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1 | INTRODUCTION
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Abstract

Accurate estimates of sensitivities of energetic materials are crucial for ensur-
ing safe production, transport, usage and destruction of explosives. When esti-
mating sensitivities, researchers most commonly follow the NATO standard
guidelines (STANAGs), in which the Bruceton method is imposed. In-
troduced in 1948, this method contains (i) an experimental design for choos-
ing which stimulus levels to measure at and (ii) a recipe for computing sensi-
tivity estimates. Although the former experimental design is supported by
both theory and simulations, few modern researchers are aware that the latter
recipe was only intended as a pen-and-paper approximation of the maximum
likelihood estimates, which are easy to compute today. The persistent use of
this outdated approximation has led to many unfortunate misconceptions
amongst users of the Bruceton method, including the rejection of many per-
fectly valid data sets and neglect of uncertainty assessments via confidence
intervals. This is both dangerous and unnecessarily wasteful. This paper sets
the record straight and explains how researchers should estimate sensitivity
via maximum likelihood estimation and how to construct confidence inter-
vals. It also shows explicitly how wasteful said approximation is via both sim-
ulations and with real data.
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thresholds is therefore crucial for ensuring safe
handling, storage, transport and destruction of ex-

It is crucial to understand the risk associated with ex-
plosives being exposed to external stimuli such as me-
chanical stress, shock, friction, physical impact, electro-
static discharge or heat. The susceptibility of an
explosive substance to react to these stimuli, resulting in
either combustion or detonation, is referred to as its sen-
sitivity [1]. This particular property might be a key factor
in determining the practical applicability of a given ex-
plosive, and a proper understanding of the sensitivity

plosives, both in military and civil sector. This paper will
focus primarily on impact sensitivity to make the exam-
ples concrete, but the reader should be aware that the
analysis generalises to all above cases.

In addition to the usage and manufacturing of new
explosives, sensitivity estimates are particularly im-
portant in the study of explosive remnants of war (ERW)
and dumped ammunition, of which there exist millions
of tonnes worldwide [2]. It has been recognised that
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ERW represent an explosive threat if disturbed, and
more recent research also proves that some ageing ex-
plosives in munitions become increasingly sensitive to
external stress, and are even susceptible to detonate
spontaneously [3,4]. Societal concerns about potential
environmental implications of explosive contamination
have also intensified recent years [5]. An increasing
number of people have been affected by the human-
itarian consequences from man-made disasters in the
latest decades, and the Russian aggression against Uk-
raine, which started in 2014, is the most recent example
of the horrors of mines, unexploded ordnance (UXO)
and other ERW. In many cases, the ammunition used in
this conflict may have a low reliability due to age and
storage conditions, causing them to malfunction [6].
Based on the estimated failure rate of these munitions,
the expenditure of artillery rounds alone could produce
over 200,000 new UXO each passing month [7-9]. Addi-
tionally, there are also the UXO produced by other
weapon systems, as well as ammunition that has yet to
function as intended, such as mines, booby traps, and
munitions stockpiles that may be abandoned and parti-
ally destroyed. According to a recent assessment (as of
January 2023) by the Ukrainian Prime Minister Denys
Shmyhal, about 250,000 square kilometres, or roughly
40% of the Ukrainian territory, is now contaminated
with munitions [10].

There are multiple ways of estimating impact sensi-
tivity, but arguably the most common is to employ an
apparatus called a fallhammer, in which a weight of
fixed mass is repeatedly dropped onto samples of the ex-
plosive of interest [11]. The researcher then observes
which drops lead to explosions. Ideally, one would have
preferred to estimate a material’'s impact sensitivity as a
single energy level, where one would know for certain
that any impact of energy below this value would never
cause an explosion, and, vice versa, that any impact of
energy above this level always would. However, when
dropping the fallhammer weight from the same height
repeatedly, it is rarely the case that all drops cause the
same reaction. The task of estimating sensitivity is there-
fore a statistical problem, in which the best one can do is
to estimate the probability of an explosion occurring giv-
en a certain impact energy. As one would expect, this
probability of an explosion occurring increases with the
drop height. Most commonly, the median value h, is es-
timated, which represents the (log) height at which there
is a 50 % probability of an explosion occurring. However,
for many practical applications, extreme quantiles like
hy, or hyy (corresponding to the (log) heights at which
there are a 1% and 99 % probability of an explosion oc-
curring, respectively) are more relevant.

Pyrotechnics

Researchers, manufacturers and military personnel
determining the sensitivity of energetic materials most
commonly follow NATO'’s standard guidelines (STA-
NAGs) when conducting their experiments. The STA-
NAGs for measuring sensitivity to friction [12], shock
[13] and impact [14] all impose the use of the Bruceton
method. Introduced by Dixon and Mood [15] in 1948,
this method consists of two parts:

e an experimental design for choosing the drop heights
for the fallhammer experiments (henceforth referred
to as the Bruceton design),

e an approximate estimate of hs, from the data obtained
(henceforth referred to as the 1948 approximation).

Although more sophisticated experimental designs have
been introduced since [16-19], the Bruceton design is
nevertheless still imposed in the aforementioned STA-
NAGs, and provides a simple and model-independent
recipe for choosing the impact levels. Furthermore, the
long-term behaviour of up-and-down designs (which in-
clude Bruceton as a special case) has been extensively
studied [20-25], and the construction of confidence in-
tervals based on the large-sample properties of the Bru-
ceton design (see Section 2.2) has been explicitly mathe-
matically verified [23-25]. However, what is not well-
known to many modern researchers is that the 1948 ap-
proximation was only intended as a pen-and-paper alter-
native to calculating the maximum likelihood estimators
(MLES) of the model for the sensitivity. Dixon and Mood
[15] explain that ideally, one would calculate the MLEs
directly, but that “a significant simplification can be
made by neglecting a small part of the information in
the sample.” This was a useful simplification in 1948, be-
fore the advent of computers. Today, the MLEs in mod-
els for binary outcomes can easily be computed numeri-
cally in a fraction of a second with standard spreadsheet
software like Microsoft Excel or virtually any general-
purpose programming language like Python, MATLAB
or R.

Even worse, a serious confusion has arisen amongst
modern users of the Bruceton method from the fact that
the 1948 approximation is not always valid. As Dixon
and Mood [15] explain, the accuracy of their approx-
imation depends on a certain numerical criterion being
satisfied by the data, and it can result in inaccurate esti-
mates if applied wrongly. However, many believe that
when the approximation is not valid, then the data are
not good enough and must therefore be discarded. That
is, the researcher has obtained a perfectly valid data set
from his or her experiments; the MLEs exist and can be
computed numerically. Yet, when the 1948 approx-
imation is employed, the data will be deemed “not
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valid”, simply because the approximation does not apply.
However, this is of no relevance, as the MLEs can be
computed directly, regardless of the validity of the ap-
proximation. Therefore, uncritical use of said approx-
imation is both unnecessary and wasteful. Instead, im-
pact sensitivities ought to be estimated nowadays using
maximum likelihood theory directly, not using an obso-
lete pen-and-paper approximation from over 75 years
ago.

Beyond acquiring an accurate point estimate of hs,
from data, it is equally important to assess the un-
certainty of this estimate. Without a proper quantitative
evaluation of uncertainty, a point estimate is just as use-
ful as an initial guess. In statistical inference, uncertainty
is most commonly reported by means of confidence in-
tervals (CIs). Unfortunately, the construction of CIs has
almost been entirely neglected in the sensitivity testing
literature. It seems like the primary focus has been on
inventing new experimental designs which yield more
efficient point estimates, without any regard to the con-
struction of ClIs [16,17,19]. NATO’s standard guidelines
for sensitivity tests do not require the researcher to re-
port CIs, or even instruct them on how this should be
done [12-14]. As a result, many databases on impact
sensitivity data only contain a single estimate (namely
1:150) without any CIs or the original data from which ClIs
could be computed [26-29]. Thus, without the original
data, CIs have to be redundantly re-estimated using re-
gression analysis [30]. For binary response data, there
are three main alternatives for constructing CIs, namely
via the delta method, via Fieller's theorem or via the
likelihood ratio test. Indeed, Dixon and Mood explain
how to combine their approximation with the delta
method to obtain CIs for hs, [15]. However, numerous
simulation studies have since demonstrated that the del-
ta method is consistently unfavourable for binary re-
gression of this kind [31-35]. The last of these studies
looked at the Bruceton design specifically, and found
that Fieller's theorem yielded the most accurate con-
fidence intervals, and that the delta method performed
the worst in all cases.

This paper reports how to compute MLEs, estimate
quantiles and construct confidence intervals when using
the Bruceton design for estimating sensitivity. In partic-
ular, it is explained why the 1948 approximation is to be
avoided, by comparing it to the MLEs in a simple simu-
lation study. Then, five real datasets measuring the im-
pact sensitivity of remnants of amatol from the Second
World War are considered, all of which are deemed “not
valid” by the 1948 approximation. This illustrates the
point that a proper statistical analysis can yield a far bet-
ter insight into the data obtained than uncritical usage of
the 1948 approximation.

2 | STATISTICAL ESTIMATION OF
IMPACT SENSITIVITY

This section covers the mathematical background re-
quired for statistical estimation of impact sensitivity.
Suppose one has conducted n fallhammer drops, where,
typically, n = 30. Letting h,,...,h, denote the heights
from which the hammer was dropped, one observes the
binary outcomes y, € {0,1}, for i=1,...,n, where
¥; = 1 if an explosion occurs at height k; and y; = 0 oth-
erwise.

For many types of explosives, the probability that
¥; =1 (i.e. that an explosion occurs) can be modelled
reasonably accurately using probit regression on a log
scale,

Pr(y,=1) = ®(a + fx), (1)

where ®(x) = (277) /2 [* e "/2dt is the standard normal
cumulative distribution function (cdf), x; =logh; for
i=1,...,n for i=1,...,n, and the constants a,f are
the parameters of the model, to be estimated from data.
Figure 1 provides a visual illustration of the model in
Equation 1. The question of how the (log) heights
X, ...,X, are chosen is discussed in detail in Section 3.
From Equation 1, the median hs, is given by

hs, = _a/ﬂa (2)

and, more generally,
thOq = Tv (3)

where z, = ®'(q) is the g-quantile of the standard nor-
mal distribution. Note that z,,, = 0, so Equation 2 can be
recovered from Equation 3.

Another common parametrisation of Equation1 is
given by

Pr(y =1) = @(*—F), )

from which it is clear that

u=—-a/f and o=1/p.

In this paper, the parametrisation of Equation 1 is used,
since this is arguably more natural and insightful. In-
deed, firstly, if one were to include another covariate x’
to the model rather than just the (log) height x of the
drop, one would extend linearly,
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FIGURE 1 The probit curve governing the probability of an explosion occurring, with «=—3.0 and §=2.0. Here, on a normalised
scale, the (log) height x=2.0 yields a probability of 84% of an explosion occurring.

Pr(y’ =1) = ®(a + fx + yx),

where the parameters of the model are now «, and 7.
Secondly, it is more insightful to realise hs, as a ratio of
two parameters (namely —a /) rather than its own sepa-
rate parameter, as this explains why asymmetric con-
fidence intervals naturally arise when estimating hs,.
This point is elaborated further on in Section 2.2.

2.1 | Maximum likelihood estimation

(MLE)

Given data (x,,y;),...,(x,,¥,), the model in Equation 1
yields the likelihood

La.p)= H O(a+ 1 - Dla+fx) ™ (5)

and the log-likelihood

a.p) = {yilog@(a+ f) ©

+(1 —y;) log[l — ®(a + Bx)]}.

Note that maximising the expressions in Equation 5 and
Equation 6 is equivalent. This maximiser is called the
maximum likelihood estimator (MLE), and is the most
efficient estimator, given that the model in Equation 1 is
correct (see e.g. Ferguson [36]). We write

&, = arg max /(a, f8).
af

Although expressions for & and B are not available in
closed form, the log-likelihood in Equation 6 is globally
concave, and so & and B can easily be found numerically
via standard optimisation techniques as the Newton-
Raphson method. This functionality is built into all stan-
dard spreadsheet software, like Microsoft Excel, and vir-
tually any general-purpose programming language, like
Python, MATLAB or R.

If the parametrisation in Equation 4 is used, then the
MLE:s for u# and o are easily obtained as

ji=-a/B and 6=1/B.

Hence, the estimate for hs, is given by hey = —a /B Sim-
ilarly, the estimaEe for a general quantile h,,, is given by
hyoog = (24 — @) /P. )

For some datasets, the MLEs & and 8 do not exist.
Consider the dataset in Table 1, where there is a gap be-
tween all non-explosions and explosions. Optimising the
log-likelihood for this dataset would only force f — o
(or equivalently, o — 0), as the optimal solution is

TABLE 1 A dataset with perfect separation (no overlap).

Normalised height 1.0 1.5 2.0 2.5
Explosions 0 0 10 10
#Trials 10 10 10 10
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obtained when Pr(y,=1) is a step function. Such
datasets are usually said to satisfy perfect separation. In
the sensitivity testing literature, datasets without perfect
separation are sometimes said to contain an overlap
[17,19]. In cases where the MLEs do not exist, more
measurements must be made.

2.2 | Confidence intervals (CIs)

Once an estimate of a parameter has been obtained, it is
crucial to address its uncertainty via CIs. As an example,
a CI for hs, is an interval [u,v] (which depends on the
data) such that

Pr(u<hs, <v)=1-y,

where 1 — y is the desired confidence level, the most
standard choice being y = 0.05, resulting in a 95 % CIL.
As u and v depend on the data, they are random varia-
bles, as opposed to hs,, which is a fixed, albeit unknown,
parameter. The remainder of this section briefly explains
how to obtain CIs from sensitivity data (for a more com-
plete account, see Christensen et al. [35]). Since & and ﬁ
are functions of the outcomes y;, . ..,y,, they are random
variables with an associated probability distribution. It is
via this distribution that confidence intervals are de-
rived. However, the exact distribution of & and ﬁ is rare-
ly available in closed form, and so one relies on large-
sample theory (i.e. what happens as n — ) to obtain an
approximation. One of the most fundamental results in
mathematical statistics asserts that, under mild regu-
larity conditions on the log-likelihood function, the
MLEs are approximately normally distributed, where the
accuracy of this approximation increases as n — o. More
specifically, let 6 = (a,)" and 0 = (a,8)", and define

the Fisher information matrix J by
1 x
= 7

where 7, = a + fx, and ¢(x) = (27) e is the stan-
dard normal probability density function (PDF). Then

6~N(0,V), ®)

where V = J~'. We write J for the matrix obtained from
substituting & and ,3 for a and f in Equation 7, and let
V =J'. From Equation 8, Fieller’s theorem [37] yields
the following 100(1 — )% level CI for hs,

» g Vi
hyo+—— | hs, +
Y1 ( Vn)

FYEN {f/n + 21:150‘712 + l:liof/zz

where g:zi/szzz/ﬁ. Here, it is assumed that g < 1.
Christensen et al. [35] also cover the case where g > 1.

A common misconception in the energetic materials
literature, particularly in cases where the para-
metrisation in Equation 4 is employed, is that 4 +z,,,0
serves as a 100(1 —y)% CI for hs. By this logic,
[hozs,hWS] would be a 95% CI for hs,. However, this is
incorrect, as it wrongly assumes that o is the standard
deviation of fzso. Although the letter ¢ is commonly used
to denote standard deviations in statistics, it is important
to realise that in the context of Equation4, 0 =1/f is
simply one of the two model parameters, associated to
the horizontal stretching of the probit curve drawn in
Figure 1. It is indeed possible to derive the asymptotic
standard deviation of fzso from Equation 8 via the delta
method (see e. g. Ferguson [36]). Doing so, one obtains

~ 1
sd(hs,) ~ 3 V' Vi + 2hso Vi, + 3V,

from which CIs for hy, can be obtained directly. As
pointed out in the introduction, however, these CIs do
not perform as well as those created using Fieller's theo-
rem in simulations [31-35].

3 | THE BRUCETON METHOD

The Bruceton method, which is the recommended proce-
dure for obtaining and analysing sensitivity data
[12-14,38], is now studied in more detail. Since the
method comprises two parts, namely the Bruceton de-
sign and the 1948 approximation, these are analyses in
turn.

3.1 | The Bruceton design

Also known as the ‘up-and-down’ design, the Bruceton
design refers to the sequential experimental design pre-
sented by Dixon and Mood [15]. The design depends on
two parameters, an initial (log) drop height x, and a step
size d>0. After observing the first binary outcome
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¥y, € {0,1} from x,, the subsequent heights x,,...,x, are
decided by the rule

X —d ify,=1,
X = { %)

xi,l + d ifyi—l = 0

That is, one goes up one step at the next test when ob-
serving no explosion in the current test, or down one
step size when observing an explosion. In this way, the
Bruceton design has a rubber banding effect built into it,
such that the drop heights oscillate around the median
hso. It has been proved that this rubber banding behav-
iour guarantees asymptotic normality of the MLEs, and
the approximation in Equation 8 is thus mathematically
justified [23-25].

In practice, the amplitude of the oscillations of the
Bruceton design depends on the choice of the step size d,
and one needs to take care to make sure the step size is
not too small or too large. If d is too small, then the se-
quence X, . ..,X, will only explore a small region around
the median hs,, assuming that the initial guess X, is chos-
en close to hs,. If x; is far away from hs,, then a small
step size will increase the number of steps required to
converge to hs, in the first place. Conversely, if d is too
large, then the drops will only oscillate between extreme
quantiles, increasing the likelihood of perfect (or nearly
perfect) separation occurring. This will in turn make it
less likely that the MLEs will exist, as explained in Sec-
tion 2.1. Nevertheless, Christensen etal. [35] demon-
strated via simulations that for a wide range of step
sizes, the Bruceton design (combined with maximum
likelihood estimation and confidence intervals via Fi-
eller’s theorem) yields satisfactory results for hs, given
n = 30 measurements. For more extreme quantiles like
hyy, a larger value of n is needed (Christensen et al. [35]
recommend »n = 100), but the Bruceton design still
works consistently well.

3.2 | The 1948 approximation

Dixon and Mood [15] also provide a recipe for estimating
hs, from the obtained data (x,y,),...,(%,,»,). Un-
beknownst to many, however, is that this recipe is only
meant as an approximation to the MLEs, derived in Sec-
tion 2.1. In Appendix A, Dixon and Mood [15] write the
following:

The estimation of of u and o” is based on the principle
of maximum likelihood. We shall not maximize [the like-
lihood] directly, however because a material simplification
in the analysis can be made by neglecting a small part of
the information in the sample.

Pyrotechnics

In order to see how the approximation operates, let
N =min{} } ,y;,n— > 1, ¥}, so that N is the number
of occurrences of the least frequent binary outcome in
the data. Also, let x' be the smallest (log) height on
which this less frequent outcome occurred, and let n; de-
note the number of times it occurred at the height
X +dj, forj=0,1,... k. Here, k is the maximum height
at which the less frequent outcome occurred. Define the
sums

ES
|

> _in;

k
and B= Z i’n;.
j=0 Jj=0
The first simplification to make is to exploit that the
number of explosions at any particular height, say x, will
be at most one away from the number of non-explosions
at height x — d, due to the nature of the experimental de-
sign in Equation 9. The likelihood in Equation 5 can
therefore be simplified by treating these two numbers as
the same. Maximising the simplified likelihood obtained
then yields an equation involving the function

o(x—d/20)  G(x+d/20)
) = 12— a2 Dl + /2o

which cannot be solved analytically. However, Dixon
and Mood [15] point out that if d < 20, then a(x) can be
very closely approximated by a linear function. Perform-
ing the linearisation and simplifying the likelihood fur-
ther still results in the estimates

*—’dAil

NB — A*

0" =1.620d (T + 0.029) ,

where 1/2 is added if N=n— )y, and subtracted if
N =>"" ¥ in the equation for u".

The above derivation shows where the distinction be-
tween valid and not valid estimates comes from in the
1948 approximation. If d > 20, then the linear approx-
imation of a(x) is poor and the approximation should be
avoided. Similarly, Dixon and Mood [15] give reasons for
also avoiding cases where o > 2d. Thus, if a particular
data set yields an estimate o* for which d > 20* or
0" > 2d, then the data are deemed not valid. Note, how-
ever, that this criterion has virtually no relation to the
existence of the MLEs, or to their accuracy or stability.
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4 | SIMULATIONS

In order to evaluate the performance of the 1948 approx-
imation versus that of direct maximum likelihood esti-
mation, we conducted a simple simulation experiment.
For the sample sizes sizes n = 30,50,100 and for step
sizes d =1.0,1.25,1.5,1.75,2.0, we created S = 100,000
data sets via the Bruceton design with x; = 2.0 and true
underlying parameters a = 0 and 8 = 1. For each data
set, we computed the MLEs and theestimates y* and ¢*
based on the 1948 approximation. The results are given
in Table 2, where we see the proportion of iterations for
which the MLEs exist and the 1948 approximation yield-
ed valid estimates, respectively. For the iterations where
both methods successfully yielded an estimate, we also
report the average square difference between the esti-
mates of a,f and hs;, = —a/f. That is, the column for «
lists the average square difference (& — {—u*/0*})?, and
so on. From our results we see that although the 1948
approximation is generally in good numerical agreement
with the MLEs, it often yields non-valid estimates and
discards way too many data sets where the MLEs exist
and can be computed without problems. This is partic-
ularly the case for smaller step sizes, like for example the
case where n =100 and d=0.5, where the 1948

approximation deemed almost half of the iterations to be
not valid even though not a single one of these yielded
non-existing MLEs.

5 | REAL DATA

In this section we consider the data reported by Novik
and Christensen [4] to illustrate with a concrete example
how direct maximum likelihood estimation yields better
insight than the 1948 approximation. These data were
gathered from fallhammer experiments (as described in
Section 1) on five samples of amatol extracted from live
ordnance originating from the Second World War. The
samples are labelled as substance A,, B,C,D and E.
Table 3 summarises the use of the 1948 approximation
on these data. Even though Novik and Christensen [4]
successfully computed the MLEs and confidence inter-
vals for all of these datasets, not a single one is deemed
valid by the 1948 approximation. It is also worth point-
ing out that as NATO'’s standard guidelines for ex-
plosives and impact sensitivity tests [14] do not include a
recipe for constructing CIs, Novik and Christensen [4]
use Fieller's theorem to do so, as recommended by
Christensen et al. [35]. This points to an improvement to

TABLE 2 Results from the simulations comparing the 1948 approximation with direct maximum likelihood estimation. The columns
on the left report the mean square difference between the estimates yielded via maximum likelihood estimation and the 1948
approximation. The columns on the right report the proportion of iterations for which the MLEs converged and the 1948 approximation

yielded valid estimates, respectively.

n= 30 n= 50 n= 100
Mean square Converged Mean square Converged Mean square Converged
difference (%) difference (%) difference (%)
d a B hs, MLE 1948 @ p hs, MLE 1948 « p hs, MLE 1948
0.50 0.015 0.059 0.004 96.24 67.80 0.004 0.014 0.002 99.97 61.84 0.001 0.003 0.000 100.0 57.24
0.75 0.008 0.011 0.005 9771 89.18 0.002 0.003 0.002 99.88 94.88 0.000 0.001 0.000 100.0 98.18
1.00 0.005 0.008 0.004 92.39 88.66 0.002 0.003 0.001 98.59 97.68 0.000 0.001 0.000 100.0 99.96
1.25 0.002 0.004 0.003 92.09 8399 0.001 0.002 0.001 98.87 93.04 0.000 0.001 0.000 99.98 99.01
1.50 0.002 0.002 0.002 81.45 70.27 0.001 0.001 0.001 9513 8141 0.000 0.000 0.000 99.82 92.81
1.75 0.003 0.001 0.003 51.21 46.61 0.001 0.001 0.001 70.89 63.52 0.000 0.001 0.000 91.62 78.09
2.00 0.003 0.000 0.005 28.62 27.10 0.001 0.001 0.001 43.62 41.82 0.000 0.002 0.000 67.50 60.54
TABLE 3 The 1948 approximation applied to the amatol datasets.
Substance Analysis based on A B m" o o/d Valid/Not valid
A, Non-explosions 85 323 1.367 0.224 4.484 Not valid
B Non-explosions 31 119 1.216 0.235 4.706 Not valid
C Explosions 36 86 1.803 0.107 2.136 Not valid
D Non-explosions 155 937 1.467 0.474 9.474 Not valid
E Non-explosions 148 712 1.186 0.202 4.035 Not valid
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NATO's current recommendations for impact sensitivity
testing.

6 | CONCLUSION

This paper has covered the topic of estimating the sensi-
tivity of energetic materials, a proper understanding of
which is crucial for ensuring safe handling, storage,
transport, use and destruction of explosives. With partic-
ular focus on impact sensitivity, it was shown how to ob-
tain accurate estimates of quantiles like hs,via maximum
likelihood estimation, and how to construct confidence
intervals via Fieller's theorem. In particular, it has been
explained and demonstrated that the 1948 approx-
imation, currently imposed in the NATO standard guide-
lines measuring explosives’ sensitivity to friction, shock
and impact [12-14], discards a substantial proportion of
perfectly valid datasets. The approximation is therefore
unnecessarily wasteful compared to direct maximum
likelihood estimation. With modern computers being
able to maximise the log-likelihood directly in a fraction
of a second, there is no reason to still employ said ap-
proximation. Through an increase in accuracy of ex-
plosives testing methodology, the recommendations
made in this paper could therefore prove to be advanta-
geous in several phases of life cycle management, includ-
ing engineering, design, manufacture, use, in-service
surveillance and final disposal of explosive substances
and munitions containing explosives. In particular, as
studies show that risks related to explosive remnants of
war could intensify rather than diminish over time, we
must manage these risks in safe and effective ways. Such
positive actions will extensively depend upon a thorough
knowledge of the sensitivity thresholds of the various en-
ergetic materials.
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