sense. Forecasts
using differential equations involving noise are important
in many sciences, for example, finance and navigation. In
finance, an arbitrage investor may in principle spot the
direction of price movements of various securities and
exploit market opportunities by trading costlessly and con-
tinuously through time.

This article has a general objective, that is, the development
of probability differential equations for an asset value through
time, based on continuous differentiable noise with correlated
Gaussian distributed noise. The correlation function can be
used for forecasts. This is exemplified by generalizing the Black
and Scholes’ [1] equation. The article furthermore develops a
Kolmogorov equation from a generalized Novikov’s [7] theo-
rem for Gaussian noise. Realizations and solutions based on
random draws from probability distributions are studied.
The literature develops the Kolmogorov [8] equation (also
known as the Fokker–Planck equation [9, 10]) from Ito’s
[2] interpretation of the Langevin [11, 12] equation with noise.

It is reasonable that, according to classical physics, noise
is in principle differentiable. However, on practical time
scales, noise may vary too much to be observed as differen-
tiable. This may cause accuracy problems in numerical inte-
grations since the results depend too much on the discrete
time points for integration. This problem can be solved by
developing a mathematical theory that does not apply differ-
entiability but calculates expectations of integrals involving
noise. This is done in the Ito [2] or Fisk–Stratonovich [13,
14] stochastic integrals. Alternatively, as in this article, one
may assume that noise is differentiable, but that explicit
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solutions only are achievable statistically. That means that the
noise is only described through joint cumulants. Differentiable
noise is easier to handle due to the Riemann–Stieltjes integra-
tion. Nondifferentiable noise may be more practical for
numerical calculations since noise can be drawn randomly at
different points in time by a computer. Analytically, stochastic
integrals based on the Fisk–Stratonovich [13, 14] stochastic
integrals and not the Ito [2] stochastic integral can provide a
better mathematical approach since solutions coincide with
differentiable uncorrelated Gaussian noise. See Sussmann
[15] for a more exhaustive discussion about differentiable
and nondifferentiable noise.

Differentiable noise has been used in finance [16] and
physics [17], and fractional Brownian motion introduces a
correlation between noise increments [18, 19]. In finance,
the correlation in fractional Brownian motion can be used
to achieve statistical arbitrages [20–23]. More generally, frac-
tional Brownian motion is used as a model for the arrivals of
network packets, involving researchers in theoretical phys-
ics, hydrology, and biology [24, 25]. These so-called stochas-
tic differential equations have been solved through Ito’s [2]
and Fisk–Stratonovich’s [13, 14] development of stochastic
integrals [13, 14]. Other types of stochastic integrals have
been developed, for example, by Hu and Øksendal [22].

The path integral formalism originally developed within
quantum mechanics also applies a type of stochastic integral.
The method was subsequently further developed in non-
equilibrium statistical mechanics and is more general than
Ito’s [2] stochastic integral since it can be applied to a broad
range of distributions, not only Gaussian distributions [26].
Kleinert [26] suggests that non-Gaussian noise may be
important, especially in finance.

For a large class of semielliptic second-order partial dif-
ferential equations, a corresponding Dirichlet [27] boundary
problem can be solved by the solutions of associated stochas-
tic differential equations. The Feynman–Kac [28] equation
offers a method of solving partial differential equations by
simulating stochastic paths [29]. In quantum chemistry, sto-
chastic methods are used to solve the Schrödinger equation
with the Pure Diffusion Monte Carlo method [30, 31].

Section 2 presents the Langevin [11, 12] differential
equation and discusses relations for correlated and uncorre-
lated noise, not necessarily Gaussian. Section 3 uses a gener-
alized Novikov’s [7] theorem to develop the partial
differential equation for differentiable noise, with correlated
or uncorrelated Gaussian distributed noise. Section 4 gener-
alizes the Black and Scholes [1] partial differential equation.
Section 5 conducts a random draw to give an equivalent and
associated stochastic process. Section 6 considers limitations,
opportunities, and future research. Section 7 concludes.

2. Differential Equation and Correlation
Relations for Differentiable Noise

Let S t be given by the first-order ordinary Langevin [11,
12] differential equation.

S t = G1 t, S t +G2 t, S t ξ t 1

where “dot” means time derivative and S t is a real,
continuous, and differentiable function with respect to
time t ≥ t0 ≥ 0. S t may be the value of an asset through
time. For simplicity, we usually write S t for S t, t0, s0 ,
where S t0, t0, s0 = s0 is the initial asset value at time t0.
The functions G1 t, S t and G2 t, S t are externally
given real functions which are continuous and differentiable
with respect to t and S t . ξ t = ζ t is the noise derivative
which is an externally given real, continuous function with
respect to time t, that is, the time derivative of the noise ζ t
which is continuous and differentiable.

In (1), ξ t may be random only at time t = t0. Riemann–
Stieltjes integration is possible since ξ t is well behaved.
Equation (1) has solutions, meaning that given the initial
conditions of t0 and s0, the future behavior of S t is
completely determined. See Appendix A for examples of dif-
ferentiable noise. For a definition of a stochastic variable and
a stochastic process, see Appendix B. Nondifferentiable
noise is practically drawn stochastically at each point in time
t throughout the time development. See Sussmann [15] for
exhaustive mathematical precision.

The noise derivative ξ t is assumed to have zero expec-
tation, nonzero variance, and nonzero correlation, that is,

E ξ t = 0, E ξ t ξ t ′ = σ2

2τΠ t − t ′ 2

where “E” means expectation, Π () is some function to be
defined, τ is a correlation time, and σ2 is the strength of
the correlation. Correlation time τ is the amount of time
for the noise signal to repeat in a statistical sense. In general,
the correlation strength σ2 may depend on time t but is set
time-independent unless otherwise specified.

We define

Γ t, t0 ≡
t

t0

E ξ t ξ v dv, Γ t, t0 ≡
t

t0

E ξ t0 ξ v dv

3

where Γ t, t0 expresses the integral of the expected value of
the product of the noise derivative ξ t at the actual time t
and the noise derivative ξ v at time v, integrated from t0
to t of the variable v, and Γ t, t0 expresses the integral of
the expected value of the product of the noise derivative
ξ t0 at the initial time t0 and the noise derivative ξ v
at time v, also integrated from t0 to t of the variable v.
We will later see that (3) appears again in the Kolmogorov
equation.

Theorem 1.

Γ t, t0 = Γ t, t0 4
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Proof 1.

Γ t, t0 =
t

t0

E ξ t ξ v dv = σ2

2τ
t

t0

Π t − ν

dv = σ2

2τ
0

t−t0
Π z dz

Γ t, t0 =
t

t0

E ξ t0 ξ v dv = σ2

2τ
t

t0

Π t0 − v

dv = σ2

2τ
t−t0

0
Π z dz = Γ t, t0 , Qed

5

The equality of Γ t, t0 and Γ t, t0 in Theorem 1 means
that the integral from t0 to t of the expected value of the
product of the two noise derivatives does not depend on
whether the first noise derivative is specified at time t as
ξ t or is specified at the initial time t0 as ξ t0 .

An example to be studied in this article is

Π t − t ′ ≡Π1 t − t ′ Π2 t − t ′ ,

Π1 t − t ′ ≡ Exp −
t − t ′
τ

,

Π2 t − t ′ ≡
t − t ′
β

2c−1

6

where c > 0 is a parameter. The exponential formΠ1 t − t ′ ,
which is assumed to be well-behaved for all t and t ′, is
known as noise if it is Gaussian distributed. When τ
approaches zero in (6), the well-known Dirac delta function
δ () applies for Π1 u / 2τ since Limτ⟶0Π1 u / 2τ =
δ u . Π2 t − t ′ relates to fractional Brownian motion.
Unless c ≥ 1/2, Π2 t − t ′ is singular at t = t ′.

Inserting (2) and (6) into (3) gives

Γ t, t0 = σ2

2τ
t

t0

Π1 t − v Π2 t − v dv

= σ2

2τ
0

t0−t
Exp z

τ

−z
β

2c−1
dz

= σ2

2
τ2c−1

β2c−1 Γf 2c, 0 − Γf 2c, t − t0
τ

, c > 0

7

where the well-known Gamma function is Γf z, z′ ≡ ∞
z′

Exp −u uz−1du.
Determining the limit when τ⟶ 0 in (7) implies

Limτ⟶0Γ t, t0 = σ2

2
τ2c−1

β2c−1 Γf 2c, 0 = σ2

2
τ2c−1

β2c−1

∞

0
Exp −u u2c−1du

8

which equals σ2/2 when c = 1/2, since Γf 1, 0 = 1 and

τ2c−1/β2c−1 = 1
Inserting c = 1/2 into (7) gives

Γ t, t0 = σ2

2 Γf 1, 0 − Γf 1, t − t0
τ

= σ2

2 1 − Exp − t − t0
τ

9

since Γf 1, t − t0/τ = Exp − t − t0 /τ
Inserting c = 1 into (7) gives

Γ t, t0 = σ2

2
τ

β
1 − Γf 2, t − t0

τ
10

since Γf 2, 0 = 1.
Let us define

Ω 2 t, t0 ≡
t

t0

t

t0

E ξ u ξ v dudv 11

which expresses the variance of the noise derivative ξ t at
time t. Inserting the equations above into (11) gives

Ω 2 t, t0 = σ2

2τ
1

β2c−1

t

t0

t

t0

Exp −
u − v
τ

u − v 2c−1dudv

= σ2

2τ
1

β2c−1

t

t0

t−v

t0−v
Exp −

z
τ

z 2c−1dzdv

= σ2

2τ
1

β2c−1

t

t0

0

t0−v
−z 2c−1Exp z

τ
dz +

t−v

0
z2c−1Exp −

z
τ

dz dv

= σ2

2
τ2c−1

β2c−1

t

t0

Γf 2c, 0 − Γf 2c, v − t0
τ

+ Γf 2c, 0 − Γf 2c, t − v
τ

dv

= σ2
τ2c−1

β2c−1

t

t0

Γf 2c, 0 − Γf 2c, v − t0
τ

dv

12

Analytical integration of the Γf   is not possible
unless 2c is an integer. See Appendix C for examples when
c = 1/2 and c = 1.

Denote ∂Ω2 t, t0 /∂t0 by D2Ω
2 t, t0 .

Theorem 2.

D2Ω
2 t, t0 = −2Γ t, t0 13

Proof 2.

Ω 2 t, t0 =
t

t0

t

t0

E ξ u ξ v dudv = E
t

t0

ξ v dv

2

D2Ω
2 t, t0 = −2E

t

t0

ξ t0 ξ v dv = −2Γ t, t0 , Qed

14
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For a comparison with fractional Brownian motion [19],
it is useful to define what can be seen as the correlation of
ζ t , to read

Ω 2 t, t ′, t0 ≡
t ′

t0

t

t0

E ξ u ξ v dudv 15

where ∂2Ω 2 t, t ′, t0 /∂t∂t ′ = E ξ t ξ t ′ .
Assuming t ≥ t ′, general c > 0, and inserting fractional

Brownian motion with Π1 t − t ′ = 1 into (12) gives

Ω 2 t, t′, t0 = σ2

2τ
1

β2c−1

t ′

t0

t

t0

u − v 2c−1dudv

= σ2

2τ
1

β2c−1

t ′

t0

t−v

t0−v
z 2c−1dzdv

= σ2

2τ
1

β2c−1

t ′

t0

0

t0−v
−z 2c−1dz +

t−v

0
z2c−1dz dv

= σ2

2τ
1

β2c−1
1
2c

t ′

t0

v − t0
2c + t − v 2c dv

= σ2

2τ
1

β2c−1
1

2c 2c + 1

t − t0
2c+1 + t ′ − t0

2c+1
− t − t ′

2c+1
, t ≥ t ′ ≥ t0

16

Assuming c > 0 is necessary to achieve a converging inte-
gral in (16). In general, when t ≥ t0 and t ′ ≥ t0, (16) can be
rewritten as

Ω 2 t, t ′, t0 = σ2

2τ
1

β2H−2
1

2H − 1 2H

t − t0
2H + t ′ − t0

2H
− t − t ′ 2H ,H > 1

2
17

where H ≡ c + 1/2 is the Hurst parameter where c > 0⇒H
> 1/2. An alternative to (17) is

Ω 2 t, t ′, t0 ≡ λ t − t0
2H + t ′ − t0

2H
− t − t ′ 2H

18

where λ > 0 is a parameter. Differentiating (18) with respect
to t and t ′ gives

∂2Ω 2 t, t ′, t0
∂t∂t ′

= λ 2H 2H − 1 t − t ′ 2H−2 19

which is singular when t = t ′ unless H ≥ 1/2. Thus, when
H ≤ 1/2, the variance of the noise derivative ξ t when t =
t ′ is infinite due to division with 0 in (19). Summing up,
the above development shows that Brownian motion is
easily modelled by the exponential correlation function
Exp − t − t0 /τ in (13) at the limit when τ⟶ 0.

Equation (17) corresponds to fractional Brownian
motion if the noise derivative ξ t is Gaussian. Let

Ω 1 t, t0 ≡
t

t0

E ξ u du = 0

Ω 2 t, t0 ≡
t

t0

t

t0
E ξ u ξ v dudv

Ω 2n−1 t, t0 ≡
t

t0

t

t0

t

t0

⋯
t

t0

E ξ u1 ξ u2 ⋯ ξ u2n−1 du1du2du3 ⋯ du2n−1, n = 1, 2, 3⋯

Ω 2n t, t0 ≡
t

t0

t

t0

t

t0

⋯
t

t0

E ξ u1 ξ u2 ⋯ ξ u2n du1du2du3 ⋯ du2n, n = 1, 2, 3⋯

20

Assuming Gaussian noise ζ t in (20) implies

Ω 2n−1 t, t0 = 0,Ω 2n t, t0 = 2n
n

Ω 2 t, t0
2

n

, n = 1, 2, 3⋯

Ω 2 t, t0 = σ2 τ

β
t − t0 − 2τ + Exp −

t − t0
τ

t − t0 + 2τ , c = 1

σ2
τ

β
t − t0 − 2τ + t − t0 + 2τ 1 − t − t0

τ
+ t − t0

2

2τ2 −
t − t0

3

6τ3

= σ2
τ

β
t − t0 − 2τ + t − t0 1 − t − t0

τ
+ t − t0

2

2τ2 + 2τ 1 − t − t0
τ

+ t − t0
2

2τ2 −
t − t0

3

6τ3

= σ2 τ

β
t − t0 − 2τ + t − t0 −

t − t0
2

τ
+ 2τ − 2 t − t0 + t − t0

2

τ
+ t − t0

3

2τ2 −
t − t0

3

3τ2

= σ2
τ

β

t − t0
3

6τ2

21

3. The Partial Differential Equation for
Probability Based on Differentiable Noise

The probability density is denoted as ρ t, t0, s0, s where
ρ t, t0, s0, s ds is the probability that the asset value S t
is within the interval s, s + ds at time t, t0 is the initial
time, and S t0, t0, s0 = s0 is the initial asset value at time
t0. Assume without loss of generality that

ρ t, t0, s0, s =
∞

−∞
ρ t, t0, s0, u δ s − u du 22

which expresses that the probability density ρ t, t0, s0, s
equals the probability density ρ t, t0, s0, u multiplied with
the Dirac delta function δ s − u integrating the real vari-
able u from minus infinity to plus infinity.

Assuming differentiable noise ζ t in (22) implies

dρ t, t0, s0, S t
dt

=D1 t, S t +D2ρ t, t0, s0, S t S t = 0

⇔D1ρ t, t0, s0, S t = −D2ρ t, t0, s0, S t S t

23

where Di, i = 1, 2, denotes the derivative of the ith argument.
Conservation of the probability ρ t, t0, s0, s in (22) implies

∂ρ t, t0, s0, s
∂t

= −
∂
∂s

ρ t, t0, s0, s v t, s 24
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where v t, s is a real, continuous, and differentiable function
with respect to time t and asset value s. Assuming v t, s =
S t as in (1) and s = S t imply

v t, s = G1 t, s +G2 t, s ξ t 25

Inserting (25) into (24) gives

∂ρ t, t0, s0, s
∂t

= −
∂
∂s

ρ t, t0, s0, s G1 t, s

−
∂
∂s

ρ t, t0, s0, s G2 t, s ξ t

= −
∂
∂s

ρ t, t0, s0, s G1 t, s

−
∂
∂s

∞

−∞
ρ t, t0, s0, u G2 t, u ξ t δ s − u du

26

with functional derivative δS t /δξ t = G2 t, s .
To develop the last term on the right-hand side in (26),

Novikov’s [7] identity is used. It assumes the Gaussian noise
derivative ξ t and that G2 t, s =G2 t depends on time t
only. Then, G2 t can be placed outside the integral in (26)
which implies

E G2 t ξ t δ s − S t =
t

t0

E ξ t ξ v dv × E
δ

δξ
G2 t δ s − S t

27

where

δ

δξ
G2 t δ s − S t =G2 t

δ

δξ
δ s − S t

=G2 t
∂

∂S t
δ s − S t

δS
δξ

= −G2 t 2 ∂
∂s

δ s − S t

28

In Theorem 3, we generalize the identity to apply more
generally when G2 t, S t is a function of both time t and
asset value S t .

Theorem 3. For Gaussian noise ζ t ,

E G2 t, S t ξ t δ s − S t

=
t

t0

E ξ t ξ v dv × E
δ

δξ
G2 t, S t δ s − S t

29

Proof 3. See Appendix D.

Differentiating the expression in Theorem 3 with respect
to the noise derivative ξ t gives

δ

δξ
G2 t, S t δ s − S t

= ∂G2 t, S t
∂S t

δS
δξ

δ s − S t +G2 t, S t
∂δ s − S t

∂S t
δS
δξ

= ∂G2 t, S t
∂S t

G2 t, S t δ s − S t −G2 t, S t 2 ∂
∂s

δ s − S t

30

which implies

−
∂
∂s

∞

−∞
ρ t, t0, s0, u G2 t, u ξ t δ s − u du

= −Γ t,t0
∂
∂s

∞

−∞
ρ t, t0, s0, u

∂
∂u

G2 t, u 2

2 δ s − u du

+ Γ t,t0
∂2

∂s2
∞

−∞
ρ t, t0, s0, u G2 t, u 2δ s − u du

= −Γ t, t0
∂
∂s

ρ t, t0, s0, s
∂
∂s

G2 t, s 2

2

+ Γ t, t0
∂2

∂s2
ρ t, t0, s0, s G2 t, s 2

31

Assuming correlated differentiable Gaussian noise ζ t
and inserting (31), the generalized Fokker–Planck equation
(or Kolmogorov forward equation) [8–10] becomes

∂ρ t, t0, s0, s
∂t

= −
∂
∂s

G1 t, s + Γ t, t0
2

∂
∂s

G2 t, s 2 ρ t, t0, s0, s

+ Γ t, t0
∂2

∂s2
G2 t, s 2ρ t, t0, s0, s

32

which applies Γ t, t0 in (3). The generalized Kolmogorov
[8] backward equation becomes (Appendix E)

−
∂ρ t, t0, s0, s

∂t0
= G1 t0, s0 + Γ t, t0

2
∂
∂s0

G2 t0, s0 2

∂ρ t, t0, s0, s
∂s0

+ Γ t, t0 G2 t, s0 2 ∂
2ρ t, t0, s0, s

∂s02

33

which applies Γ t, t0 in (3). The differentiable noise ζ t can
be set approximately equal to any nondifferentiable noise Σt ,

in the sense that Σ n
t is a t-continuous differential process

such that for almost all initial conditions, lim
n⟶∞

Σ n
t = Σt ,

uniformly in bounded intervals, ξ t ≡ ∂Σ n
t /∂t. Of interest

is the Gaussian–Wiener noise/process. When the nondiffer-
entiable noise Σt =Wt , whereWt is the Wiener noise at time
t, the Ito [2] integral, or the Fisk–Stratonovich [13, 14] inte-
grals have been used in the literature. Sussmann [15] shows
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that for the Wiener noise, the solution, based on the Fisk-
Stratonovich [13, 14] integrals, coincides with the solution
obtained when ξ t = lim

n⟶∞
∂Σn

t /∂t. Thus, (33) is also valid

when applying the Fisk–Stratonovich [13, 14] integrals
within the Wiener noise/process [15]. See Appendix F for
Riemann–Stieltjes, Ito [2], and Fisk–Stratonovich [13, 14]
integrals.

4. Generalizing Black and Scholes’ [1] Partial
Differential Equation

Whereas Black and Scholes [1] assume nondifferentiable
noise, this section develops an alternative equation assum-
ing differentiable noise ξ t . Consider the expected value E
f t, t0, S t, t0, s0 of some function f t, t0, S t, t0, s0 to
be specified, that is,

EV t, t0, s0 ≡ E f t, t0, S t, t0, s0 =
∞

−∞
ρ t, t0, s0, s f t, t0, s ds,

V t, t0, s0 ≡ f t, t0, S t, t0, s0 , 34

where ρ t, t0, s0, s is defined in the previous section and
s = S t, t0, s0 . Assuming correlated Gaussian noise ζ t ,
assuming Γ t, t0 = t

t0
E ξ t0 ξ v dv defined in (3), and

differentiating (34) with respect to the initial time t0 give

∂EV t, t0, s0
∂t0

=
∞

−∞
ρ t, t0, s0, s

∂f t, t0, s
∂t0

ds+
∞

−∞

∂ρ t, t0, s0, s
∂t0

f t, t0, s ds
35

which is rewritten as

−
∂EV t, t0, s0

∂t0
+

∞

−∞
ρ t, t0, s0, s

∂f t, t0, s
∂t0

ds

= −
∞

−∞

∂ρ t, t0, s0, s
∂t0

f t, t0, s ds

=
∞

−∞
G1 t0, s0 + Γ t, t0

2
∂
∂s0

G2 t0, s0 2 ∂ρ t, t0, s0, s
∂s0

+ Γ t, t0 G2 t0, s0 2 ∂
2ρ t, t0, s0, s

∂s02
f t, t0, s ds

= G1 t0, s0 + Γ t, t0
2

∂
∂s0

G2 t0, s0 2 ∂
∂s0

+ Γ t, t0 G2 t0, s0 2 ∂2

∂s02
EV t, t0, s0

36

which is rewritten as

∂EV t, t0, s0
∂t0

+ G1 t0, s0 + Γ t, t0
2

∂
∂s0

G2 t0, s0 2 ∂EV

∂s0

+ Γ t, t0 G2 t0, s0 2 ∂
2EV

∂s02
=

∞

−∞
ρ t, t0, s0, s

∂f
∂t0

ds

37

Inserting the asset value V = S t, t0, s0 and the functions
G1 = rs and G2 = s, where r > 0 is a parameter, into (37), gives

∂EV

∂t0
+ rs0 + Γ t, t0 s0

∂EV

∂s0
+ Γ t, t0 s20

∂2EV

∂s02
= 0 38

As an alternative, inserting V = S t, t0, s0 Exp −r t − t0 ,
which expresses depreciating asset value, the functions G1 = rs
and G2 = s, and c = 1/2 into (37), assuming constant correla-
tion strength σ2, and considering the limit when the correla-
tion time τ⟶ 0 approaches zero, give

∂EV

∂t0
+ rs0

∂EV

∂s0
+ σ2

2 s0
∂EV

∂s0
+ σ2

2 s20
∂2EV

∂s02
= rEV 39

The term σ2/2 s0 ∂EV /∂s0 in (39) is absent in the orig-
inal Black and Scholes [1] equation which is based on nondif-
ferentiable white noise and the Ito [2] stochastic integral.
However, applying the Fisk–Stratonovich [13, 14] integrals
would have led to (39) [15]. Solving (39) gives

EV t0, s0 = 1
2 e

−rt−t0σ2/2 −et0 r+σ2/2 K Erf c
−rt + rt0 + Ln K − Ln s0

σ 2 t − t0

+ et r+σ2/2 s0Erf c
− t − t0 r + σ2 + Ln K − Ln s0

σ 2 t − t0
, EV t, s0

= Max s0 − K , 0

40

where Ln z is the natural logarithm of z and Erf c z is the
complementary error function of z.

Example 1. Consider the value EV of a European vanilla
call option where the underlying asset price s0 and the
strike price K are both s0 = K = $100, the annualized
risk-free interest rate is r = 5%, the volatility of the under-
lying asset (i.e., the standard deviation of the stock’s
returns, i.e. the square root of the constant correlation
strength) is σ = 20%, the maturity period (i.e., time of
option expiration) is t = 1 year, and the time until matu-
rity is t − t0 = 1 year where t0 = 0. Inserting into (40) gives
EV = 11 7746. However, inserting the same values into the
Black and Scholes [1], where the term σ2/2 s0 ∂EV /∂s0
in (39) is absent causing a slightly different (40), gives
the lower value EVBS = 10 4506, where the subscripts BS
denote Black and Scholes [1]. Using the Mathematica 13
software package (http://www.wolfram.com), Figure 1 plots
the values EVBS and EV as functions of each of the six
parameters s0, K , σ, t, r, and t0, keeping the other five
parameter values at their benchmarks specified above and
marked with a vertical dashed line in each panel.

The value EV according to (40) exceeds the Black and
Scholes [1] value EVBS throughout. In Figure 1(a), EV and
EVBS increase in s0, while in Figure 1(b), they decrease in K.
In Figures 1(c), 1(d), and 1(e), EV and EVBS increase in σ, t,
and r. Substantial increases in the standard deviation σ and
the interest rate r cause increasing discrepancies between EV
and EVBS. In Figure 1(f), EV and EVBS decrease in t0 reaching
EV = EVBS = 0 when t0 = t = 1.

The value of futures in finance is V = S t, t0, s0 − K
Exp −r t − t0 , where K ≥ 0 is the constant cost of
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purchasing the futures which is subtracted from the asset
value S t, t0, s0 , which satisfies (39) since ∂ S t, t0, s0 − K
Exp −r t − t0 /∂t0 = r S t, t0, s0 − K Exp −r t − t0 .
However, V = S t, t0, s0 − K t0 Exp −r t − t0 does not
satisfy (39) since a cost K t0 of purchasing the futures
dependent on the initial asset value S t, t0, s0 at time t0
violates (39).

Assume the asset value

V = f t, t0, S t, t0, s0 = Exp −
t

t0

q t, u du H S t, t0, s0

41
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Figure 1: The values EVBS and EV as functions of each of the six parameters (a) s0, (b) K , (c–e) σ, t, and r, and (f) t0, relative to the
benchmark parameter values s0 = K = $100, σ = 20%, t = 1, r = 5%, and t0 = 0.
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where H S t, t0, s0 and q t, u are arbitrary functions.
Equation (41) can be interpreted as an extended Feynman–
Kac [28] equation. Applying ∂f /∂t0 = f q t, t0 , inserting
into (37) gives

∂EV

∂t0
+ G1 t0, s0 + Γ t, t0

2
∂
∂s0

G2 t0, s0 2 ∂EV

∂s0

+ Γ t, t0 G2 t0, s0 2 ∂
2EV

∂s02
= q t, t0 EV

42

5. The Random Draw Gives an Equivalent and
Associated Stochastic Process

As in (1) and (2), let S t be given by the differential equa-
tion with differentiable noise ζ t , that is,

S t =G1 t, S t + G2 t, S t ξ t , E ξ t

= 0, E ξ t ξ t ′ = σ2

2τΠ t − t ′
43

This section mimics ξ t and (43) applying a nondiffer-
entiable noise interpreted as a random draw, which can be
useful in numerical applications.

Assume that (43) is realized through the Euler [32]
scheme

St+h = St + G1 t, St + Γ t, t0
2

∂ G2 t, St 2

∂St
h +G2 t, St d ∗wt ,

d ∗wt = Rd 0, 2Γ t, t0 h , Γ t, t0 =
t

t0

E ξ t ξ v dv

44

where d ∗wt expresses a random draw from some distribu-
tion d with expectation zero and variance 2Γh and h is the
time step. Consider an arbitrary function H . The random
draw means that the noise is nondifferentiable and without
bounded variation, that is, E H St Rd 0, 2Γh = 0, while E
H St Rd 0, 2Γh 2 = E H St 2Γh . Taylor expansion
implies

H St+h =H St + G1 t, St + Γ t, t0
2

∂ G2 t, St 2

∂St
h +G2 t, St d ∗wt

=H St +H ′ St G1 t, St + Γ t, t0
2

∂ G2 t, St 2

∂St
h +G2 t, St d ∗wt

+ 1
2H

″ St 2 G1 t, St + Γ t, t0
2

∂ G2 t, St 2

∂St
G2 t, St d ∗wth +G2 t, St 2d ∗wt

2

+O h2

45

where H ′ St and H″ St mean derivative and double deriv-
ative, respectively, with respect to the asset value St at time t.
Moments of higher order than two for the distribution d are
assumed to be of order h larger than one, which applies for
the Gaussian distribution. Taking the expectation E H St
of (45) and differentiating with respect to time t, which

involves considering the limit as the time step h approaches
zero, give

d
dt

E H St = E G1 t, St + Γ t, t0
2

∂ G2 t, St 2

∂St
H ′ St

+ E Γ t, t0 G2 t, St 2H″ St

46

Applying partial integration of (46) and assuming that
the density ρ t, t0, s0, s is zero at the boundaries s = −∞
and s =∞ imply

d
dt

∞

−∞
ρ t, t0, s0, s H s ds =

∞

−∞
ρ t, t0, s0, s H s ds

=
∞

−∞
ρ t, t0, s0, s G1 t, s + Γ t, t0

2
∂ G2 t, s 2

∂s
H ′ s

+ Γ t, t0 G2 t, s H″ s ds

= −
∞

−∞

∂
∂s

ρ t, t0, s0, s G1 t, s + Γ t, t0
2

∂ G2 t, s 2

∂s
H s ds

+ Γ t,t0
∞

−∞

∂2

∂s2
G2 t, s 2ρ t, s H s ds

47

Since H s is arbitrary, (47) implies

∂ρ t, t0, s0, s
∂t

= −
∂
∂s

G1 t, s + Γ t, t0
2

∂
∂s

G2 t, s 2 ρ t, t0, s0, s

+ Γ t, t0
∂2

∂s2
G2 t, s 2ρ t, t0, s0, s

48

which is equivalent to (32) which assumes differentiable
noise ζ t . Equation (48) expresses that the random draw
causes a realization of the asset value S t which leads to a
probability density ρ t, t0, s0, s which is equivalent for non-
differentiable and differentiable noise ζ t . Hence, the partial
differential equation in (48) for the probability density ρ t,
t0, s0, s can be solved numerically by applying random
draws with corresponding averaging. See Appendix G for
three examples.

6. Limitations, Opportunities, and
Future Research

The use of differentiable noise ζ t may potentially intro-
duce numerical stability issues. Future research should
develop models to mitigate instability while preserving the
benefits of differentiability. The model relies on accurately
estimating τ and β. Advanced parameter estimation tech-
niques, such as maximum likelihood estimation or Bayesian
inference, could be integrated to enhance the robustness of
the parameter estimates. For example, instead of the product
form Π t − t ′ ≡Π1 t − t ′ Π2 t − t ′ in (6), alternative
functional forms may be explored which may potentially
better capture market dynamics according to empirical vali-
dation. Two examples are a power-law correlation function
or a combination of exponential decays.
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When developing the generalized Fokker–Planck equa-
tion in (32) to account for differentiable noise ζ t , the def-
inition Γ t, t0 ≡ t

t0
E ξ t ξ v dv in (3) is used to represent

the evolution of the probability density ρ t, t0, s0, s for the
asset value S t . Since the generalized Fokker–Planck equa-
tion is more complex than the traditional one, analytical
solutions may be challenging to obtain. The presence of
the term Γ t, t0 in (32) complicates the direct integration
and solution of the equation. Analogously, the complexity
of the boundary conditions and initial values in real-world
applications can be problematic. For example, the assump-
tion that the density ρ t, t0, s0, s is zero at the boundaries
s = −∞ and s =∞ in (46) may not hold in practical scenar-
ios. Some of these challenges may be addressed as follows:

1. Simplified numerical approaches or approximations
may be developed that can handle the complexity of
the generalized Fokker–Planck equation in (32). For
instance, finite difference or spectral methods could
be adapted to better accommodate the additional
terms introduced by Γ t, t0 .

2. Stochastic simulation techniques, such as Monte
Carlo methods, may be applied to approximate the
solutions of the generalized Fokker–Planck equation
in (32). These simulations may help understand the
distributional properties of S t without solving the
equation analytically.

3. Regularization techniques may be utilized to stabilise
the numerical solutions. For example, Tikhonov regu-
larization or other smoothing methods could be
applied to the generalized Fokker–Planck equation
in (32) to handle the complexities introduced by the
differentiable noise terms.

4. Hybrid models may be considered that blend differen-
tiable and nondifferentiable noise processes. This
could simplify the correlation structure while retain-
ing the advantages of differentiable noise in modelling
and forecasting.

Addressing the practical numerical implementation and
parameter estimation challenges through hybrid approaches
and advanced estimation techniques may enhance the
model’s applicability and performance.

7. Conclusion

This article assumes differentiable noise with nonzero corre-
lation time and uses a generalized Novikov’s [7] theorem for
Gaussian noise to develop a Kolmogorov [8] backward equa-
tion for the probability density of an asset value as a function
of time. An example of the model is to develop an alternative
to the Black and Scholes [1] partial differential equation in
finance, which plays a major role in the pricing of financial
instruments, especially options and futures. Our partial
differential equation is generalized to account for nonzero
correlation time for the derivative of the noise with respect
to time.

Coincidence exists between solutions applying the differ-
entiable and nondifferentiable Gaussian noise when the
Fisk–Stratonovich [13, 14] integrals are used for nondiffer-
entiable noise. Realizations and solutions of the evolution
of an asset value based on randomly drawing noise from
probability distributions are developed, discussed, and ana-
lyzed. Mathematical models based on differentiable noise
can improve forecasts.

The article contrasts with the literature which commonly
applies the Ito [2] stochastic integral to develop the Kolmo-
gorov [8] equation or Fokker–Planck equation [9, 10] from
continuous nondifferentiable noise with zero correlation
time.

Appendix A. A Differentiable Noise Function as
an Example

Let the noise derivative be

ξ t = Sin t + θ A 1

where t is time and θ is uniformly distributed, that is,

ρθ θ =
1/2π, when 0 ≤ θ ≤ 2π
0, otherwise

A 2

The probability P Sin t + θ ≤ ξ that ξ t = Sin t + θ is
less than or equal to ξ is given as

P Sin t + θ ≤ ξ = 1 −〠
i

P ArcSin ξ + 2πi ≤ t + θ

≤ π −ArcSin ξ + 2πi

= 1 −〠
i

π−ArcSin ξ −t+2πi

ArcSin ξ −t+2πi
ρθ θ dθ

A 3

Differentiating the probability P Sin t + θ ≤ ξ in (A.3)
with respect to the noise derivative ξ t gives the probability
density

ρξ ξ = ∂
∂ξ

P Sin t + θ ≤ ξ = −
∂
∂ξ

〠
i

π−ArcSin ξ −t+2πi

ArcSin ξ −t+2πi
ρθ θ dθ

= 1

1 − ξ2
1/2 〠

i

ρθ π −ArcSin ξ − t + 2πi

+ ρθ ArcSin ξ − t + 2πi = 1

π 1 − ξ2
1/2 , ξ

2 ≤ 1

A 4
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where

1

−1
ρξ ξ dξ =

1

−1

1

π 1 − ξ2
1/2 dξ =

ArcSin 1 −ArcSin −1
π

= 1

E Ξ =
1

−1
ρξ ξ ξdξ =

1

−1

ξ

π 1 − ξ2
1/2 dξ = 0

E Ξ2 =
1

−1
ρξ ξ ξ2dξ =

1

−1

ξ2

π 1 − ξ2
1/2 dξ =

1
2

A 5

To calculate correlation, inserting t ′ = t + v into (A.5)
gives

ξ t ′ = ξ t + v = Sin t + v + θ

= Sin v Cos t + θ + Cos v Sin t + θ

= Sin v 1 − ξ t 2 1/2 + Cos v ξ t

A 6

which implies

ρξξ′ ξ t ′ , ξ t = ρξ ξ t ρξ′/ξ ξ t ′ , ξ t

= 1

π 1 − ξ2
1/2 δ ξ t ′ − Sin v 1 − ξ t 2 1/2 − Cos v ξ t

A 7

which gives the correlation

E ξ t ′ , ξ t =
1

−1

1

−1
ξ t ′ ξ t ρξξ′ ξ t ′ , ξ t dξ t ′ dξ t

=
1

−1

1

−1

δ ξ t ′ − Sin v 1 − ξ2
1/2

− Cos v ξ t ξ t ′ ξ t

π 1 − ξ2
1/2 dξ t ′ dξ t

=
1

−1

Sin v 1 − ξ2
1/2

+ Cos v ξ ξ

π 1 − ξ2
1/2 dξ

= Sin v
π

1

−1
ξdξ + Cos v

1

−1

ξ2

π 1 − ξ2
1/2 dξ

= Cos v E ξ2 = Cos v
2 =

Cos t − t ′
2

A 8

which implies

Γ t, t0 ≡
t

t0

E ξ t , ξ v dv = 1
2

t

t0

Cos t − v dv = 1
2

0

t0−t
Cos z dz = 1

2 Sin t − t0

Γ t, t0 ≡
t

t0

E ξ t0 , ξ v dv = 1
2

t

t0

Cos t0 − v dv = 1
2

t−t0

0
Cos z dz = 1

2 Sin t − t0

A 9

Inserting the above equations into the variance of the
noise ζ t at time t implies

Ω 2 t, t ′, t0 ≡
t ′

t0

t

t0

E ξ u ξ v dudv

= 1
2

t ′

t0

t

t0

Cos u − v dudv

= 1
2

t ′

t0

t−v

t0−v
Cos z dzdv

= 1
2

t ′

t0

Sin t − v − Sin t0 − v dv

= 1
2 −Cos t − t0 − Cos t′ − t0 + 1 + Cos t − t ′

A 10

∂2Ω 2 t, t ′, t0
∂t∂t ′

= 1
2Cos t − t ′ = E ξ t ′ , ξ t

A 11

Inserting t = t ′ into (A.10) and (A.11) implies

Ω 2 t, t, t0 = 1 − Cos t − t0

∂Ω 2 t, t, t0
∂t

= Sin t − t0 = 2Γ t, t0
A 12

∂Ω 2 t, t, t0
∂t0

= −Sin t − t0 = −2Γ t, t0 = −2Γ t, t0

A 13

Appendix B. Random Variable and
Stochastic Process

Let X be a random variable, where X is a function

X Ω⟶ Rn B 1

where Ω is the set of possible outcomes and X assigns a
number in Rn to each element in Ω.

As an example, consider two coins with an M or K for
each coin. The set of possible outcomes in tossing both coins
once is Ω = MK, MM, KK, KM . X relates a real number to
each of the elements of this set, say for example

X MK = 1,
X MM = 2,
X KK = 3,
X KM = 4

B 2

Let Λ be the sigma-algebra of subsets of Ω. Thus, Λ has
for the case Ω = MK, MM, KK, KM 15 elements, to read

10 Journal of Applied Mathematics
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Λ = MK , MM , KK , KM , MK, MM , MK, KK ,
MK, KM , MM, KK , MM, KM , KK, KM ,
MK, MM, KK , MK, KK, KM , MM, KK, KM ,
MK ,MM, KK , KM , Ø

B 3

Consider the probability P defined as P Λ⟶ 0, 1 .
The probability P is a function that relates a number in the
interval 0, 1 to each member in Λ, where P Ø = 0. Thus,
P is a measure on Ω. We may set for the case above

P MK = P MM = P KK = P KM = 1
4 ,

P MK,MM = P MK, KK = P MK, KM
= P MM, KK = P MM, KM

= P KK, KM = 1
2 ,

P MK,MM, KK = P MK, KK, KM

= P MM, KK, KM = 3
4 ,

P MK,MM, KK, KM = 1, P Ø = 0
B 4

Generally, we let B denote a Borel set in Rn, such that

X−1 B⟶Λ B 5

which also can be expressed as X−1 B ∈Λ. For the example
above, P MK equals the probability that X = 1, that is,
P X−1 1 = P MK = 1/2.

A stochastic process is a parametrized collection of ran-
dom variables

Xt t∈T B 6

where T is usually the half line 0,∞ , an interval, or the
nonnegative integers.

The most important restriction for martingales is that
Xt t∈T is a martingale if

E
Xs

xt
= Xs, s ≥ t B 7

where xt is a nondecreasing sequence of Xt .

Appendix C. Examples for Section 2 When c =
1/2 and c = 1
Inserting c = 1/2 into (12) gives

Ω 2 t, t0 = σ2
t

t0

Γf 1, 0 − Γf 1, v − t0
τ

dv

= σ2
t

t0

1 − Exp
t0 − v
τ

dv

= σ2 t − t0 − τ + τExp −
t − t0
τ

C 1

Inserting c = 1 into (12) gives

Ω 2 t, t0 = σ2
τ

β

t

t0

Γf 2, 0 − Γf 2, v − t0
τ

dv

= σ2
τ

β

t

t0

1 − Γf 2, v − t0
τ

dv

= σ2
τ

β
t − t0 − 2τ − Exp −

t − t0
τ

− t − t0 − 2τ

C 2

Hence, ∂Ω 2 /∂t0 = −2Γ t, t0 = = −∂Ω 2 /∂t, which
applies generally.

Inserting (12) when c = 1/2 into (14) gives

Ω 2 t, t0 =
σ2 t − t0 − τ , t − t0

τ
≫ 1

σ2
t − t0

2

2τ , t − t0
τ

≪ 1
C 3

If the noise derivative ξ t is Gaussian distributed, taking
the limit τ⟶ 0 in (C.3) gives Brownian motion, that is,

Limτ⟶0
Π1 u

2τ = δ u ,

Ω 2 t, t0 ≡
t

t0

t

t0

E ξ u ξ v dudv

= σ2
t

t0

t

t0

δ u − v dudv

C 4

Inserting (C.2) when c = 1 into (14) gives

Ω 2 t, t0 =

σ2
τ

β
t − t0 − 2τ , t − t0

τ
≫ 1

σ2
τ

β

t − t0
3

6τ2 , t − t0
τ

≪ 1
C 5
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Assuming t ≥ t ′ and inserting c = 1/2 into (15) implies

Ω 2 t, t ′, t0 = σ2

2
τ2c−1

β2c−1

t′

t0

Γf 2c, 0 − Γf 2c, v − t0
τ

+ Γf 2c, 0 − Γf 2c, t − ν

τ
dv

= σ2

2
t′

t0

1 − Exp t0 − v
τ

+ 1 − Exp −t + v
τ

dv

= σ2

2 2t ′ − 2t0 + τ Exp t0 − t ′
τ

+ Exp t0 − t
τ

− τ 1 + Exp t ′ − t
τ

, t ≥ t ′ ≥ t0

C 6

Assuming t ′ ≥ t and inserting c = 1/2 into (15) implies

Ω 2 t, t ′, t0 = σ2

2 t + t ′ − t − t ′ − 2t0 + τ Exp t0 − t ′
τ

+ Exp
t0 − t
τ

− τ 1 + Exp −
t − t′

τ

C 7

Inserting t = t ′ into (C.6) and (C.7) gives Ω 2 t, t, t0
= σ2 t − t0 + τ Exp − t − t0 /τ − 1 , which confirms (12).
Equations (C.6) and (C.7) can also be expressed as

Ω 2 t, t′, t0 =

σ2

2 t + t ′ − t − t ′ − 2t0 − τ , t − t0
τ

≫ 1, t
′ − t0
τ

≫ 1, t − t′
τ

≫ 1

σ2

2
t − t0

2

2τ +
t ′ − t0

2

2τ + t − t′ 2

2τ , t − t0
τ

≪ 1, t
′ − t0
τ

≪ 1, t − t ′
τ

≪ 1

C 8

Equation (C.8) implies Limτ⟶0Ω
2 t, t ′, t0 = σ2 t −

t0 + t ′ − t0 − t − t ′ /2, which is Brownian motion if the
noise derivative ξ t is Gaussian.

Assuming t ≥ t ′ and inserting c = 1 into (15) imply

Ω 2 t, t ′, t0 = σ2

2
τ

β

t ′

t0

Γf 2, 0 − Γf 2, v − t0
τ

+ Γf 2, 0 − Γf 2, t − v
τ

dv

= σ2

2
τ

β

t ′

t0

1 − Γf 2, v − t0
τ

+ 1 − Γf 2, t − v
τ

dv

= σ2

2
τ

β
−2τ + t ′ + Exp t0 − t ′

τ
2τ + t ′ − t0 − t0 + t ′ − t0

+ Exp −
t
τ

Exp t ′
τ

−t − 2τ + t ′ + Exp t0
τ

t + 2τ − t0

= σ2

2
τ

β
2t ′ − 2t0 − 2τ + Exp

t0 − t ′
τ

t ′ − t0 + 2τ

+ Exp t0 − t
τ

t − t0 + 2τ + Exp t ′ − t
τ

t ′ − t − 2τ ,

t ≥ t ′ ≥ t0 C 9

Assuming t ′ ≥ t and inserting c = 1 into (15) imply

Ω 2 t, t ′, t0 = σ2

2
τ

β
t + t ′ − t − t ′ − 2t0 − 2τ + Exp t0 − t ′

τ

t′ − t0 + 2τ + Exp t0 − t
τ

t − t0 + 2τ

+ Exp −
t − t ′
τ

− t − t ′ − 2τ

C 10

Inserting t = t ′ into (C.9) and (C.10) gives Ω 2 t, t, t0
=σ2 τ/β t − t0 − 2τ + Exp − t − t0 /τ t − t0 + 2τ , which
confirms (C.2).

Appendix D. Kolmogorov [8] Forward Equation
and Novikov’s [7] Identity

Consider the differential equation in (1), that is,

S t =G1 t, S t +G2 t, S t ξ t D 1

where G2 t, S t = f S t g t . The function g t can be
absorbed into the noise derivative ξ t to give the correlation
strength σ2 of the noise dependent on time t. Thus, we set
that G2 =G2 S t =G2 S is independent of time t.

We introduce

Φs S ≡
∞

−∞

1
G2 S

dS D 2

and assume invertibility such that S = SΦ Φ , where Φ t ≡
Φs S t . Differentiating (D.2) with respect to time t gives

Φ t = ∂Φs

∂S
S t = S t

G2 S
= G1 t, S

G2 S
+ ξ t =Ω t,Φ t + ξ t D 3

where

Ω t,Φ ≡
G1 t, SΦ Φ

G2 SΦ Φ
D 4

The Fokker–Planck equation [9, 10] for Φ t applies
Novikov’s [7] identity

ρϕ t, ϕ = −
∂
∂ϕ

ρϕ t, ϕ Ω t, ϕ + Γ
∂2

∂ϕ2
ρϕ t, ϕ D 5

where ρϕ t, ϕ is the probability density for Φ t .
Let ρ t, t0, s0, s be the density of the asset value S t as

defined in Section 3. The probability P Φ ≤ ϕ thus becomes

P Φ ≤ ϕ =
ϕ

−∞
ρϕ t, u du = P S ≤ SΦ ϕ =

SΦ ϕ

−∞
ρ t, t0, s0, u du

D 6

12 Journal of Applied Mathematics
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Differentiating (D.6) with respect to Φ t gives

∂
∂ϕ

P Φ ≤ ϕ = ρϕ t, ϕ = ρ t, t0, s0, SΦ ϕ SΦ′ ϕ

= ρ t, t0, s0, SΦ ϕ G2 t, SΦ ϕ

D 7

which implies

ρϕ t, S−1Φ s

SΦ′ ϕ
= ρ t, t0, s0, s D 8

Assuming an arbitrary function H S of the asset value S
and applying partial integration and that ρ t, t0, s0, s is zero
at the boundaries s = −∞ and s =∞ imply

d
dt

E H S =
∞

−∞
ρ t, t0, s0, s H s ds

=
∞

−∞
ρϕ t, ϕ H SΦ ϕ dϕ

=
∞

−∞
H SΦ ϕ −

∂
∂ϕ

ρϕ t, ϕ Ω + Γ
∂2

∂ϕ2
ρϕ t, ϕ dϕ

=
∞

−∞
ρϕ t, ϕ H ′ SΦ ϕ SΦ′ ϕ

G1 t, SΦ ϕ

G2 SΦ ϕ
dϕ

+Γ
∞

−∞
ρϕ t, ϕ ∂2 H SΦ ϕ

∂ϕ2
dϕ

D 9

where

SΦ′ Φ = G2 SΦ Φ

SΦ″ Φ = G2′ SΦ Φ SΦ′ Φ = G2′ SΦ Φ G2 SΦ Φ

= 1
2

∂
∂SΦ

G2 SΦ Φ 2

D 10

SΦ′ ϕ
G1 SΦ ϕ

G2 SΦ ϕ
=G1 SΦ ϕ

∂2 H SΦ ϕ

∂ϕ2

= ∂
∂ϕ

H ′ SΦ ϕ SΦ′ ϕ

= SΦ″ ϕ H ′ SΦ ϕ + SΦ′ ϕ 2H″ SΦ ϕ

= 1
2

∂
∂SΦ

G2 SΦ ϕ 2 H ′ SΦ ϕ

+G2 SΦ ϕ 2H″ SΦ ϕ

D 11

Hence,

∞

−∞
ρ t, t0, s0, s H s ds

=
∞

−∞
ρϕ t, ϕ G1 t, SΦ ϕ H ′ SΦ ϕ dϕ

+Γ
∞

−∞
ρϕ t, ϕ 1

2
∂

∂SΦ
G2 t, SΦ ϕ 2 H ′ SΦ ϕ dϕ

+Γ
∞

−∞
ρϕ t, ϕ G2 t, SΦ ϕ 2H″ SΦ ϕ dϕ

=
∞

−∞
ρ t, t0, s0, s G1 t, s H ′ s ds

+Γ2
∞

−∞
ρ t, t0, s0, s

∂ G2 t, s 2

∂s
H ′ s ds

+Γ
∞

−∞
ρ t, t0, s0, s G2 t, s 2H″ s ds

D 12

Applying partial integration and that the density ρ t, t0,
s0, s is zero at the boundaries s = −∞ and s =∞ gives

∞

−∞
H s ρ t, t0, s0, s ds

=
∞

−∞
H s −

∂
∂s

G1 t, s + Γ

2
∂
∂s

G2 t, s 2 ρ t, t0, s0, s

+ Γ
∂2

∂s2
G2 t, s 2ρ t, t0, s0, s ds

D 13

Thus, since H S is arbitrary, differentiating the density
with respect to time t gives

∂ρ t, t0, s0, s
∂t

= −
∂
∂s

G1 t, s + Γ

2
∂
∂s

G2 t, s 2 ρ t, t0, s0, s

+ Γ
∂2

∂s2
G2 t, s 2ρ t, t0, s0, s

D 14

Hence, Novikov’s [7] generalized identity is proved by
inverse calculation.

Appendix E. The Kolmogorov [8]
Backward Equation

P x, t/x0, t0 − h − P x, t/x0, t0
h

= 1
h

∞

−∞
P x, t

y
, t0 P y, t0

x0
, t0 − h − P x, t

x0
, t0

P y, t0
y
, t0 − h dy = 1

h

∞

−∞
P x, t

y
, t0

− P x, t
x0

, t0 P y, t0
x0

, t0 − h dy

E 1

13Journal of Applied Mathematics
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Moreover,

P x, t
y
, t0 − P x, t

x0
, t0 = ∂P x, t/x0, t0

∂x0
y − x0

+ 1
2
∂2P x, t/x0, t0

∂x20
y − x0

2

E 2

Thus

−
∂P x, t/x0, t0 − h

∂t0
= ∂P x, t/x0,t0

∂x0

1
h

∞

−∞
y − x0 P y, t0

x0
, t0 − h dy

+ 1
2
∂2P x, t/x0,t0

∂x20

1
h

∞

−∞
y − x0

2P y, t0
x0

, t0 − h dy

E 3

where G1 t0, x0 = 1/h ∞
−∞ y − x0 P y, t0/x0 , t0 − h dy

and G2 t0, x0 2σ2 = 1/h ∞
−∞ y − x0

2P y, t0/x0 , t0 − h dy.

Appendix F. Riemann–Stieltjes, Ito, and Fisk–
Stratonovich [12, 13] Integrals

Let S t be given by the first-order ordinary Langevin [11]
differential equation defined in (1), that is,

S t = G1 t, S t +G2 t, S t ξ t F 1

which has the solution

S t = S t0 +
t

t0

G1 u, S u du +
t

t0

G2 u, S u ζ u du

F 2

where ξ t ≡ ζ t is the noise derivative and the noise since
ζ t is differentiable with respect to time t. The last term
on the right-hand side in (F.2) is a traditional Riemann–
Stieltjes integral, where

t

t0

G2 u, S u ξ u du =
t

t0

G2 u, S u ζ u du

=
t

t0

G2 u, S u dζ u

= LimΔ⟶0 〠
N−1

j=1
G2 t j, S t j ζ t j+1 − ζ t j

= LimΔ⟶0 〠
N−1

j=1
G2 t j, S t j ξ t j t j+1 − t j

F 3

where t0 = t1 < t2 < t3 ⋯ tN = t, Δ =Max t j+1 − t j .
Assume that the noise derivative ξ t is singular. It

exists only in some generalized sense, that is, as the distri-
butional derivative of some nondifferentiable continuous
function, for instance, the Wiener noise/process (Brownian
motion). Other processes are also possible, for example,

the Poisson process or fractional Brownian motion. Then,
ζ t j+1 − ζ t j ≠ ξ t j t j+1 − t j .

Applying the Wiener noise W as an example of nondif-
ferentiable noise, we may set

t

t0

G2 u, S u ξ u du =
t

t0

G2 u, S u dW F 4

The Ito [2] integral now implies

I
t

t0

G2 u, S u dW = E LimΔ⟶0 〠
N−1

j=1
G2 t j, S t j W tj+1 −W tj

F 5

For the Wiener noise,

E W tj W tj+1 =Min t j, t j+1 = t j, E W tj W tj = t j

F 6

Thus

E 〠
N−1

j=1
W tj W tj+1 −W tj = 0 F 7

The Fisk–Stratonovich [12, 13] integrals imply that

S
t

t0

G2 u, S u dW ⟶ E LimΔ⟶0 〠
N−1

j=1
G2

t j+1 + t j
2 ,

S t j+1 + S t j
2 W tj+1 −W tj

F 8

Thus,

E 〠
N−1

j=1

1
2 W tj+1 +W tj W tj+1 −W tj

= E 〠
N−1

j=1

1
2 W tj+1 W tj+1 −W tj+1 W tj

+W tj W tj+1 −W tj W tj

= 〠
N−1

j=1

1
2 t j+1 − t j + t j − t j = 1

2 tN − t1

= E
1
2W tN

2 − E
1
2W t1

2

F 9

Appendix G. Three Explicit Calculations
as Examples

Example 1. Let

S t =w t + ξ t ,G1 =w,G2 = 1 G 1

14 Journal of Applied Mathematics
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The solution is

S t, t0, s0 = s0 +
t

t0

w u du +
t

t0

ξ u du G 2

The expectation is

E S = s0 +
t

t0

w u du +Ω1 t, t0 = s0 +
t

t0

w u du

E S2 = s0 +
t

t0

w u du

2

+Ω2 t, t0

E Sn = E s0 +
t

t0

w u du +
t

t0

ξ u du

n

= 〠
n

k=0

n

k
s0 +

t

t0

w u du

k

E
t

t0

ξ u du

n−k

G 3

Thus,

∂E S
∂t0

= −w t0 , ∂E s
∂s0

= 1, ∂
2E S

∂s20
= 0

∂E S2

∂t0
= 2 s0 +

t

t0
w u du −w t0 +D2Ω

2 t, t0

∂E S2

∂s0
= 2 s0 +

t

t0

w u du , ∂E S2

∂s20
= 2 G 4

Hence,

∂E S
∂t0

+w t0
∂E S
∂s0

= 0

∂E S2

∂t0
+w t0

∂E S2

∂s0
+ Γ t, t0

∂2E S2

∂s02
= 0 G 5

Example 2. Let

S t = bS t + ξ t ,G1 = bS t ,G2 = 1 G 6

The solution is

S t, t0, s0 = s0Exp b t − t0 + Exp bt
t

t0

Exp −bu ξ u du

G 7

The expectation is

E S = s0Exp b t − t0

E S2 = s20Exp 2b t − t0 + Exp 2bt E
t

t0

Exp −bv ξ v dv

2

G 8

Thus

∂E S
∂t0

= s0Exp b t − t0 −b , ∂E S
∂s0

= Exp b t − t0 , ∂
2E S
∂s20

= 0

G 9

∂E S2

∂t0
= s20Exp 2b t − t0 −2b − 2Exp 2bt

E
t

t0

Exp −bv ξ v Exp −bt0 ξ t0 dv

= s20Exp 2b t − t0 −2b − 2Exp 2bt − bt0
t

t0

E Exp −bv ξ v ξ t0 dv

∂E S2

∂s0
= 2s0Exp 2b t − t0 , ∂

2E S2

∂s02
= 2Exp 2b t − t0

G 10
Hence,

∂E S
∂t0

+ bs0
∂E S
∂s0

= 0 G 11

∂E S2

∂t0
+ bs0

∂E S2

∂s0
+ Γ t, t0

∂2E S2

∂s02

= s20Exp 2b t − t0 −2b − 2Exp 2bt − bt0
t

t0

E Exp −bv ξ v ξ t0 dv + 2bs20Exp 2b t − t0

+ 2Exp 2b t − t0
t

t0

E ξ t0 ξ v dv = 0

G 12
t

t0

E ξ t0 Exp −bv ξ v dv =
t

t0

Exp −bv E ξ t0 ξ v dv

=
t

t0

Exp −bt0 E ξ t0 ξ v dv

G 13

Example 3. Let

S t =w t S t + S t ξ t ,G1 =wS,G2 = S G 14

The solution is

S t, t0, s0 = s0Exp
t

t0

w u du +
t

t0

ξ u du G 15

15Journal of Applied Mathematics
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The expectation is

E S = s0Exp
t

t0

w u du E Exp
t

t0

ξ u du

E S2 = s20Exp 2
t

t0

w u du E Exp
t

t0

2ξ u du

G 16

Now,

E Exp
t

t0

ξ u du = E 1 +
t

t0

ξ u du + 1
2

t

t0

ξ u du

2

+ 1
3

t

t0

ξ u du

4

+⋯

= 1 +Ω1 t, t0 + 1
2 Ω2 t, t0 + 1

3 Ω3 t, t0 + 1
4 Ω4 t, t0 +⋯

G 17

Assuming Gaussian noise ζ t in (G.17) implies

E Exp
t

t0

ξ u du = 1 + 〠
n=1

1
n
Ωn t, t0

= 1 + 〠
n=1

1
2n Ω2n t, t0

= 1 + 〠
n=1

1
2n

2n
n

Ω2 t, t0
2

n

= 1 + 〠
n=1

1
n

Ω2 t, t0
2

n

= Exp Ω2 t, t0
2

G 18

Thus

E S = s0Exp
t

t0

w u du E Exp
t

t0

ξ u du

E S2 = s20Exp 2
t

t0

w u du E Exp
t

t0

2ξ u du

= s20Exp 2
t

t0

w u du + 2Ω2 t, t0

E Sn = sn0Exp n
t

t0

w u du E Exp
t

t0

nξ u du

= sn0Exp n
t

t0

w u du + n2

2 Ω2 t, t0

G 19

Thus

∂E S
∂t0

= s0Exp
t

t0

w u du + Ω2 t, t0
2 −w t0 + D2Ω

2 t, t0
2

∂E S
∂s0

= Exp
t

t0

w u du + Ω2 t, t0
2 , ∂

2 E S
∂s20

= 0

∂E S2

∂t0
= s20Exp 2

t

t0

w u du + 2Ω2 t, t0 −2w t0 + 2D2Ω
2 t, t0

∂E S2

∂s0
= 2s0Exp 2

t

t0

w u du + 2Ω2 t, t0 ,

∂ E S2

∂s20
= 2Exp 2

t

t0

w u du + 2Ω2 t, t0

G 20

∂E Sn

∂t0
= sn0Exp n

t

t0

w u du + n2

2 Ω2 t, t0

−nw t0 + n2

2 D2Ω
2 t, t0

∂E Sn

∂s0
= nsn−10 Exp n

t

t0

w u du + n2

2 Ω2 t, t0

∂2E Sn

∂s02
= n n − 1 sn−20 Exp n

t

t0

w u du + n2

2 Ω2 t, t0

G 21

Hence

∂E S
∂t0

+ w t s0 + Γ t, t0 s0
∂E S
∂s0

= s0Exp
t

t0

w u du + Ω2 t, t0
2

−w t0 + D2Ω
2 t, t0
2 + w t s0 + Γ t, t0 s0

Exp
t

t0

w u du + Ω2 t, t0
2 = 0

G 22

∂E S2

∂t0
+ w t s0 + Γ t, t0 s0

∂E S2

∂s0

+ s0
2Γ t, t0

∂2 S2

∂s02
= s20Exp 2

t

t0

w u du + 2Ω2 t, t0

−2w t0 + 2D2Ω
2 t, t0

+ 2s20Exp 2
t

t0

w u du + 2Ω2 t, t0 w t + Γ t, t0

+ 2s20Exp 2
t

t0

w u du + 2Ω2 t, t0 Γ t, t0 = 0

G 23
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∂E Sn

∂t0
+ w t s0 + Γ t, t0 s0

∂E Sn

∂s0

+ s0
2Γ t, t0

∂2 Sn

∂s02
= sn0Exp n

t

t0

w u du + n2

2 Ω2 t, t0

−nw t0 + n2

2 D2Ω
2 t, t0

+ sn0Exp n
t

t0

w u du + n2

2 Ω2 t, t0 w t + Γ t, t0 n

+ sn0Exp n
t

t0

w u du + n2

2 Ω2 t, t0 Γ t, t0 n n − 1 = 0
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