

 1

I I E

 FFI-NOTAT Eksternnotat 24/01031

LybinCom 7.0 – interface description

 Author

Elin Margrethe Bøhler
Project number 549701
12 August 2024

Approvers
Roald Otnes, Research Manager; Trygve Sparr, Research Director .
The document is electronically approved and therefore has no handwritten signature.

Keywords
Undervannsakustikk, Sonar, LYBIN, Programvare, Grensesnitt

Summary
LYBIN is a robust, user friendly and fast acoustic ray-trace simulator. A broad set of parameters is used to
accurately calculate the probability of detecting objects in a given area under water with the use of sonar
technology. LYBIN can be used both with a graphical user interface and as a stand-alone calculation kernel.
The stand-alone calculation kernel is available in two different implementations: LybinCom and
LybinTCPServer. This FFI note describes the interface of LybinCom 7.0.

 2 Eksternnotat 24/01031

Contents

1 Introduction 4

2 LYBIN model data 5
2.1 Environment 12

2.1.1 Bottom back scatter 14
2.1.2 Bottom loss 15
2.1.3 Bottom profile 18
2.1.4 Bottom type 18
2.1.5 Lamberts coefficient 19
2.1.6 Ocean 21
2.1.7 Rayleigh bottom loss 22
2.1.8 Reverberation and noise measurements 24
2.1.9 Sound speed 25
2.1.10 Surface back scatter 28
2.1.11 Surface loss 31
2.1.12 Surface reflection angle 34
2.1.13 Target strength 35
2.1.14 Volume back scatter 37
2.1.15 Wave height 39
2.1.16 Wind speed measurements 40

2.2 Platform 41
2.2.1 Sensor 42

3 Initiate calculation 46

4 Calculation results 47

Code examples 55
A.1 C# code example 55
A.2 Matlab code example 58
A.3 C++ example code using LybinCom 60

Abbreviations 70

Type definitions 70

Eksternnotat 24/01031 3

References 71

 4 Eksternnotat 24/01031

1 Introduction

LYBIN [1], [2] is a well established and frequently used sonar prediction tool owned by the
Norwegian Defence Materiel Agency (NDMA) and FFI. It is in operative use by the Norwegian
Navy and in a number of other nations, and has been modified and improved for this purpose for
more than 30 years. FFI has been responsible for testing, evaluation and development of LYBIN
since 2000 and has been responsible for commercial sale and support since 2009.

LYBIN is a robust, user friendly and fast acoustic ray-trace simulator. A broad set of parameters
is used to accurately calculate the probability of detecting objects in a given area under water
with the use of sonar technology. As this probability changes with environmental properties,
LYBIN rapidly calculates the sonar coverage.

Several thousand acoustic rays are simulated traversing the water volume. Upon hitting the sea
surface and sea bed, the rays are reflected and exposed to loss mechanisms. Losses in the water
volume itself due to thermal absorption are accounted for. LYBIN estimates the probability of
detection for a given target, based on target echo strength, the calculated transmission loss,
reverberation and noise. Both active and passive sonar systems can be simulated.

LYBIN can be used both with a graphical user interface [3] and as a stand-alone calculation
kernel. This duality enables LYBIN to interact with other applications, such as mathematical
models, web services, geographic information systems, and more. The software is integrated in
combat system software, tactical decision aids and tactical trainers. LYBIN has become an
important tool in both planning and evaluation of maritime operations [4],[5].

The stand-alone calculation kernel is available in two different implementations; LybinCom and
LybinTCPServer [6]. LybinCom is implemented as a Microsoft COM [7] module for the
Windows platform. LybinTCPServer is based on Apache Thrift [8], using TCP/IP remote
procedure calls. LybinTCPServer can be built for both Windows and Linux platforms and used
from multiple programming languages.

This document describes the interface of LybinCom 7.0. The three following chapters describe
the separate parts of the interface. Chapter 2 gives a description of all the input parameters that
can be used in the simulations. Chapter 3 gives a description of how to initiate a sonar
performance calculation and Chapter 4 gives a description of all the calculation results available
from the calculation. To make it easier for the reader, we have included hyperlinks in the text.
The hyperlink is indicated with blue, underlined text, and will direct the reader to the
description of the mentioned parameter, class or type.

The Microsoft COM technology enables LybinCom to be used from different programming
languages. In Chapter 2 we have included some parts of code written in C#. This is meant as
examples, not limitations. In Appendix A at the end of this document, we have included more
complete code examples both for C# and for Matlab.

Eksternnotat 24/01031 5

2 LYBIN model data

The LybinModelData class contains all the model data to be used in a simulation: the
environment, the platform and all the parameters controlling the acoustic calculations. All the
parameters and functions in LybinModelData are listed in Table 2.1 and Table 2.2.

LYBIN has two levels of precision, called cells and steps. Cells describe the precision of the
output results grid. Steps describe the precision of the internal calculation grid. The relation
between cells and steps is by default so that the number of range steps is 10 times the number of
range cells and the number of depth steps is 20 times the number of depth cells. To avoid too
large steps, there is a maximum range step size of 50 metres and a maximum depth step size of
5 metres. If the maximum size is exceeded, additional steps are added.

The parameters TypeOfRevNoiseCalculation, UseMeasuredBeamPattern,
UseMeasuredBottomLoss, UseMeasuredHorizontalBeamWidth,
UseMeasuredPassiveProsessingGain, UseMeasuredSurfaceBackScatter,
UseMeasuredSurfaceLoss, UseMeasuredSurfaceReflectionAngles, UseMeasuredTargetStrength
and UseRayleighBottomLoss can make LybinCom use certain datasets instead of predefined
default values. In order to follow these demands, the specified datasets must be sent into
LybinCom. If LybinCom cannot find these datasets, the switches will be set back to default
values.

Table 2.1 Parameters in the LybinModelData class.

Parameter Type Default
value

Unit

DepthCells
Number of depth cells in the calculation output.

DepthCell is read only, so the function
SetDepthScaleAndDepthCells must be used to set this
parameter directly.

Integer 50

DepthCellSize
Size of the depth cells in the calculation output.

DepthCellSize is read only, so the functions
SetDepthCellSizeAndDepthSteps or
SetDepthScaleAndDepthCellSize must be used to set this
parameter directly.

Double 6 metres

 6 Eksternnotat 24/01031

Parameter Type Default
value

Unit

DepthScale
Maximum depth in the calculation.

Double 300 metres

DepthSteps
Number of depth steps to be used during the calculation.

DepthSteps is read only, so the functions
SetDepthCellSizeAndDepthSteps or
SetDepthScaleAndDepthCellSteps must be used to set
this parameter directly.

Integer 1000

DepthStepSize
Size of the depth steps to be used during the calculation.

This parameter is read only, and is derived by other
depth calculation parameters.

Double 0.3 metres

Environment
All the environmental data to be used in the calculation.

Environment

ImpulseResponseCalculation
Switch to control whether to calculate impulse response
or not.

Boolean false

ImpulseResponseDepth
The depth that the impulse response will be calculated
from.

Double 0 metres

ImpulseResponseWindowHeight
The heigth of the window that the impulse response will
be calculated from.

Double 80 metres

MaxBorderHits
Maximum number of boundary hits (sea or bottom)
allowed before a ray is terminated.

Integer 5000

NoiseCalculation
Switch to control whether to calculate the noise or not.

Boolean true

Eksternnotat 24/01031 7

Parameter Type Default
value

Unit

PassiveCalculation
Switch to control whether to perform calculations for
passive or active sonar.

Boolean false

Platform
All the platform data to be used in the calculation.

Platform

RangeCells
Number of range cells in the calculation output.

RangeCells is read only, so the function
SetRangeScaleAndRangeCells must be used to set this
parameter directly.

Integer 50

RangeCellSize
Size of the range cells in the calculation output.

RangeCellSize is read only, so the functions
SetRangeCellSizeAndRangeSteps or
SetRangeScaleAndRangeCellSize must be used to set this
parameter directly.

Double 200 metres

RangeScale
Maximum range in the calculation.

Double 10000 metres

RangeSteps
Number of range steps to be used during the calculation.

RangeSteps is read only, so the functions
SetRangeCellSizeAndRangeSteps or
SetRangeScaleAndRangeCellSteps must be used to set
this parameter directly.

Integer 500

RangeStepSize
Size of the range steps to be used during the calculation.

RangeStepSize is read only, and it is derived by other
range calculation parameters.

Double 20 metres

 8 Eksternnotat 24/01031

Parameter Type Default
value

Unit

SignalExcessConstant
Parameter affecting the relation between signal excess
and probability of detection.

Double 3

TerminationIntensity
Each ray is terminated when its intensity falls below this
value.

Double 1E-16

TravelTimeAngleRes
The distance in degrees between the start angles of the
rays to be used in the travel time calculation.

Double 1 degrees

DoTravelTimeCalculation
Switch to control whether to calculate ray travel time or
not.

Boolean false

TRLRays
Number of rays to be used in the transmission loss
calculation.

Integer 1000

TypeOfRevNoiseCalculation
Enumerator used to control how the calculation of
reverberation is performed:

0: Calculate bottom reverberation from bottom types
1: Calculate bottom reverberation from back scatter

values
2: Use measured reverberation and noise data
3: Use Lamberts law to calculate bottom

reverberation.

Enum 0

UseMeasuredBeamPattern
Tells the model to use measured beam pattern.

Boolean false

Eksternnotat 24/01031 9

Parameter Type Default
value

Unit

UseMeasuredBottomLoss
Tells the model use measured bottom loss.

If UseRayleighBottomLoss = true, it will overrule
UseMeasuredBottomLoss.

Boolean false

UseMeasuredHorizontalBeamWidth
Tells the model to use the input parameter
BeamWidthHorizontal instead of calculating the
horizontal beam.

Boolean false

UseMeasuredPassiveProcessingGain
Tells whether to use the input parameter
PassiveProcessingGain instead of calculating the
passive processing gain.

Boolean false

UseMeasuredSurfaceBackScatter
Tells the model to use measured back scatter instead of
calculating it.

Boolean false

UseMeasuredSurfaceLoss
Tells the model to use measured surface loss instead of
calculating it.

Boolean false

UseSurfaceReflectionAngles
Tells the model to use input reflection angles instead of
calculating them.

Boolean false

UseMeasuredTargetStrength
Tells the model to use measured target strengt.

Boolean false

UseRayleighBottomLoss
Tells the model to calculate bottom loss according to the
Rayleigh bottom loss algorithms.

If UseRayleighBottomLoss = true, it will overrule
UseMeasuredBottomLoss.

Boolean false

 10 Eksternnotat 24/01031

Parameter Type Default
value

Unit

UseWaveHeight
Tells the model to use wave height instead of wind speed.

Boolean false

VisualRayTraceCalculation
Switch to control whether to calculate a ray trace plot
for visualisation or not.

Boolean false

VisualBottomHits
Number of bottom hits alloved in the visual ray trace
plot.

Integer 1

VisualNumRays
Number of rays in the visual ray trace plot.

Integer 50

VisualSurfaceHits
Number of surface hits alloved in the visual ray trace
plot.

Integer 2

Table 2.2 Functions in the LybinModelData class

Function Type Unit of input
parameters

ChangeModelData(string xmlData)
Send in the complete XML LYBIN dataset as one string.

Void

GetCurrentModelData(out string modelData)
Get the complete XML LYBIN dataset as one string.

Void

SetDepthCellSizeAndDepthSteps(double cellSize, int steps)
Set the depth cell size and the number of depth steps. This setting
will overrule all earlier depth settings affecting the calculation
precision.

Void cellSize:
meters

Eksternnotat 24/01031 11

Function Type Unit of input
parameters

SetDepthScaleAndDepthCells(double scale, int cells)
Set the depth scale and the number of depth cells. This setting will
overrule all earlier depth settings affecting the calculation
precision.

Void scale: meters

SetDepthScaleAndDepthCellSize(double scale, double cellSize)
Set the depth scale and the depth cell size. This setting will overrule
all earlier depth settings affecting the calculation precision.

Void scale: meters,
cellSize:
meters

SetDepthScaleAndDepthSteps(double scale, int steps)
Set the depth scale and the number of depth steps. This setting will
overrule all earlier depth settings affecting the calculation
precision.

Void scale: meters

SetRangeCellSizeAndRangeSteps(double cellSize, int steps)
Set the range cell size and the number of range steps. This setting
will overrule all earlier range settings affecting the calculation
precision.

Void cellSize:
meters

SetRangeScaleAndRangeCells(double scale, int cells)
Set the range scale and the number of range cells. This setting will
overrule all earlier range settings affecting the calculation
precision.

Void scale: meters

SetRangeScaleAndRangeCellSize(double scale, double cellSize)
Set the range scale and the range cell size. This setting will
overrule all earlier range settings affecting the calculation
precision.

Void scale: meters,

cellSize:
meters

SetRangeScaleAndRangeSteps(double scale, int steps)
Set the range scale and the number of range steps. This setting will
overrule all earlier range settings affecting the calculation
precision.

Void scale: meters

 12 Eksternnotat 24/01031

2.1 Environment

The environment class contains all the environmental data as listed in Table 2.3.

LybinCom can handle range dependent environments. In LybinCom, range dependent
environmental data are specified for certain range intervals from the sonar. We call such a
dataset, with start and stop ranges related to a value (or sets of values), a range dependent
object. A range dependent object can contain one or more values with their range of validity.
The structure of range dependent objects with start and stop range is shown in Figure 2.1 . The
maximum number of range dependent values is only limited by the given calculation accuracy.

When the environmental properties are entered for a discrete set of locations (ranges),
LybinCom will create values at intermediate ranges using interpolation. If no environmental
descriptions are given at zero range, LybinCom will substitute the data for the nearest range
available, likewise, if data at maximum range are missing.

Table 2.3 The environment class holds all the environment data.

Parameter Type

BottomBackScatter Range dependent bottom back scatter values as a
function of each rays grazing angle with the bottom.

BottomLoss Range dependent bottom loss values as a function of
each rays grazing angle with the bottom.

BottomProfile Single measurement of depth as a function of range.

BottomType Range dependent bottom types ranging from 0-10.
The bottom type is transformed into bottom loss
before it is used in model calculations.

LambertsCoefficient Range dependent bottom back scatter model
parameter according to Lamberts law.

Ocean Parameters describing the media (ocean) and the
assumed target, such as ambient noise, pH, surface
scatter, target strenght and ship dencity.

RayleighBottomLoss Rayleigh bottom loss model parameters.

Eksternnotat 24/01031 13

ReverberationAndNoise Range dependent total reverberation and noise data
measurements.

SoundSpeed Range dependent sound speed, temperature, and
salinity measurements as a function of depth.

SurfaceBackScatter Range dependent surface back scatter values as a
function of each rays grazing angle with the sea
surface.

SurfaceLoss Range dependent surface loss values as a function of
each rays grazing angle with the sea surface.

SurfaceReflectionAngle Range dependent surface reflection angle values.

VolumeBackScatter Range dependent volume back scatter values.

WaveHeight Range dependent wave height measurements.

WindSpeed Range dependent wind speed measurements.

Figure 2.1 Schematic description of a range dependent object with start and stop parameters.

StartRange

Object

StopRange

Value(s)

StartRange

StopRange

Value(s)

StartRange

StopRange

Value(s)

 14 Eksternnotat 24/01031

The start and stop functionality provides great flexibility in defining the environmental range
dependent properties. By setting start and stop to the same range, the values will be considered
to belong to a point in space, and LybinCom will use interpolation to produce data for
intermediate ranges points. The start and stop functionality might be utilized to illustrate
meteorological or oceanographic fronts, entering ranges with finite ranges of validity to each
side of the front, and separating the sets by any small distance, across which the conditions will
change as abruptly as the user intends. In between these two extreme choices, all combinations
of these are possible to use.

The BottomProfile and the ReverberationAndNoiseMeasurements do not have the start-stop
functionality. These datasets are not likely to have constant values over range. Both
BottomProfile and the ReverberationAndNoiseMeasurements are to be inserted into LybinCom
as single values with corresponding range. The number of data points in each dataset is optional.

2.1.1 Bottom back scatter

Bottom back scatter is the fraction of energy that is scattered back towards the receiver when a
ray hits the sea bottom. A dataset representing bottom back scattering coefficients is entered
into LybinCom in tabular form, giving backscattering coefficients (in dB) for a set of grazing
angles. Based on the tabulated values, LybinCom interpolates between the given values. The
back scattering coefficients are given as dB per square meter.

Bottom back scatter is one of four possible options to calculate bottom reverberation. LybinCom
will only use the bottom back scatter values given if the TypeOfRevNoiseCalculation parameter
in LybinModelData class is set to 1 (Calculate bottom reverberation from back scatter values).

There is only one parameter in the BottomBackScatter class, the
BottomBackScatterTableCount, given in Table 2.4. The functions in BottomBackScatter class
are given in Table 2.5.

An example of how the some of the bottom back scatter functions can be used is shown in
Figure 2.2. In the example, two bottom back scatter tables are set at different ranges. At the end
of the example, the first bottom back scatter table is fetched back from LybinCom.

Table 2.4 Parameters in the BottomBackScatter class.

Parameter Type Default value Unit

BottomBackScatterTableCount
Number of bottom back scatter tables.

Integer 1

Eksternnotat 24/01031 15

Table 2.5 Functions in the BottomBackScatter class.

Function Type Unit of input
parameters

AddBottomBackScatterTable(int start, int stop, object table)
Add another bottom back scatter table. This function can only be used
once the first bottom back scatter table is added with the
SetFirstBottomBackScatterTable function.

Void

start: metres,

stop: metres

table:

dB/meter2 vs.
degrees

GetBottomBackScatterTable(int index, out int start, out int stop, out
object table)
Get the bottom back scatter table corresponding to the given index.

Void

SetFirstBottomBackScatterTable(int start, int stop, object table)
Set the first bottom back scatter table.

Void

2.1.2 Bottom loss

Bottom loss is the fraction of energy that is lost after the sound has been reflected from the
ocean bottom, usually expressed in dB. The bottom loss is also referred to as forward scattering
in underwater acoustic terminology. A dataset representing bottom loss is entered into
LybinCom in tabular form, giving bottom loss (in dB) for a set of grazing angles. Based on the
tabulated values, LybinCom interpolates between tabulated values to create loss values for
grazing angles in between the given angles.

The parameter UseMeasuredBottomLoss tells LybinCom to use BottomLossTable instead of
calculating the bottom loss. If UseRayleighBottomLoss is set to true, UseMeasuredBottomLoss
will be ignored. UseRayleighBottomLoss must always be set to false and
UseMeasuredBottomLoss to true if one wants to use predefined bottom loss values in
LybinCom. Both these parameters can be found in the LybinModelData class.

There is only one parameter in the BottomLoss class, the BottomLossTableCount, given in
Table 2.6. The functions in the BottomLoss class are given in Table 2.7.

 16 Eksternnotat 24/01031

Table 2.6 Parameters in the BottomLoss class.

Parameter Type Default value Unit

BottomLossTableCount
Number of bottom loss tables.

Integer 1

// The first bottom back scatter table
var bb = new double[3, 2];
bb[0, 0] = 11;
bb[0, 1] = 3.2;
bb[1, 0] = 33;
bb[1, 1] = 7.4;
bb[2, 0] = 88;
bb[2, 1] = 4;

// The next bottom back scatter table
var bbn = new double[3, 2];
bbn[0, 0] = 10;
bbn[0, 1] = 6.2;
bbn[1, 0] = 43;
bbn[1, 1] = 7.2;
bbn[2, 0] = 77;
bbn[2, 1] = 6.8;

_lybin.SetFirstBottomBackScatterTable(0,300, bb);
_lybin.AddBottomBackScatterTable(400, 4000, bbn);;
_lybin.TypeOfRevNoiseCalculation = 1;

// Get the first bottom back scatter table
const int index = 0;
_lybin.GetBottomBackScatterTable(

 index, out var start, out var stop, out var table);

Figure 2.2 C# code example: Two bottom back scatter tables are added to _lybin with their
range of validity. Then the first table containing range dependent bottom back
scatter values is fetched back from _lybin.

Eksternnotat 24/01031 17

Table 2.7 Functions in the BottomLoss class.

Function Type Unit of input
parameters

AddBottomLossTable(int start, int stop, object table)
Add another bottom loss table.This function can only be used once
the first bottom loss table is added with the
SetFirstBottomLossTable function.

Void

start: metres,

stop: metres

table:

dB vs. degrees

GetBottomLossTable(int index, out int start, out int stop, out
object table)
Get the bottom loss table corresponding to the given index.

Void

SetFirstBottomLossTable(int start, int stop, object table)
Set the first bottom loss table.

Void

An example of how some of the bottom loss functions can be used is shown below in Figure
2.3. In the example, the first bottom loss table is set to be valid from 0 km to 3 km. The loss
table consist of the following data: 10° : 4.2 dB, 30° : 6.4 dB and 56° : 9 dB. At the end of the
example, the first bottom loss table is fetched back from LybinCom.

 // Set the first bottom loss fan
double[,] bl = new double[3, 2];
bl[0, 0] = 10;
bl[0, 1] = 4.2;
bl[1, 0] = 30;
bl[1, 1] = 6.4;
bl[2, 0] = 56;
bl[2, 1] = 9;

_lybin.SetFirstBottomLossTable(0, 3000, bl);
_lybin.UseMeasuredBottomLoss = true;
_lybin.UseRayleighBottomLoss = false;

// Get the first bottom loss table
const int index = 0;
_lybin.GetBottomLossTable(
 index, out var start, out var stop, out var table);

Figure 2.3 C# code example: A bottom loss table is added to _lybin with its range of validity.
Then the first table containing range dependent bottom loss values is fetched back
from _lybin.

 18 Eksternnotat 24/01031

2.1.3 Bottom profile

The BottomProfile class only has one accessible parameter, the BottomProfile, which is listed in
Table 2.8. The BottomProfile can consist of any number points in range with their
corresponding bottom depths.

Table 2.8 Parameter in the bottom profile class.

Parameter Type Default value Unit

BottomProfile
Depth of bottom as function of range.

Object
(Double[x,2])

(0, 280)
(range, depth)

(metres, metres)

An example on how the BottomProfile can be used is shown in Figure 2.4. In the example, two
points are inserted. The first is the depth 300 metres at a range of 0 meter. The second is the
depth 380 metres at a range of 1000 metres.

Figure 2.4 C# code example: Bottom depth values are added to the BottomProfile.

2.1.4 Bottom type

The geo-acoustic properties of the bottom are coded by a single parameter in LybinCom.
Bottom types ranging from 1 to 9, where 1 represents a hard, rock type of bottom with low
bottom reflection loss, while 9 represents a soft bottom with a high reflection loss. In addition,
bottom types 0 and 10 have been added, representing lossless and fully absorbing bottoms,
respectively.

Bottom type is one of three options for modelling the bottom loss. Bottom type is the default
choice if both UseMeasuredBottomLoss and UseRayleighBottomLoss are set to false, which
also are their default setting. Both these parameters can be found in the LybinModelData class.

double[,] bp = new double[2, 2];
bp[0, 0] = 0;
bp[0, 1] = 300;
bp[1, 0] = 1000;
bp[1, 1] = 380;
_lybin.BottomProfile = bp;

Eksternnotat 24/01031 19

Bottom type is the default of the four possible options to calculate bottom reverberation.
LybinCom will use the given bottom type when the TypeOfRevNoiseCalculation parameter in
LybinModelData class is set to 0: (Calculate bottom reverberation from bottom types).

The BottomType class only has one accessible parameter, BottomType, which is listed in Table
2.9.

Table 2.9 Parameters in the BottomType class.

Parameter Type Default value Unit

BottomType Object
(Double[x,3])

(0, 0, 0)
(start, stop, value)

(metres, metres, -)

An example of how BottomType can be used is shown in Figure 2.5. In the example two
different bottom types are set. From the range of 0 km to 5 km, the bottom type is 4. From the
range of 5 km to 10 km, the bottom type is 2.3.

2.1.5 Lamberts coefficient

Lamberts rule is one of four possible options to calculate bottom reverberation. According to
Lamberts rule, the back scattering coefficient is given by:

// Set the bottom type
 double[,] bt = new double[2, 3];
 bt[0, 0] = 0;
 bt[0, 1] = 5000;
 bt[0, 2] = 4;
 bt[1, 0] = 5000;
 bt[1, 1] = 10000;
 bt[1, 2] = 2.3;

 _lybin.BottomType = bt;

Figure 2.5 C# code example: Bottom type values are added with their range of validity.

 20 Eksternnotat 24/01031

() 2sinσ θ µ θ= (2.1)

Where σ is the back scattering coefficient, θ is the incident grazing angle and μ is the Lamberts
coefficient.

The input parameter LambertsCoefficient is range dependent and needs supplemental start and
stop values. If LambertsCoefficient is to be used, the parameter TypeOfRevNoiseCalculation
has to be set to 3: (Calculate bottom reverberation using Lamberts rule). The parameter
TypeOfRevNoiseCalculation can be found in the LybinModelData class.

The LambertsCoefficient class has only one accessible parameter, LambertsCoefficient, which
is listed in Table 2.10. The range dependent Lamberts coefficient can be added to the
LambertCoefficient class as seen in the C# example in Figure 2.6. The default
LambertsCoefficient value is 0 dB.

Table 2.10 Parameters in the LambertsCoefficient class.

Parameter Type Default
values

Units

LambertsCoefficient
Lamberts coefficient to be
used in calculation og
bottom back scattering
values.

Object
(Double[x,3])

(0, 0, 0)
(start, stop,
value)

(metres, metres, dB)

// Lamberts rule
double[,] lc = new double[2, 3];
lc[0, 0] = 0;
lc[0, 1] = 5000;
lc[0, 2] = -20;
lc[1, 0] = 5000;
lc[1, 1] = 10000;
lc[1, 2] = -27;

_lybin.LambertsCoefficient = lc;
_lybin.TypeOfRevNoiseCalculation = 3;

Figure 2.6 C# code example: Lamberts coefficient values are added with their range of
validity.

Eksternnotat 24/01031 21

2.1.6 Ocean

The parameters in the ocean class represent the ocean environment and targets within the sea.
All the parameters in the ocean class are listed in Table 2.11.

Both Ambient noise and target strength can either be given as fixed parameters or they can be
calculated from the given environmental input. Which one of these alternatives to be used is
decided by the parameters NoiseCalculation and UseMeasuredTargetStrength in
LybinModelData.

Table 2.11 Parameters in the Ocean class.

Parameter Type Default value Unit

AmbientNoiseLevel
Noise from ambient sources.

Double 50 dB

PH
pH level in the sea water.

Double 8

PrecipitationType
Type of precipitation in the area.

0: No precipitation
1: Light rain
2: Heavy rain
3: Hail
4: Snow

Enum 0

ReverberationZone
The reverberation zone that the target is within,
relative to the ship. This parameter is only applicable
to CW-pulses.

0: MainLobe
The target is within the main lobe of the sonar,
and the targets Doppler speed is lower than the
ships own speed.

Enum 1

 22 Eksternnotat 24/01031

Parameter Type Default value Unit

1: Typical
Typical horizontal side lobe suppression, where
the targets Doppler speed is lower than the
ships own speed.

2: NoReverb
The Doppler speed of the target is equal or
higher than the ships own speed, so the
scenario become noise limited.

ShipDensity
Density of ship traffic in the area of the calculation.
The ship density can vary from 1 (low) to 7 (high).

Double 4

SurfaceScatterFlag
Tells the model if reflected ray angles will be modified
in order to simulate rough sea scattering or reflected
specularly, as from a perfectly smooth surface.

Boolean true

TargetAspectAngle
Aspect angle of target.

Double 0 degrees

TargetCource
Cource of target.

Double 0 degrees

TargetSpeed
Speed of target.

Double 10 metres/
second

TargetStrength
Target echo strenght.

Double 10 dB

2.1.7 Rayleigh bottom loss

In order to calculate the bottom loss more accurately, a Rayleigh bottom loss model is included.
The Rayleigh bottom loss is based on the physical parameter bottom attenuation, bottom sound
speed and density ratio. In order to relate these bottom parameters to other bottom models, the
sound speed in the water at bottom depth is assumed to be 1500 m/s. This sound speed is only
used in the calculation of bottom loss and will not influence any other part of the model. The
Rayleigh bottom loss is not range dependent. The parameters in the RayleighBottomLoss class

Eksternnotat 24/01031 23

are listed in Table 2.12. A C# example where Rayleigh bottom loss values are added to the
RayleighBottomLoss class is shown in Figure 2.7.

In order to make LybinCom calculate and use Rayleigh bottom loss, the
UseRayleighBottomLoss parameter in LybinModelData class must be set to true. This
parameter will overrule the parameter UseMeasuredBottomLoss if there is any conflict between
the settings of the two.

Table 2.12 Parameters in the RayleighBottomLoss class.

Parameter Type Default value Unit

RayleighBottomLoss

Object
(Double[1,3])

(0.5, 1700, 2.0)
(bottom attenuation,
bottom sound speed,
density ratio between density
in the bottom and density in
water)

dB/wavelength,
metres/second,
scalar

double bottomAttenuation = 0.8;
double bottomSoundSpeed = 1706;
double densityRatio = 4;

double[,] rbl = new double[1, 3];
rbl[0, 0] = bottomAttenuation;
rbl[0, 1] = bottomSoundSpeed;
rbl[0, 2] = densityRatio;

_lybin.RayleighBottomLoss = rbl;
_lybin.UseRayleighBottomLoss = true;

Figure 2.7 C# code example: Rayleigh bottom loss values are added to the
RayleighBottomLoss class.

 24 Eksternnotat 24/01031

2.1.8 Reverberation and noise measurements

The ReverberationAndNoiseMeasurements can consist of any number of measurements with
corresponding ranges. To find values for the ranges not given as measurements, LybinCom uses
linear interpolation.

Reverberation and noise measurements are an optional choice where one uses measured values
instead of letting LybinCom estimate reverberation and noise. LybinCom will only use the
reverberation and noise measurements values given if the TypeOfRevNoiseCalculation
parameter in LybinModelData class is set to 2: (Use the given reverberation and noise data
instead of calculating reverberation and noise).

The ReverberationAndNoiseSample can consist of any reverberation and noise samples
containing range and depth values as listed in Table 2.13. The samples can be added to the
ReverberationAndNoise class as seen in the C# example in Figure 2.8.

Table 2.13 Parameter in the ReverberationAndNoiseMeasurements class.

Parameter Type Default value Unit

ReverberationAndNoiseMeasurements
Reverberation and noise measurement
 as function of range.

Object
(Double[x,2])

(0, 80)
(range, value)

(metres, dB)

double[,] rn = new double[2, 2];
 rn[0, 0] = 0;
 rn[0, 1] = 70;
 rn[1, 0] = 5000;
 rn[1, 1] = 50;

_lybin.ReverberationAndNoiseMeasurments = rn;
 _lybin.TypeOfRevNoiseCalculation = 2;

Figure 2.8 C# code example: Reverberation and noise values are added to the
ReverberationAndNoiseMeasurements class.

Eksternnotat 24/01031 25

2.1.9 Sound speed

The SoundSpeed class handles the sound speed in the water volume. The sound speed is a
function of both range and depth. Since the sound speed is most often measured as depth
dependant profiles, the SoundSpeed class can contain multiple sound speed profiles,
representative of different ranges.

The profile can contain the parameters temperature, salinity and sound speed for a given set of
depths. If two of the three parameters are given, LybinCom will estimate the remaining one
based on depth and the two given parameters. If only one parameter is available, LybinCom can
estimate the missing parameters using depth and a default value. Sound speed, temperature and
salinity have default values. They are listed in Table 2.14. If only temperature is given, the
default salinity is used to calculate the sound speed. If only sound speed is given, the default
salinity is used to calculate temperature. If only salinity is given the default sound speed is used
to calculate the temperature. Sound speeds for intermediate depths are computed using linear
interpolation.

Table 2.14 Default values for profile parameters in the SoundSpeed class.

Parameter Default value Unit

SoundSpeed 1480 metres/second

Temperature 7,36 °Celsius

Salinity 35 parts per
thousand

There is only one parameter in the SoundSpeed class, the SoundSpeedProfileCount, given in
Table 2.15. The functions in the SoundSpeed class are given in Table 2.16. Depth is always the
first parameter in a profile. The internal order of the others is given in the function name, and is:

1. Sound speed
2. Temperature
3. Salinity

Table 2.15 Parameters in the SoundSpeed class.

Parameter Type Default value Unit

SoundSpeedProfileCount
Number of sound speed profiles.

Integer 1

 26 Eksternnotat 24/01031

Table 2.16 Functions in the SoundSpeed class.

Function Type Unit of input
parameters

AddSalinityProfile(int start, int stop, object profile)
Add another salinity profile. This function can only be used after
the first profile has been added with one of the SetFirstProfile
functions.

Void

start: metres

stop: metres

profile:

depth:

metres

sound speed:

metres/second

temperature:

°Celsius

salinity:

parts per
thousand
(ppt)

AddSoundSpeedProfile(int start, int stop, object profile)
Add another sound speed profile. This function can only be used
after the first profile has been added with one of the
SetFirstProfile functions.

Void

AddSoundSpeedAndSalinityProfile(int start, int stop, object
profile)
Add another sound speed and salinity profile. This function can
only be used after the first profile has been added with one of the
SetFirstProfile functions.

Void

AddSoundSpeedAndTempProfile(int start, int stop, object
profile)
Add another sound speed and temperature profile. This function
can only be used after the first profile has been added with one of
the SetFirstProfile functions.

Void

AddSoundSpeedTempAndSalinityProfile(int start, int stop,
object profile)
Add another sound speed, temperature and salinity profile. This
function can only be used after the first profile has been added
with one of the SetFirstProfile functions.

Void

AddTempAndSalinityProfile(int start, int stop, object profile)
Add another temperature and salinity profile. This function can
only be used after the first profile has been added with one of the
SetFirstProfile functions.

Void

Eksternnotat 24/01031 27

Function Type Unit of input
parameters

AddTempProfile(int start, int stop, object profile)
Add another temperature profile. This function can only be used
after the first profile has been added with one of the
SetFirstProfile functions.

Void

GetSoundSpeedProfile(int index, out int start, out int stop, out
object profile)
Get the sound speed profile corresponding to the given index.

Void

SetFirstSalinityProfile(int start, int stop, object profile)
Set the first salinity profile.

Void

SetFirstSoundSpeedProfile(int start, int stop, object profile)
Set the first sound speed profile.

Void

SetFirstSoundSpeedAndSalinityProfile(int start, int stop,
object profile)
Set the first sound speed and salinity profile.

Void

SetFirstSoundSpeedAndTempProfile(int start, int stop, object
profile)
Set the first sound speed and temperature profile.

Void

SetFirstSoundSpeedTempAndSalinityProfile
(int start, int stop, object profile)
Set the first sound speed, temperature and salinity profile.

Void

SetFirstTempAndSalinityProfile(int start, int stop, object
profile)
Set the first temperature and salinity profile.

Void

SetFirstTempProfile(int start, int stop, object profile)
Set the first temperature profile.

Void

 28 Eksternnotat 24/01031

An example of how some of the sound speed functions can be used is shown in Figure 2.9. In
the example, the first sound speed profile is set at the range from 0 to 2 kilometres, LybinCom is
to use the profile given by the sound speed 1480 m/s, temperature 7° Celsius and a salinity of 35
ppt at 0 metres depth and the sound speed 1510 m/s, temperature 8° Celsius and a salinity of 34
ppt at 620 metres depth.

The second sound speed profile is to be used at ranges from 2 km to 5 km. This profile contains
only sound speed measurements. At the depth of 50 m, the sound speed is 1488 m/s, and at the
depth of 100 m the sound speed is 1499 m/s.

The third profile contains temperature and salinity measurements and is to be used at the ranges
from 5 km to 8 km. At the depth of 10 m, the temperature is 6.1° Celsius and the salinity is 34
ppt. At the depth of 200 m, the temperature is 4.2° Celsius and the salinity is 33 ppt. At the end
of the example, the first sound speed profile is retrieved from LybinCom. This profile contains
calculated temperature, salinity and sound speed as used in the calculations.

2.1.10 Surface back scatter

Surface back scatter is the fraction of energy that is scattered back towards the receiver when a
ray hits the sea surface. A dataset representing surface back scattering coefficients is entered
into LybinCom, giving backscattering coefficients (in dB) for the incoming rays hitting the sea
surface. Based on the values, LybinCom interpolates to create backscattering coefficients for the
grazing angles. The back scattering coefficients are given as dB per square meter.

Surface back scatter is an optional choice to calculate surface reverberation. LybinCom will
only use the surface back scatter values given if the UseMeasuredSurfaceBackScatter parameter
in LybinModelData class is set to true.

There is only one parameter in the SurfaceBackScatter class, the
SurfaceBackScatterTableCount, given in Table 2.17. The functions in SurfaceBackScatter class
are given in Table 2.18.

An example of how the some of the surface back scatter functions can be used is shown in
Figure 2.10. In the example, two surface back scatter tables are set at different ranges.

Eksternnotat 24/01031 29

// Set the first sound speed profile
// Containing sound speed, temperature and salinity
double[,] ssp = new double[2, 4];
ssp[0, 0] = 0; // Depth
ssp[0, 1] = 1480; // Sound speed
ssp[0, 2] = 7; // Temperature
ssp[0, 3] = 35; // Salinity
ssp[1, 0] = 620; // Depth
ssp[1, 1] = 1510; // Sound speed
ssp[1, 2] = 8; // Temperature
ssp[1, 3] = 34; // Salinity
_lybin.SetFirstSoundSpeedTempAndSalinityProfile(0, 2000, ssp);

// Set the second sound speed profile
// Containing only sound speed
double[,] sss = new double[2, 2];
sss[0, 0] = 50; // Depth
sss[0, 1] = 1488; // Sound speed
sss[1, 0] = 100; // Depth
sss[1, 1] = 1499; // Sound speed
_lybin.AddSoundSpeedProfile(2000, 5000, sss);

// Set the third sound speed profile
// Containing temperature and salinity
double[,] tsp = new double[2, 3];
tsp[0, 0] = 10; // Depth
tsp[0, 1] = 6.1; // Temperature
tsp[0, 2] = 34; // Salinity
tsp[1, 0] = 200; // Depth
tsp[1, 1] = 4.2; // Temperature
tsp[1, 2] = 33; // Salinity
_lybin.AddTempAndSalinityProfile(5000, 8000, tsp);

// Get the first SoundSpeedProfile
int index = 0;
int start, stop;
object profile = new object();
_lybin.GetSoundSpeedProfile(

 index, out start, out stop, out profile);

Figure 2.9 C# code example: Sound speed values are added to the SoundSpeedProfile.

 30 Eksternnotat 24/01031

Table 2.17 Parameters in the SurfaceBackScatter class.

Parameter Type Default value Unit

SurfaceBackScatterTableCount
Number of surface back scatter tables.

Integer 1

Table 2.18 Functions in the SurfaceBackScatter class.

Function Type Unit of input
parameters

AddSurfaceBackScatterTable(int start, int stop, object table)
Add another surface back scatter table. This function can only be used
once the first surface back scatter table is added with the
SetFirstSurfaceBackScatterTable function.

Void

start: metres,

stop: metres

table:

dB/meter2 vs.
degrees

GetSurfaceBackScatterTable(int index, out int start, out int stop, out
object table)
Get the surface back scatter table corresponding to the given index.

Void

SetFirstSurfaceBackScatterTable(int start, int stop, object table)
Set the first surface back scatter table.

Void

Eksternnotat 24/01031 31

2.1.11 Surface loss

Surface loss is the fraction of energy that is lost after the sound has been reflected from the
ocean surface. A dataset representing surface loss is entered into LybinCom, giving surface loss
in dB for a set of grazing angles. Based on the values, LybinCom interpolates to create loss
values for all grazing angles.

The parameter UseMeasuredSurfaceLoss tells LybinCom to use SurfaceLossTable instead of
calculating the surface loss. UseMeasuredSurfaceLoss must be set to true if one wants to use
predefined surface loss values in LybinCom. UseMeasuredSurfaceLoss can be found in the
LybinModelData class.

There is only one parameter in the SurfaceLoss class, the SurfaceLossTableCount, given in
Table 2.19. The functions in the SurfaceLoss class are given in Table 2.20.

// The first surface back scatter table
var sbs = new double[3, 2];
sbs[0, 0] = 11;
sbs[0, 1] = 3.2;
sbs[1, 0] = 33;
sbs[1, 1] = 7.4;
sbs[2, 0] = 88;
sbs[2, 1] = 4;

// The next surface back scatter table
var sbb = new double[3, 2];
sbb[0, 0] = 10;
sbb[0, 1] = 6.2;
sbb[1, 0] = 43;
sbb[1, 1] = 7.2;
sbb[2, 0] = 77;
sbb[2, 1] = 6.8;

_lybin.SetFirstSurfaceBackScatterTable(0, 300, sbs);
_lybin.AddSurfaceBackScatterTable(400, 4000, sbb);
_lybin.UseMeasuredSurfaceBackScatter = true;

Figure 2.10 C# code example: Two surface back scatter tables are added to _lybin with their
range of validity.

 32 Eksternnotat 24/01031

Table 2.19 Parameters in the SurfaceLoss class.

Parameter Type Default value Unit

SurfaceLossTableCount
Number of surface loss tables.

Integer 1

Table 2.20 Functions in the SurfaceLoss class

Function Type Unit of input
parameters

AddSurfaceLossTable(int start, int stop, object table)
Add another surface loss table. This function can only be used once
the first surface loss table is added with the
SetFirstSurfaceLossTable function.

Void

start: metres,

stop: metres

table:

dB vs. degrees

GetSurfaceLossTable(int index, out int start, out int stop, out
object table)
Get the surface loss table corresponding to the given index.

Void

SetFirstSurfaceLossTable(int start, int stop, object table)
Set the first surface loss table.

Void

An example of how some of the surface loss functions can be used is shown below in Figure
2.11. In the example, the first surface loss fan is set to be valid from 0 km to 3 km. The loss
table consist of the following data: 10°= 4.2 dB, 30° = 6.4 dB and 56° = 9 dB. At the end of the
example, the first surface loss table is fetched back from LybinCom.

Eksternnotat 24/01031 33

// Set the first surface loss fan
double[,] sl = new double[3, 2];
sl[0, 0] = 10;
sl[0, 1] = 4.2;
sl[1, 0] = 30;
sl[1, 1] = 6.4;
sl[2, 0] = 56;
sl[2, 1] = 9;

_lybin.SetFirstSurfaceLossTable(0, 30, sl);
_lybin.UseMeasuredSurfaceLoss = true;

// Get the first surface loss table
index = 0;
_lybin.GetSurfaceLossTable(

 index, out var start, out var stop, out var table);

Figure 2.11 C# code example: A surface loss table is added to _lybin with its range of validity.
Then the first table containing range dependent surface loss values is fetched back
from _lybin.

 34 Eksternnotat 24/01031

2.1.12 Surface reflection angle

Predefined surface reflection angles can be set as seen in the C# example in Figure 2.12. The
SurfaceReflectionAngle class only has one accessible parameter, BottomType, which is listed in
Table 2.21.

Surface reflection angle is an optional parameter that can be used to completely control the
surface reflection of each ray in a simulation. If surface reflection angle is to be used, the
parameter UseSurfaceReflectionAngles must be set to true. The parameter
UseSurfaceReflectionAngles can be found in the LybinModelData class.

Table 2.21 Parameters in the SurfaceReflectionAngle class.

Parameter Type Default value Unit

SurfaceReflectionAngle Object
(Double[x,3])

(0, 0, 0)
(start, stop,
value)

(metres, metres, degrees)

// Set the surface reflection angle
 double[,] sra = new double[2, 3];
 sra[0, 0] = 0;
 sra[0, 1] = 5000;

sra[0, 2] = 30;
 sra[1, 0] = 6000;
 sra[1, 1] = 8000;
 sra[1, 2] = 40;

 _lybin.SurfaceReflectionAngle = sra;
 _lybin.UseMeasuredSurfaceReflectionAngles = true;

 Figure 2.12 C# code example: range dependent surface reflection angles are added to the
SurfaceReflectionAngle class.

Eksternnotat 24/01031 35

2.1.13 Target strength

It is possible to include tables of target strength values. Each table consists of target strength
values as a function of aspect angle. The aspect angle can be from 0-359°. If only values less
than 180° are given in the table, the target strength values are reflected symmetrically through
the longitudinal axis of the target. Each target strength table has a valid frequency range with a
given minimum and maximum frequency.

The actual aspect angle to be used in the simulation is given in degrees by the parameter
TargetAspectAngle. Whether LybinCom shall find target strength from the table or use the
parameter TargetStrength, is given by the parameter UseMeasuredTargeStrength. If
UseMeasuredTargeStrength is true, the parameter TargetStrength will be updated with the target
strength value that was actually used, found in the table based on frequency and target aspect
angle.

There is only one parameter in the TargetStrength class, the TargetStrengthTableCount, given in
Table 2.22. The functions in the TargetStrength class are given in Table 2.23. An example of
how some of the target strength functions can be used is shown below in Figure 2.13.

Table 2.22 Parameters in the TargetStrength class.

Parameter Type Default value Unit

TargetStrengthTableCount
Number of target strangth tables.

Integer 1

Table 2.23 Functions in the TargetStrength class

Function Type Unit of input
parameters

AddTargetStrengthTable(int start, int stop, object table)
Add another target strength table. This function can only be used
once the first target strength table is added with the
SetFirstTargetStrengthTable function.

Void

start: Hz,

stop: Hz

table:
GetTargetStrengthTable(int index, out int start, out int stop, out
object table)
Get the target strength table corresponding to the given index.

Void

 36 Eksternnotat 24/01031

SetFirstTargetStrengthTable(int start, int stop, object table)
Set the first target strength table.

Void dB vs. degrees

 // Set the first target strength table
 var ts = new double[3, 2];
 ts[0, 0] = 11;
 ts[0, 1] = 3.2;
 ts[1, 0] = 33;
 ts[1, 1] = 7.4;

ts[2, 0] = 88;
 ts[2, 1] = 4;
 _lybin.SetFirstTargetStrengthTable(0, 3000, ts);

 // Add a second target strength table
 var ts2 = new double[3, 2];
 ts2[0, 0] = 1;

ts2[0, 1] = 3.0;
 ts2[1, 0] = 199;
 ts2[1, 1] = 7.4;
 ts2[2, 0] = 200;
 ts2[2, 1] = 42;
 _lybin.AddTargetStrengthTable(4000, 7000, ts2);

 _lybin.UseMeasuredTargetStrength = true;

_lybin.TargetAspectAngle = 300;

// Get the second target strength table
var index = 1;
_lybin.GetTargetStrengthTable(

 index, out start, out stop, out table);

Figure 2.13 C# code example: range dependent target strength samples are added to the
TargetStrength class.

Eksternnotat 24/01031 37

2.1.14 Volume back scatter

Volume back scatter is the fraction of energy scattered back towards the receiver from the sea
volume. Scattering elements in the sea volume can be particles or organic life, like plankton,
fish or sea mammals. The volume back scatterers are not distributed uniformly in the sea, and
may vary considerably as a function of depth, range and time of the day. In LybinCom, the
volume back scatter is given as a profile of back scattering coefficients as a function of depth.
Scatter values for the depths between data points are calculated using linear interpolation. The
influence region of each profile is determined from the corresponding start range and stop range
values.

There is only one parameter in the VolumeBackScatter class, the VolBackScatterProfileCount,
given in Table 2.24. The functions in the VolumeBackScatter class are given in Table 2.25.

Table 2.24 Parameters in the VolumeBackScatter class.

Parameter Type Default value Unit

VolBackScatterProfileCount
Number of volume back scatter profiles.

Integer 1

Table 2.25 Functions in the VolumeBackScatter class.

Function Type Unit of input
parameters

AddVolBackScatterProfile(int start, int stop, object profile)
Add another volume back scatter profile.This function can only be
used when the first volume back scatter profile is added with the
SetFirstVolumeBackScatterProfile function.

Void

start:
meters,

stop: meters

profile:

dB /meter3

GetVolBackScatterProfile(int index, out int start, out int stop, out
object profile)
Get the volume back scatter profile corresponding to the given index.

Void

SetFirstVolBackScatterProfile(int start, int stop, object profile)
Set the first volume back scatter profile.

Void

 38 Eksternnotat 24/01031

An example of how some of the volume back scatter functions can be used is shown in Figure
2.14. In the example, the first volume back scatter profile is set. At the range from 0 km to 1
km, LybinCom is to use the values: 10 meters = -80 dB and 50 meters = -92 dB. At the end of
the example, the first volume back scatter profile is fetched back from LybinCom. Volume
reverberation back scatter coefficients are given as dB per cubic metre.

// Set the first volume back scatter profile

 double[,] vc = new double[2, 2];
 vc[0, 0] = 10;

vc[0, 1] = -80;
 vc[1, 0] = 50;
 vc[1, 1] = -92;
 _lybin.SetFirstVolBackScatterProfile(0, 1000, vc);

// Get the first volume back scatter profile
 int index = 0;

int start, stop;
 object profile = new object();
 _lybin.GetVolBackScatterProfile(

index, out start, out stop, out profile);

Figure 2.14 C# code example: range dependent volume back scatter samples are added to the
VolumeBackScatter class.

Eksternnotat 24/01031 39

2.1.15 Wave height

The WaveHeight class only has one accessible parameter, the WaveHeight, which is listed in
Table 2.26.

Wave height is an optional parameter to wind speed. If wave height is to be used, the parameter
UseWaveHeight found in the LybinModelData class must be set to true.

Table 2.26 Parameters in the WaveHeight class.

Parameter Type Default value Unit

WaveHeight
Wave height in the area of
calculation.

Object
(Double[x,3])

(0, 0, 0)
(start, stop,
value)

(metres, metres,
metres)

An example of how WaveHeight can be used is shown Figure 2.15. In the example the wave
height is 5 metres from 0 to 4 kilometres, and 3 metres from 4 to 9 kilometres.

 // Set the wave height

double[,] wh = new double[2, 3];
wh[0, 0] = 0;
wh[0, 1] = 4000;
wh[0, 2] = 5;
wh[1, 0] = 4000;
wh[1, 1] = 9000;
wh[1, 2] = 3;

_lybin.WaveHeight = wh;
_lybin.UseWaveHeight = false;

Figure 2.15 C# code example: range dependent wave height values are added to the
WaveHeight class.

 40 Eksternnotat 24/01031

2.1.16 Wind speed measurements

The WindspeedMeasurement class only has one accessible parameter,
WindSpeedMeasurements, which is listed in Table 2.27.

Table 2.27 Parameters in the WindSpeedMeasurement class.

Parameter Type Default values Units

WindSpeedMeasurments
Wind speed in the area of
calculation.

Object
(Double[x,3])

(0, 0, 0)
(start, stop,
value)

(metres, metres,
metres/Second)

An example of how WindSpeedMeasurements can be used is shown in the C# code example in
Figure 2.16. In the example, the measured wind speed is 10 meters/second from 0 to 5
kilometres, and 6 meters/second from 5 to 10 kilometres.

// Set the wind speed measurement
 double[,] ws = new double[2, 3];

ws[0, 0] = 0;
 ws[0, 1] = 5000;

ws[0, 2] = 10;
 ws[1, 1] = 5000;
 ws[1, 1] = 10000;
 ws[1, 2] = 6;

 _lybin.WindSpeedMeasurments = ws;

Figure 2.16 C# code example: range dependent wind speed measurements are added to the
WindSpeedMeasurements class.

Eksternnotat 24/01031 41

2.2 Platform

The platform class contains all the relevant information about the platform holding the sonar.
The platform is most often a ship, but can also be other things like a helicopter or a buoy. The
parameters in the platform class are listed in Table 2.28.

Parameter Type Default value Unit

Latitude
Actual latitude of platform.

Double 0 degrees
north

ShipCourse
Platform course relative to north.

Double 0 degrees

SelfNoise
Noise from the platform that holds the sonar.

Double 50 dB

SelfNoisePassive
Noise from the platform that holds the sonar. To be
used in calculations for passive sonars.

Double 50 dB

Sensor
All the sensor data to be used in the calculation.

Sensor

Speed
Speed of the platform that holds the sonar.

Double 10 knots

Table 2.28 Parameters in the platform class.

 42 Eksternnotat 24/01031

2.2.1 Sensor

The sensor class contains all the relevant information about the sonar. The parameters in the
sensor class are listed in Table 2.29.

Parameter Type Default value Unit

BeamPatternReceiver
BeamPattern of the receiver.

If BeamPattern is to be used, the parameter
UseMeasuredBeamPattern must be set to true.

BeamPattern

BeamPatternSender
BeamPattern of the sender.

If BeamPattern is to be used, the parameter
UseMeasuredBeamPattern must be set to true.

BeamPattern

BeamWidthHorizontal
Horisontal beam width of the sonar.

If BeamWidthHorizontal is to be used, the parameter
UseMeasuredHorizontalBeamWidth must be set to true.

Double 20 degrees

BeamWidthReceiver
Vertical beam width of the receiving part of the sonar.

Double 15 degrees

BeamWidthTransmitter
Vertical beam width of the transmitting part of the
sonar.

Double 15 degrees

CalibrationFactor
The parameter is on the interface, but are not yet
implemented or used in the calculations.

Double 0 dB

Depth
Depth of the sonar.

Double 5 metres

Eksternnotat 24/01031 43

Parameter Type Default value Unit

DetectionThreshold
The strength of the signal relative to the masking level
necessary to see an object with the sonar.

Double 10 dB

DirectivityIndex
The sonar's ability to suppress isotropic noise relative
to the response in the steering direction.

Double 20 dB

Frequency
Centre frequency of the sonar.

Double 7000 Hz

IntegrationTimePassive
Integration time for the passive sonar.

Double 1 seconds

PassiveBandWidth
Band width of the passive sonar.

Double 100 Hz

PassiveFrequency
Centre frequency of the passive sonar.

Double 800 Hz

PassiveProcessinGain
Gain of the passive sonar.

Double 0 dB

Pulse
All the pulse data to be used in the calculation.

Pulse

SideLobeReceiver
The suppression of the highest side lobe relative to the
centre of the beam for the receiving sonar.

Double 13 dB

SideLobeTransmitter
The suppression of the highest side lobe relative to the
centre of the beam for the transmitting sonar.

Double 13 dB

SonarTypePassive
Tells whether the passive sonar is narrow- or
broadband..

0: Narrowband
1: Broadband

Enumerator 0

 44 Eksternnotat 24/01031

Parameter Type Default value Unit

SourceLevel
Source level of the sonar.

Double 221 dB

SourceLevelPassive
Source level of the possible target in the calculation for
passive sonar.

Double 100 dB

SystemLoss
System loss due to special loss mechanisms in the sea or
sonar system, not otherwise accounted for.

Double 0 dB

TiltReceiver
Tilt of the receiving part of the sonar.

Double 4 degrees

TiltTransmitter
Tilt of the transmitting part of the sonar.

Double 4 degrees

Table 2.29 Parameters in the sensor class.

2.2.1.1 BeamPattern

The BeamPattern measurement is an optional choice where one uses values instead of letting
LybinCom estimate the beam pattern. The beam pattern can consist of any number of
measurements with corresponding angles. To find values for the ranges not given as
measurements, LybinCom uses linear interpolation.

BeamPattern is an optional parameter that can be used to completely control the start intensity
of each ray in a simulation. If BeamPattern is to be used, the parameter
UseMeasuredBeamPattern must be set to true. The parameter UseMeasuredBeamPattern can be
found in the LybinModelData class

Predefined beam patterns can be set as seen in the C# example in Figure 2.17. The parameters in
the BeamPattern class are given in Table 2.30.

Table 2.30 Parameters in the BeamPattern class.

Parameter Type Default value Unit

BeamPatternReceiver
BeamPattern of the receiver

Object
(Double[x,2])

(0, 0)
(angle, value)

(degrees, dB)

Eksternnotat 24/01031 45

BeamPatternSender
BeamPattern of the sender

Object
(Double[x,2])

(0, 0)
(angle, value)

(degrees, dB)

2.2.1.2 Pulse

All the information about the pulse is gathered in the pulse class. All the access parameters in
the pulse class are listed in Table 2.31 below.

 // Add beam patterns for sender and receiver
 var bps = new double[3, 2];
 bps[0, 0] = 10;

bps[0, 1] = 10;
 bps[1, 0] = 30;
 bps[1, 1] = 30;

bps[2, 0] = 80;
 bps[2, 1] = 80;

 var bpr = new double[3, 2];
 bpr[0, 0] = 10;
 bpr[0, 1] = 11;
 bpr[1, 0] = 30;
 bpr[1, 1] = 33;
 bpr[2, 0] = 88;
 bpr[2, 1] = 88;

 _lybin.BeamPatternReceiver = bpr;

_lybin.BeamPatternSender = bps;
_lybin.UseMeasuredBeamPattern = true;

Figure 2.17 C# code example: two BeamPattern samples are added to BeamPatternReceiver
and BeamPatternSender respectively.

 46 Eksternnotat 24/01031

Parameter Type Default value Unit

EnvelopeFunc
Envelope function of the signal. Currently,
only “Hann” is available.

String Hann

FilterBandWidth
Filter bandwidth of the pulse.

Double 100 Hz

FMBandWidth
Frequency modulation bandwidth of the
pulse. Applicable for FM signals only.

Double 100 Hz

Form
Pulse type:

FM: Frequency modulated
CW: Continuous wave

String FM

Length
Pulse length.

Double 60 Milliseconds

Table 2.31 Parameters in the pulse class.

3 Initiate calculation

The DoCalculation function initiates a new LYBIN calculation. Before the DoCalculation
function is called, all input parameters must be set, otherwise default parameters are used.

If a calculation fails, DoCalculation is implemented to throw an exception containing a message
describing the cause of the error.

Table 3.1 Function for initiation of calculation.

Function Type

DoCalculation()
Start the calculation.

Void

Eksternnotat 24/01031 47

4 Calculation results

The calculation results can be accessed through parameters or functions found in
LybinModelData. The result parameters are listed in Table 4.1. Each parameter represents a
complete dataset. The result functions give more flexibility in the way that you can access the
calculated results. If a calculation fails, the returned value properties will be NULL.

All the functions delivering calculation results are listed in Table 4.2. Available values of the
different result categories, resultCat, are listed in Table 4.3 with description.

Table 4.1 Parameters containing calculation results.

Parameter Access Type Unit

AmbientNoiseLevelUsed
The ambient noise used in the calculations.

Read Double dB

BottomReverberation
Calculated bottom reverberation values.

Read Double[RangeCells] dB

EchoLevel
Not yet implemented inside LybinCom. This object
will not have any data.

Read Double[0,0] dB

ImpulseResponseNumRanges
Returns total number of equidistant ranges the
impulse response is calculated for.

Read Integer

MaskingLevel
Calculated masking level (total reverberation +
noise after processing).

Read Double[RangeCells] dB

NoiseAfterProcessing
Calculated noise after processing.

Read Double dB

ProbabilityOfDetection
Calculated probability of detection.

Read Double[DepthCells,
RangeCells]

%

 48 Eksternnotat 24/01031

Parameter Access Type Unit

RayTrace
Not implemented inside LybinCom. This object
will not have any data.

Read Double[0,0]

ResultModelData
The model data used during the calculation.

Read String

SignalExcess
Calculated signal excess.

Read Double[DepthCells,
RangeCells]

dB

SurfaceReverberation
Calculated surface reverberation.

Read Double[RangeCells] dB

TotalReverberation
Calculated total reverberation.

Read Double[RangeCells] dB

TransmissionLossReceiver
Calculated transmission loss from the target to the
receiver.

Read Double[DepthCells,
RangeCells]

dB

TransmissionLossTransmitter
Calculated transmission loss from the transmitter
to the target.

Read Double[DepthCells,
RangeCells]

dB

TravelTimePathCount
Returns total number of travel time paths
calculated.

Read Integer

VisualRayTraceCount
Returns the total number of visual ray trace paths
calculated.

Read Integer

VolumeReverberation
Calculated volume reverberation.

Read Double[RangeCells] dB

Eksternnotat 24/01031 49

Table 4.2 Functions delivering calculation results.

Function Result format

GetAllResults(out string xmlResult)
Gets all results from the calculation in a single XML-string. The ray
trace, travel time and impulse response are not accessible as XML-
strings, so they will not be returned through this function call.

String

GetImpulseResponseFamilliesAsArray(int pIndex)
Returns all the ray families 1in the range corresponding to pIndex as
an array. Each family has the following order of parameters:
[x,0] Ray family identifier (string)

The ray family identifier represents the ray family’s
travel history, using the letter codes:
s Surface reflection
b Bottom reflection
u Upper turning point
l Lower turning point

[x,1] Intensity loss (double)
[x,2] Mean arrival time – first arrival time in seconds

(double)
[x,3] Arrival time standard deviation in seconds (double)
[x,4] Phase identifier2 (double)
[x,5] First arrival in seconds (double)

Object[x,6]

GetImpulseResponseFamily(int pIndex, int pFamilyIndex, out
string pFamilyName, out double pIntensity, out double
pMeanArrivalTime, out double pStandardDeviation, out double
pPhase, out double pFirstArrival)
Returns the calculated ray family identifier, intensity, mean arrival
time, arrival time standard deviation, phase and first arrival from
one single ray family.
pIndex represents the corresponding range.
pFamilyIndex is the running number of the family at the specified
range, resulting from the ray tracing calculation. There is no direct

String,
Double,
Double,
Double,
Double,
Double

1 A ray family is a set of rays that share a unique ray history, a sequence of the following: surface reflection, bottom
reflection, upper turning point or lower turning point.
2 The phase identifier is incremented by 2 each time the ray hits the sea surface. Phase shifts originated from bottom
hits or caustics are not accounted for in this release.

 50 Eksternnotat 24/01031

Function Result format

connection between pFamilyIndex and pFamilyName. pFamilyName
is the ray family identifier.
pIntensity is the intensity loss.
pMeanArrivalTime is the mean arrival time – first arrival time in
seconds.
pStandardDeviation is the arrival standard deviation in seconds.
pPhase is the phase identifier2.
pFirstArrival is the time of the first arrival in seconds.

GetImpulseResponseNumFamilies(int pIndex)
Returns the number of different ray families1 at the range
corresponding to pIndex.

Integer

GetImpulseResponseRayStatisticsis(int pIndex)
Returns all the ray families1 in the range corresponding to pIndex
as an array. Each family has the following order of parameters:
[x,0] Ray family identifier (string)

The ray family identifier represents the ray family’s
travel history, using the letter codes:
s Surface reflection
b Bottom reflection
u Upper turning point
l Lower turning point

[x,1] Intensity loss (double)
[x,2] Mean arrival time – first arrival time in seconds

(double)
[x,3] Arrival time standard deviation in seconds (double)
[x,4] Phase identifier2 (double)
[x,5] First arrival in seconds (double)
[x,6] Last arrival in seconds (double)

[x,7] Mean initial angle in degrees (double)

[x,8] Standard deviation of initial angle in degrees
(double)

[x,9] Minimum initial angle in degrees (double)

[x,10] Maximum initial angle in degrees (double)

Object[x,11]

Eksternnotat 24/01031 51

Function Result format

GetInterpolatedBottomProfile(out object pProfile)
Get the interpolated bottom profile.

Double[RangeSteps,2]

GetInterpolatedSoundSpeed(out object pProfile)
Get the smoothed and interpolated sound speed matrix.

Double[RangeSteps,
DepthSteps]

GetResultModelData(out string xmlData)
Gets all the model data used in the calculation in a single XML-
string.

String

GetResults(int resultCat, out string xmlResult)
Gets the result specified in resultCat as a XML-string. The possible
choices of resultCat are listed in Table 4.3.

String

GetResultsBin(int resultCat, out object result)
Gets the result specified in resultCat as an object. The possible
choices of resultCat are listed in Table 4.3.

Format depends on
type of returned
object. See Table 4.3.

GetResultsBinValue(int resultCat, int xVal, int yVal, out double
result)
Get a single value from the result specified in resultCat and by the
indexes x and y. The possible choices of resultCat are listed in Table
4.3.

Double

GetTravelTimePath(int pIndex)
Returns all the points in a travel time path. pIndex is path number.

Each point in the travel time path contains depth in meters, initial
ray angle in degrees, range in meters and travel time in seconds.

Array of
TravelTimePoint

GetTravelTimePathAsDoubleArray(int pIndex)
Returns all the points in a travel path as a double array. pIndex is
the path number. Each point has the following order of parameters:

[x ,0] Initial ray angle (degrees)
[x ,1] Range (meters)
[x ,2] Depth (meters)
[x ,3] Travel time (seconds)

Double[x,4]

 52 Eksternnotat 24/01031

Function Result format

GetTravelTimePathLength(int pIndex)
Returns the length of a travel time path. pIndex is path number.

Integer

GetTravelTimePoint(int pIndex, int pPointNum)
Returns the calculated parameters in one single point. pIndex is
path number and pPointNum is point number in the path. The travel
time point contains depth in meters, initial ray angle in degrees,
range in meters and travel time in seconds.

TravelTimePoint

GetTravelTimePoint2(int pIndex, int pPointNum, out double
pInitialAngle, out double pRange, out double pDepth, out
double pTraveTime)
Returns the calculated parameters in one single point as
parameters. pIndex is path number and pPointNum is point number
in the path. pInitialAngle is in degrees, pRange in meters, pDepth in
meters and pTravelTime in seconds.

Boolean

GetVisualRayTrace(int pIndex)
Returns all the points in a visual ray trace path as a double array.
pIndex is path number.

Each point has the following order of parameters:

[x ,0] Initial ray angle (radians)
[x,1] Range (meters)
[x ,2] Depth (meters)

Double[x,3]

GetVisualRayTraceLength(int pIndex)
Returns the length of a visual ray trace path. pIndex is path number.

Integer

GetVisualRayTracePoint(int pIndex, int pPointNum, out double
pInitialAngle, out double pRange, out double pDepth)
Returns a single point in the visual ray trace. pIndex is path number
and pPointNum is point number in the path. pInitialAngle is in
radians, pRange in meters and pDepth in meters.

Boolean

Eksternnotat 24/01031 53

Table 4.3 Available values of resultCat with description.

resultCat Description

0 Transmission loss from transmitter to target

1 Transmission loss from target to receiver

2 Signal excess

3 Probability of detection

4 Total reverberation

5 Surface reverberation

6 Volume reverberation

7 Bottom reverberation

8 Noise after processing

9 Ambient noise

10 Masking level

An example of how some of the result functions can be used is shown below. Three methods are
called, returning the masking level, the noise after processing and the parameters used in the
calculations.

 54 Eksternnotat 24/01031

// Get the masking level array
int numberOfValues = _lybin.RangeCells;
double[] maskingLevelValues = new double[numberOfValues];
Object objekt;
_lybin.GetResultsBin(10, out objekt);
maskingLevelValues = (double[])objekt;

//Get noise
double noise;
Object ob;
_lybin.GetResultsBin(8, out ob);
noise = (double)ob;

// Get result model data parameters
string parameters;
_lybin.GetResultModelData(out parameters);

Figure 4.1 C# code example: Masking level, noise and model data parameters are collected
after the results are calculated.

Eksternnotat 24/01031 55

Code examples

A.1 C# code example

using LybinCom;

namespace BrukLybinComEksempel
{
 public partial class Form1 : Form
 {
 // Create
 private readonly LybinModelComBinClass _lybin =

new LybinModelComBinClass();

 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 // Set the first bottom loss table
 var bl = new double[3, 2];
 bl[0, 0] = 10;
 bl[0, 1] = 40;
 bl[1, 0] = 30;
 bl[1, 1] = 40;
 bl[2, 0] = 56;
 bl[2, 1] = 40;
 _lybin.SetFirstBottomLossTable(0, 4000, bl);

 // Second bottom loss table
 bl[0, 0] = 10;
 bl[0, 1] = 80;
 bl[1, 0] = 30;
 bl[1, 1] = 80;
 bl[2, 0] = 56;
 bl[2, 1] = 80;
 _lybin.AddBottomLossTable(4000, 10000, bl);
 _lybin.UseMeasuredBottomLoss = true;

 // Bottom profile
 var bp = new double[2, 2];
 bp[0, 0] = 0;
 bp[0, 1] = 200;
 bp[1, 0] = 5000;
 bp[1, 1] = 188;
 _lybin.BottomProfile = bp;

 // Set the wave height

 56 Eksternnotat 24/01031

 var wh = new double[2, 3];
 wh[0, 0] = 0;
 wh[0, 1] = 4000;
 wh[0, 2] = 5;
 wh[1, 1] = 4000;
 wh[1, 1] = 9000;
 wh[1, 2] = 3;
 _lybin.WaveHeight = wh;
 _lybin.UseWaveHeight = true;

 // Set bottom back scatter table
 double[,] bb = new double[3, 2];
 bb[0, 0] = 11;
 bb[0, 1] = 3.2;
 bb[1, 0] = 33;
 bb[1, 1] = 7.4;
 bb[2, 0] = 88;
 bb[2, 1] = 4;
 _lybin.SetFirstBottomBackScatterTable(0, 10000, bb);
 _lybin.TypeOfRevNoiseCalculation = 1;

 // Set volume back scatter profile
 double[,] vc = new double[2, 2];
 vc[0, 0] = 10;
 vc[0, 1] = -80;
 vc[1, 0] = 50;
 vc[1, 1] = -92;
 _lybin.SetFirstVolBackScatterProfile(0, 10000, vc);

 // Set the first sound speed profile
 // Containing sound speed, temperature and salinity
 var ssp = new double[2, 4];
 ssp[0, 0] = 0;
 ssp[0, 1] = 1480;
 ssp[0, 2] = 7;
 ssp[0, 3] = 35;
 ssp[1, 0] = 620;
 ssp[1, 1] = 1510;
 ssp[1, 2] = 8;
 ssp[1, 3] = 34;
 _lybin.SetFirstSoundSpeedTempAndSalinityProfile(0, 2000, ssp);

 // Set the second sound speed profile
 // Containing only sound speed
 var sss = new double[2, 2];
 sss[0, 0] = 50;
 sss[0, 1] = 1488;
 sss[1, 0] = 100;
 sss[1, 1] = 1499;
 _lybin.AddSoundSpeedProfile(2000, 5000, sss);

 // Set the third sound speed profile
 // Containing temperature and salinity
 var tsp = new double[2, 3];
 tsp[0, 0] = 10;
 tsp[0, 1] = 6.1;

Eksternnotat 24/01031 57

 tsp[0, 2] = 34;
 tsp[1, 0] = 200;
 tsp[1, 1] = 4.2;
 tsp[1, 2] = 33;
 _lybin.AddTempAndSalinityProfile(5000, 8000, tsp);

 // Set sonar parameters
 _lybin.Depth = 50;
 _lybin.TiltReceiver = 0;
 _lybin.TiltTransmitter = 0;
 _lybin.SideLobeReceiver = 12;
 _lybin.SideLobeTransmitter = 12;
 _lybin.DetectionThreshold = 13;
 _lybin.Frequency = 1000;
 _lybin.DirectivityIndex = 25;
 _lybin.SourceLevel = 210;
 _lybin.BeamWidthReceiver = 30;
 _lybin.BeamWidthTransmitter = 18;
 _lybin.Length = 1000;
 _lybin.FilterBandWidth = 500;
 _lybin.Form = "CW";

 // Set calculation parameters
 _lybin.SetRangeScaleAndRangeCells(10000, 100);
 _lybin.SetDepthScaleAndDepthCells(600, 50);
 _lybin.TRLRays = 5000;

 // Set ocean parameters
 _lybin.TargetStrength = 10;
 _lybin.ReverberationZone = ReverberationZone.Typical;

// Let LybinCom calculate noise
 _lybin.NoiseCalculation = true;
 _lybin.PrecipitationNoiseType = PrecipitationType.LightRain;

 // Calculate ray trace for visuaisation
 _lybin.VisualRayTraceCalculation = true;
 _lybin.VisualSurfaceHits = 6;
 _lybin.VisualBottomHits = 8;
 _lybin.VisualNumRays = 66;

 // Let LybinCom calculate noise
 _lybin.NoiseCalculation = true;
 _lybin.PrecipitationNoiseType = PrecipitationType.LightRain;

 // Do calculation
 _lybin.DoCalculation();

 // Get raytrace for visualization
 int pathCount = _lybin.VisualRayTraceCount;
 int travelLength =
 _lybin.GetVisualRayTraceLength(pathCount / 2);
 object obj = _lybin.GetVisualRayTrace(pathCount / 2);

 58 Eksternnotat 24/01031

 // Get the ambient noise used
 double used = _lybin.AmbientNoiseLevelUsed;

 // Get calculation results
 string modelData, trl, sig, pod, tot;
 Object mask;

 // XML
 _lybin.GetResults(0, out trl);
 _lybin.GetResults(2, out sig);
 _lybin.GetResults(3, out pod);
 _lybin.GetResults(4, out tot);

 // Binary
 _lybin.GetResultsBin(10, out mask);

 // Get modeldata used in the calculations
 _lybin.GetResultModelData(out modelData);

 // Display in textbox
 textBox1.Text = modelData;
 }

 }
}

A.2 Matlab code example

% LybinCom used in Matlab %
%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;
% initiate LybinCom
lb=actxserver('LybinCom.LybinModelComBin');

% Interfaces
env = lb.invoke('IEnvironment'); % Environment
mod = lb.invoke('IModelData'); % Model
sensor = lb.invoke('ISensor'); % Sonar
pulse = lb.invoke('IPuls'); % Pulse
platform = lb.invoke('IPlatform'); % Platform
ocean = lb.invoke('IOcean'); % Ocean

% Sonar parameters
sensor.Depth = 50;
sensor.TiltReceiver = 0;
sensor.TiltTransmitter = 0;
sensor.SideLobeReceiver = 12;
sensor.SideLobeTransmitter = 12;
sensor.DetectionThreshold = 13;
sensor.Frequency = 1000;
sensor.DirectivityIndex = 25;

Eksternnotat 24/01031 59

sensor.SourceLevel = 210;
sensor.BeamWidthReceiver = 18;
sensor.BeamWidthTransmitter = 18;

% Pulse
pulse.Length = 1000;
pulse.FMBandWidth = 1000;

%Platform
platform.SelfNoise = 60; % [dB]

% Model
R = 10000;
Z = 600;
R_cells = 100;
Z_cells = 50;
mod.SetRangeScaleAndRangeCells(R, R_cells);
mod.SetDepthScaleAndDepthCells(Z, Z_cells);
mod.TRLRays = 1000;

% Target strength
ocean.TargetStrength = 10;
ocean.PrecipitationNoiseType = 'hail';

% Environment
%%%%%%%%%%%%%%%%%

% WindSpeed
env.WindSpeedMeasurments = [0,5000,10; 5000,10000,6];

% Sound speed
env.SetFirstSoundSpeedProfile(0, 0, [0, 1480; 660, 1510]);

 % Bottom type
env.BottomType = [0,5000,3;5000,10000,4];

% Bottom profile
prof = [0,450; 2000,470; 4000,450; 5000,480; 7000,550; 10000,580];
env.bottomProfile = prof;

% Calculate
lb.DoCalculation
lb.modelData

% Get calculation results
data.trl.forward = lb.TransmissionLossTransmitter;
data.trl.backward = lb.TransmissionLossReceiver;
data.sig = lb.SignalExcess;
data.pod = lb.ProbabilityOfDetection;
data.rev.Tot_rev = lb.TotalReverberation;
data.rev.Surf_rev = lb.SurfaceReverberation;
data.rev.Vol_rev = lb.VolumeReverberation;
data.rev.Bot_rev = lb.BottomReverberation;

 60 Eksternnotat 24/01031

data.rev.Noise = lb.NoiseAfterProcessing;

% Plot data
maxRange = mod.RangeScale;
maxDepth = mod.DepthScale;
R_cells = mod.RangeCells;
r_plotting = maxRange/R_cells * (0.5:(R_cells-0.5));
z_plotting = maxDepth/Z_cells * (0.5:(Z_cells-0.5));
figure
pcolor(r_plotting,z_plotting,lb.SignalExcess)
shading interp
colormap(jet(13));
set(gca,'CLim',[-25, 40]);
colorbar;
set(gca, 'ydir', 'reverse')
xlabel('Range [m]')
ylabel('Depth [m]')
title('Signal Excess')
hold on
fill([prof(:,1);0;0], [prof(:,2); maxRange; maxRange], 'k');
hold off

% Release interfaces
env.release; % Environment
mod.release; % Model
sensor.release; % Sonar
pulse.release; % Pulse
platform.release; % Platform
ocean.release; % Ocean
lb.release; % Component

A.3 C++ example code using LybinCom

bool LybinIntegration::Init()
{
 //Instantiate COM object and
 //get access to interface ILybinModelComBin
 m_hr =

m_LybinCom.CoCreateInstance(CComBSTR("LybinCom.LybinModelComBin"
));
 if(FAILED(m_hr))
 return FALSE;

 //Get access to the interfaces in LybinCom
 m_modelData = m_LybinCom;
 m_environment = m_LybinCom;
 m_ocean = m_LybinCom;
 m_platform = m_LybinCom;

Eksternnotat 24/01031 61

 m_pulse = m_LybinCom;
 m_sensor = m_LybinCom;

 return TRUE;
 }

void LybinIntegration::SetLambertsParameter(double
&lambertsParameter)
{
 //Set type of rev noise calculation to Lamberts rule
 long typeOfRevNoiseCalculation = 3;
 m_hr = m_modelData->

put_TypeOfRevNoiseCalculation(typeOfRevNoiseCalculation
);

 //Array of Lamberts coefficients (range independent hare)
 CComSafeArray<double> *safeArray;
 double lp[2][3];
 lp[0][0] = 0;
 lp[0][1] = 200;
 lp[0][2] = lambertsParameter;
 lp[1][0] = 200;
 lp[1][1] = 2000;
 lp[1][2] = lambertsParameter;

 // Declare the variable used to store the array indexes
 LONG aIndex[2];

 // Define the array bound structure
 CComSafeArrayBound bound[2];
 bound[0].SetCount(2);
 bound[0].SetLowerBound(0);
 bound[1].SetCount(3);
 bound[1].SetLowerBound(0);

 // Create a new array
 safeArray = new CComSafeArray<double>(bound,2);

 // Use MultiDimSetAt to store doubles in the array
 for (int x = 0; x < 2; x++)
 {
 for (int y = 0; y < 3; y++)
 {
 aIndex[0] = x;
 aIndex[1] = y;
 HRESULT hr = safeArray->

 MultiDimSetAt(aIndex,lp[x][y]);
 ATLASSERT(hr == S_OK);
 }
 }

 62 Eksternnotat 24/01031

 //Connect to variant
 CComVariant var(*safeArray);
 var.vt = (VT_ARRAY | VT_R8);
 m_hr = m_environment->put_LambertsCoefficient(var);
}

void LybinIntegration::SetRayleighBottomLoss(double
&sed_attenuation, double &sed_rho, double &sed_soundSpeed)
{
 //Tell LybinCom to calculate and use Rayleigh bottom loss
 m_hr = m_modelData->put_UseRayleighBottomLoss(VARIANT_TRUE);

 CComSafeArray<double> *safeArray;

 double rl[1][3];
 rl[0][0] = sed_attenuation;
 rl[0][1] = sed_soundSpeed;
 rl[0][2] = sed_rho;

 // Declare the variable used to store the array indexes
 LONG aIndex[2];

 // Define the array bound structure
 CComSafeArrayBound bound[2];
 bound[0].SetCount(1);
 bound[0].SetLowerBound(0);
 bound[1].SetCount(3);
 bound[1].SetLowerBound(0);

 // Create a new array
 safeArray = new CComSafeArray<double>(bound,2);

 // Use MultiDimSetAt to store doubles in the array
 for (int x = 0; x < 1; x++)
 {
 for (int y = 0; y < 3; y++)
 {
 aIndex[0] = x;
 aIndex[1] = y;
 HRESULT hr = safeArray->

 MultiDimSetAt(aIndex,rl[x][y]);
 ATLASSERT(hr == S_OK);
 }
 }

 //Connect to variant
 CComVariant var(*safeArray);
 var.vt = (VT_ARRAY | VT_R8);
 m_hr = m_environment->put_RayleighBottomLoss(var);

Eksternnotat 24/01031 63

}

void LybinIntegration::SetWindSpeed(double &windSpeed)
{
 //Range dependent array of wind speed (not range independent
here)
 CComSafeArray<double> *safeArray;
 double ws[2][3];
 ws[0][0] = 0;
 ws[0][1] = 300;
 ws[0][2] = abs(windSpeed);
 ws[1][0] = 300;
 ws[1][1] = 3000;
 ws[1][2] = abs(windSpeed);

 // Declare the variable used to store the array indexes
 LONG aIndex[2];

 // Define the array bound structure
 CComSafeArrayBound bound[2];
 bound[0].SetCount(2);
 bound[0].SetLowerBound(0);
 bound[1].SetCount(3);
 bound[1].SetLowerBound(0);

 // Create a new array
 safeArray = new CComSafeArray<double>(bound,2);

 // Use MultiDimSetAt to store doubles in the array
 for (int x = 0; x < 2; x++)
 {
 for (int y = 0; y < 3; y++)
 {
 aIndex[0] = x;
 aIndex[1] = y;
 HRESULT hr = safeArray->

 MultiDimSetAt(aIndex,ws[x][y]);
 ATLASSERT(hr == S_OK);
 }
 }

 //Connect to variant
 CComVariant var(*safeArray);
 var.vt = (VT_ARRAY | VT_R8);
 m_hr = m_environment->put_WindSpeedMeasurments(var);
}

void LybinIntegration::SetWaterDepth(double &waterDepth)
{
 m_hr = m_modelData->put_DepthScale(waterDepth);

 64 Eksternnotat 24/01031

 //Range dependent array of bottom depth (range independent
hare)
 CComSafeArray<double> *safeArray;
 double bb[1][2];
 bb[0][0] = 10;
 bb[0][1] = waterDepth;

 // Declare the variable used to store the array indexes
 LONG aIndex[2];

 // Define the array bound structure
 CComSafeArrayBound bound[2];
 bound[0].SetCount(1);
 bound[0].SetLowerBound(0);
 bound[1].SetCount(2);
 bound[1].SetLowerBound(0);

 // Create a new array
 safeArray = new CComSafeArray<double>(bound,2);

 // Use MultiDimSetAt to store doubles in the array
 for (int y = 0; y < 2; y++)
 {
 aIndex[0] = 0;
 aIndex[1] = y;
 HRESULT hr = safeArray->MultiDimSetAt(aIndex,bb[0][y]);
 ATLASSERT(hr == S_OK);
 }

 //Connect to variant
 CComVariant var(*safeArray);
 var.vt = (VT_ARRAY | VT_R8);
 m_hr = m_environment->put_BottomProfile(var);

}

void LybinIntegration::SetVerticalBeamWidth(double
&verticalBeamWidth)
{
 m_hr = m_sensor->put_BeamWidthTransmitter(verticalBeamWidth);
}

void LybinIntegration::SetDepthTransmitter(double
&transmitterDepth)
{
 m_hr = m_sensor->put_Depth(transmitterDepth);
}

void LybinIntegration::SetPulseLength(double &pulseLength)

Eksternnotat 24/01031 65

{
 //LybinCom must have pulse length in milli sec
 double pulseLengthMilliSec = pulseLength*1000;
 m_hr = m_pulse->put_Length(pulseLengthMilliSec);
 }

void LybinIntegration::SetFrequency(double &frequency)
{
 m_sensor->put_Frequency(frequency);
}

void LybinIntegration::SetSoundSpeed(int numPoints, double
*depth, double *soundSpeed)
{
 CComSafeArray<double> *safeArray;

 // Define the array bound structure
 CComSafeArrayBound bound[2];
 bound[0].SetCount(2);
 bound[0].SetLowerBound(0);
 bound[1].SetCount(numPoints);
 bound[1].SetLowerBound(0);

 // Create a new array
 safeArray = new CComSafeArray<double>(bound,2);

 // Declare the variable used to store the array indexes
 LONG aIndex[2];

 // Use MultiDimSetAt to store doubles in the array
 for (int x = 0; x < numPoints; x++)
 {
 aIndex[0] = x;
 aIndex[1] = 0;
 HRESULT hr = safeArray->MultiDimSetAt(aIndex,depth[x]);
 ATLASSERT(hr == S_OK);

 aIndex[0] = x;
 aIndex[1] = 1;
 hr = safeArray->MultiDimSetAt(aIndex,soundSpeed[x]);
 ATLASSERT(hr == S_OK);
 }

 //Connect to CComVariant
 CComVariant var(*safeArray);
 var.vt = (VT_ARRAY | VT_R8);

 long pStart = 0;
 long pStop = 3000;
 m_hr = m_environment->

 66 Eksternnotat 24/01031

raw_SetFirstSoundSpeedProfile(pStart, pStop, var);
}

void LybinIntegration::SetRangeAndRangeCells(double maxTime, int
numOutputPoints)
{
 //Assume sound speed to use in transformation between time
and range
 double soundSpeed = 1500;

 //Calculate max range
 double maxRange = maxTime*soundSpeed/2;

 //Set parameters in LybinCom
 m_hr = m_modelData->

raw_SetRangeScaleAndRangeCells(maxRange,
numOutputPoints);
}

void LybinIntegration::GetBottomReverberation(int numPoints,
double *revArray)
{
 //Get calculated bottom reverberation from LybinCom
 CComVariant bottomReverberation;
 m_hr = m_ptr->get_BottomReverberation(&bottomReverberation);

 //Unwrap to CComSafeArray
 CComSafeArray<double> safeArray;
 safeArray.Attach(bottomReverberation.parray);

 int numLybinPoints = safeArray.GetCount(0);
 int numRevPoints;
 if(numLybinPoints < numPoints)
 numRevPoints = numLybinPoints;
 else
 numRevPoints = numPoints;

 //Fill in the double arrays with collected values;
 for (int i = 0; i < numrevPoints; i++)
 {
 revArray[i] = safeArray[i];
 }

 safeArray.Detatch();
}

bool LybinIntegration::GetRangeScaleAndCells()
{
 long rangeCells;
 double rangeScale;

Eksternnotat 24/01031 67

 m_hr = m_modelData->get_RangeCells(&rangeCells);
 m_hr = m_modelData->get_RangeScale(&rangeScale);

 return true;
}

bool LybinIntegration::GetLambertsParameter()
{
 long typeOfRevNoiseCalculation;
 m_hr = m_modelData->

get_TypeOfRevNoiseCalculation(&typeOfRevNoiseCalculatio
n);

 VARIANT lambertsParameter;
 m_hr = m_environment-
>get_LambertsCoefficient(&lambertsParameter);

 return true;
}

bool LybinIntegration::GetRayleighBottomLossParameters()
{
 VARIANT_BOOL use;
 m_hr = m_modelData->get_UseRayleighBottomLoss(&use);

 VARIANT rayleigh;
 m_hr = m_environment->get_RayleighBottomLoss(&rayleigh);

 return true;
}

bool LybinIntegration::GetWindSpeed()
{
 VARIANT windSpeed;
 m_hr = m_environment->get_WindSpeedMeasurments(&windSpeed);

 return true;
}

bool LybinIntegration::GetSoundSpeed()
{
 long pIndex = 0;
 long pStart;
 long pStop;
 VARIANT pProfile;

 m_hr = m_environment->
 raw_GetSoundSpeedProfile(pIndex, &pStart, &pStop, &pProfile);

 return true;

 68 Eksternnotat 24/01031

}

double LybinIntegration::GetWaterDepth()
{
 double waterDepth;
 m_hr = m_modelData->get_DepthScale(&waterDepth);

 return waterDepth;
}

double LybinIntegration::GetVerticalBeamWidth()
{
 double verticalBeamWidth;
 m_hr = m_sensor-
>get_BeamWidthTransmitter(&verticalBeamWidth);

 return verticalBeamWidth;
}

double LybinIntegration::GetDepthTransmitter()
{
 double transmitterDepth;
 m_hr = m_sensor->get_Depth(&transmitterDepth);

 return transmitterDepth;
}

double LybinIntegration::GetPulseLength()
{
 double pulseLength;
 m_hr = m_pulse->get_Length(&pulseLength);

 return pulseLength;
}

double LybinIntegration::GetFrequency()
{
 double frequency;
 m_hr = m_sensor->get_Frequency(&frequency);

 return frequency;
}

bool LybinIntegration::CleanUp()
{
 //Cleanup
 if(m_modelData)
 m_modelData.Release();
 if(m_environment)
 m_environment.Release();

Eksternnotat 24/01031 69

 if(m_pulse)
 m_pulse.Release();
 if(m_sensor)
 m_sensor.Release();
 if(m_LybinCom)
 m_LybinCom.Release();

 return true;
}

 70 Eksternnotat 24/01031

Abbreviations

FFI Norwegian Defense Research Institute

NDLO Norwegian Defense Logistic Organization

GFA Government Furnished Assets

LYBIN LYdBane og INtensitetsprogram (acoustic model)

XML Extensible Markup Language

COM Component Object Model

Type definitions

Integer 32-bit integer

Double 64-bit floating point

Boolean 16-bit integer (0: false, 1: true)

String BSTR. Basic string used by COM

Enum 32-bit integer

TravelTimePoint 256-bit struct defined in LybinCom Type library

Eksternnotat 24/01031 71

References

1. E. Dombestein, and T. Jenserud, “Improving Underwater Surveillance: LYBIN Sonar
performance prediction”, Proceedings of MAST 2010 – Rome, 2010.

2. K.T. Hjelmervik, S. Mjølsnes, E. Dombestein, T. Såstad and J. Wegge, “The acoustic
raytrace model Lybin – Descriptions and applications”, UDT 2008, Glasgow, United
Kingdom, 2008

3. E. Dombestein, "LYBIN 6.2 2200 - user manual", FFI Rapport 17/00412, 2017.

4. E. Dombestein, S. Mjølsnes, and F. Hermansen, "Visualization of sonar performance
within environmental information," in Oceans 2013, Bergen, 2013.

5. E. Dombestein and F. Hermansen, "Integration of Sonar Performance Modelling in
Sonar Operator Training, Mission Planning and High Risk Decisions," presented at the
MSG-126, Washington DC, USA, 2014.

6. E. Bøhler, "LybinTCPserver 7.0.5 - Interface description," FFI-Note 2023/02442, 2023.

7. https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--
portal

8. https://thrift.apache.org/

 72 Eksternnotat 24/01031

About FFI
The Norwegian Defence Research Establishment (FFI) was founded 11th of April 1946. It is
organised as an administrative agency subordinate to the Ministry of Defence.

FFI’s mission
FFI is the prime institution responsible for defence related research in Norway. Its principal
mission is to carry out research and development to meet the requirements of the Armed
Forces. FFI has the role of chief adviser to the political and military leadership. In particular,
the institute shall focus on aspects of the development in science and technology that can
influence our security policy or defence planning.

FFI’s vision
FFI turns knowledge and ideas into an efficient defence.

FFI’s characteristics
Creative, daring, broad-minded and responsible.

	Contents
	1 Introduction
	2 LYBIN model data
	2.1 Environment
	2.1.1 Bottom back scatter
	2.1.2 Bottom loss
	2.1.3 Bottom profile
	2.1.4 Bottom type
	2.1.5 Lamberts coefficient
	2.1.6 Ocean
	2.1.7 Rayleigh bottom loss
	2.1.8 Reverberation and noise measurements
	2.1.9 Sound speed
	2.1.10 Surface back scatter
	2.1.11 Surface loss
	2.1.12 Surface reflection angle
	2.1.13 Target strength
	2.1.14 Volume back scatter
	2.1.15 Wave height
	2.1.16 Wind speed measurements

	2.2 Platform
	2.2.1 Sensor
	2.2.1.1 BeamPattern
	2.2.1.2 Pulse

	3 Initiate calculation
	4 Calculation results
	Code examples
	A.1 C# code example
	A.2 Matlab code example
	A.3 C++ example code using LybinCom

	Abbreviations
	Type definitions
	References

