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ABSTRACT

This paper presents an empirical study that evaluates the im-
pact of different types of augmentations on the performance
of Deep Learning (DL) models for detecting imaging artifacts
in Synthetic Aperture Sonar (SAS) imagery. Despite the pop-
ularity of using DL in the SAS community, the impact of aug-
mentations that violate the geometry and physics of SAS has
not been fully explored. To address this gap, we developed a
unique dataset for detecting imaging artifacts in SAS imagery
with DL and trained a Bayesian neural network with a ResNet
architecture using widely used augmentations in DL for com-
puter vision, as well as common augmentations used in the
SAS literature. The study shows that augmentations that vio-
late the geometry and imaging physics of SAS can negatively
impact supervised classification, but can sometimes improve
performance. Overall, the study provides important insights
into the impact of different types of augmentations on the per-
formance of DL models in SAS applications.

Index Terms— Synthetic Aperture Sonar, Deep Learn-
ing, Imaging Artifacts, Bayesian Deep Learning

1. INTRODUCTION

Deep learning (DL) has recently been applied to active sonar
tasks such as target detection and seafloor classification [1, 2],
but is challenging to implement in synthetic aperture sonar
(SAS) due to sparse training data. Hence, a common tech-
nique is to use data augmentation to develop a viable model.
Data augmentation techniques are domain specific and in
the case of SAS, they could be synthetic through simulation
with realistic imaging [3], augmentations of imagery through
pseudo-coloring [2], or standard augmentations used in com-
puter vision (e.g. translation, rotation, reflection). Williams
[4] stated that image mirroring across-track or rotating im-
ages would violate physics of imaging, and mirroring along-
track preserved the imaging physics. This was formalized
in [1] with the suggestion that smaller range and along-track
translations, within 0.5 meters relative to the image size
of 5 meters, are acceptable. Others in the field followed
these recommendations [2, 5]. Other augmentations were
not explored, because it is unknown if they would negatively

impact the performance of DL models. We address this gap
by providing empirical evidence that augmentations violat-
ing unique geometry and imaging physics of SAS negatively
impact supervised classification tasks. For that purpose we
have developed a unique dataset for detecting imaging arti-
facts in SAS imagery with DL. Further, we consider widely
used augmentations in DL for computer vision (e.g. rotation,
zooming, contrast, cross-track mirroring) as well as common
augmentations used in the SAS literature such as mirroring
along-track. We train a Bayesian neural network using MC
Dropout with a ResNet architecture for this task [6].

2. METHODOLOGY

2.1. Data used in the Study

Data were collected using the HISAS interferometric SAS
carried by the HUGIN-HUS AUV of the Norwegian Defence
Research Establishment (FFI) [7] from several different loca-
tions with a variety of seafloor types. Using backprojection
imaging and taking into account navigation correction, SAS
images were formed. A separate physically perturbed dataset
was created by introducing imaging artifacts (which degraded
the focus, grating lobe level, and SNR of the images). Large
SAS scenes were tiled into 300 × 300 pixel patches and our
overall approach produces 84k training samples, 5k valida-
tion and testing samples each with class-balanced validation
and testing splits. This is a supervised learning approach with
multi-class classification task. Ablation studies of probabilis-
tic models have been shown for this dataset in [8].

2.2. Models

In this project, we used a ResNet 20 architecture [9] with 20
2D convolutional layers, each with 16 filters, a kernel size
of 5 × 5, and a stride of 1 with zero padding. We used MC
Dropout, applied during both training and inference, by plac-
ing dropout layers after each activation layer within the resid-
ual block, as detailed by Nado et al. [10].
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Table 1. Data Augmentation Techniques
Data Augmentation Physical Magnitude
Flip Along Track Yes 50%
Flip Across Track No 50%

Rotate Small Yes ± 5°
Rotate Large No ± 30°

Zoom No ± 1.2 m
Translate No ± 1.2 m
Contrast Yes ± 20%

2.3. Computer Vision Data Augmentations

The key model comparisons studied here are ”physical” ver-
sus ”non-physical” data augmentations. Table 1 summarizes
the various data augmentation techniques employed, which
were studied separately.

The mirroring functions were randomly initialized by
TensorFlow (TF) using the RandomFlip function. Half the
time, the preprocessing layer would mirror or flip the image
horizontal (along track) or vertical (across track) as appropri-
ate. Because the image is created by collecting sonar inputs
along the track, flipping an image along the track is phys-
ical. In contrast, flipping across track will cause a shadow
and its originating feature to flip, which violates the physical
geometry of the scene. Therefore, mirroring along the range
is classified as non-physical.

Rotation was based on the beamwidth of 20° of the ele-
ments in the SAS system. This work used rotations smaller
and larger than this beamwidth, namely 5° and 30°. If the ro-
tation is significantly less than the beamwidth, the resulting
augmentation is physical, and vice versa. Zoom was initial-
ized with a maximum ±20%, corresponding to 1.2 meters of
zoom or 60 pixels. Zoom is considered a non-physical pertur-
bation due to its effect on the speckles in a SAS image. Trans-
late shifts is considered a physical perturbation, but in this im-
plementation the missing space is filled with zeros, which is
non-physical.

The contrast augmentation changes the relative variation
of the signal around the mean intensity by up to 20% in either
direction. This change in relative intensity could be compa-
rable to viewing the same image from a different altitude or
grazing angle [11]. A model trained with contrast could be-
come more range-invariant to future test data. As this aug-
mentation is reproducible, it is we consider it to be a physical
augmentation.

2.4. Pseudo-Coloring Techniques

Additionally, several different pseudo-coloring techniques
were applied. Pseudo-coloring is treated as a physical aug-
mentation technique. All colormaps are from Matplotlib
listed colormaps [12] with the exception of the colormap
designed by Isaac Gerg [13]. The Gerg colormap was de-
signed to maximize perceptual luminance for SAS images.
The images were created by mapping the image intensity to

Fig. 1. Illustration of the colormaps considered.

the RGB domain specified by the colormap, interpolating if
necessary. The Matplotlib colormaps were discretized with
256 values, whereas the Gerg colormap was interpolated to
double precision floating point. The images were truncated at
60 dB of dynamic range before conversion to the colormap.
All colormaps tested against are illustrated in Fig. 1 on an
example image.

2.5. Overall Model Development and Evaluation

There have been limited studies performed on image quality
assessment for synthetic aperture images, so several differ-
ent approaches were taken to determine which type of model
works best for the problem. The base model was a ResNet
20v1 model [9], and that model was run using the MC dropout
method [10] under fixed conditions over all augmentations
studies in order to have a fair evaluation of results. Default
model training included L2 regularization parameter of 0.001,
dropout probability of 0.2, batch size of 128m, Adam opti-
mizer with an initial learning rate of 0.001. We monitored for
overfitting via early stopping strategy.

We focused on different forms of data augmentation, both
computer vision techniques (see Table1) and pseudo-coloring
(see Table 4). We applied five different colormaps to the MC
Dropout model: Inferno, Twilight Shifted, Turbo, Viridis, and
Gerg.

Analysis is conducted both in terms of standard metrics
on the classification task (i.e., accuracy, precision, recall,
f1-score) as well as the mean negative log likelihood met-
ric (MNLL) over the test set [14]. This metric is defined
as MNLL = −

(
1
N

∑
log(p(yc))

)
, where N quantifies the

sample size of the test dataset, and p(yc) is the probability the
model assigns to the correct class label.
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3. RESULTS

We first demonstrate ResNet20 model baseline performance
with no augmentations in training with accuracy of 0.867 and
an MNLL of 0.563 on a balanced test set (see Table 2), against
which we compare performance of augmentations. Further,
we show results that demonstrate the effects of commonly
used augmentation of along-track flip, versus across-track
flip. Both accuracy and MNLL for flip along track improve
over no augmentation performance while flip across track
degrades relative to the no augmentation case, see Table 2.

Data Augmentation Accuracy MNLL
No Augmentation 86.7% 0.563
Flip Along Track 88.2% 0.385
Flip Across Track 81.0% 0.850

Zoom (±20%) 92.0% 0.297
Contrast (±20%) 88.6% 0.378

Rotate small (±5◦) 86.0% 0.474
Rotate large (±30◦) 86.7% 0.390
Translate (±1.2 m) 88.9% 0.363

Table 2. Data Augmentation effect on the test accuracy and
MNLL of the MC Dropout model. In the table we provide
augmentations and their range as applied to the dataset.

We bring out an interesting impact of rotation since Table
2 suggests that large rotation enhances model performance
which could be misleading. To show this we inspect the per-
class performance of no augmentation and rotate large evalu-
ations as given in Table 3.

No Augmentation Rotate large (±30◦)
prec rec f1 prec rec f1

No Artifact 0.77 0.86 0.81 0.69 0.95 0.80
Sound Speed 0.97 0.85 0.91 0.99 0.93 0.96

SNR 1.00 0.99 1.00 1.00 1.00 1.00
Yaw 0.75 0.76 0.76 0.86 0.59 0.70

Table 3. No Augmentation compared to a rotation of 30°.
The overall accuracy is 0.867 for both augmentations.

By looking into precision and recall as metrics we can see
that the per-class performance between no artifact and yaw
is inversely impacted. Recall is reduced for yaw while pre-
cision is increased, which means that model does not detect
many yaw artifacts but when it does it is correct. On the other
hand, recall is very high with reduction in precision for the
no artifact class. The model mis-classifies many images as
no artifact. This could be explained by the fact that grating
lobes always show up in the along track direction from bright
objects, and rotation may violate this rule. If an object was
big enough, some distortion would be observable in the along

track direction, but not for small objects.

Zoom is a meaningful perturbation for large objects, be-
cause blurring and grating lobes can impact a variety of scat-
terer sizes, and the zoom augmentation can broaden the dis-
tribution of scatterer sizes present in the image. This may
explain the increased performance of zoom, even though it
alters the size of speckle blobs in the image. Zooming out
also has the potential to act as a kind of despeckling filter,
and may make the model less sensitive to imaging speckle.
As discussed earlier, contrast is a physically meaningful per-
turbation since different grazing angles and rms terrain slope
will have different contrast, and this augmentation increases
the performance [11].

For the pseudo-color images, the working hypothesis was
that generic Matplotlib colormaps would underperform gray-
scale, but the Gerg colormap would perform better. The pro-
cess of applying colormaps to the images resulted in a loss
of precision, reducing the amount of information available
for analysis. This loss of precision could be crucial in dis-
tinguishing seafloor features and artifacts, particularly in re-
gions of low signal intensity. Pseudo coloring also increased
the model input features, which can lead to overfit with small
datasets such as this one.

The overall results supported the hypothesis as all pseudo-
coloring techniques performed worse than the grayscale orig-
inal (see Table 4) . The Gerg colormap, which retained the
original 32-bit precision, performed the best among the col-
ormaps, but less than grayscale. Once again, we break out
results for the yaw class of error, in Table 5. In our analy-
sis we found that classification reports showed that errors in
the ”yaw” category significantly influenced the overall perfor-
mance. Both the Gerg colormap and grayscale had higher f1
scores for yaw compared to other colormaps, 0.734 and 0.757
respectively. This suggests that the difference in precision be-
tween the original data and the colormaps played a substan-
tial role in yaw classification and overall model performance.
The results also indicated a correlation between no artifact
and yaw classifications, suggesting that these categories were
often confused by the model.

Colormap Accuracy MNLL
Grayscale 86.7% 0.563

Inferno 79.4% 0.800
Turbo 77.7% 0.969

Twilight Shifted 73.7% 1.381
Viridis 81.4% 0.856
Gerg 84.5% 0.715

Table 4. Effect of colormap on accuracy and MNLL
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Colormap yaw (f1 ) No Artifact (f1)
Grayscale 0.757 0.814

Inferno 0.609 0.713
Turbo 0.653 0.749

Twilight Shifted 0.669 0.669
Viridis 0.650 0.720
Gerg 0.734 0.785

Table 5. Yaw versus no artifact performance per colormap.

4. DISCUSSION AND CONCLUSION

We explored the effects of different data augmentation tech-
niques on the performance of a Bayesian ResNet20 model
in recognizing imaging artifacts in SAS imagery that were
introduced via beamforming. The baseline performance of
the model, without any augmentations, achieved an accuracy
of 86.7% and an MNLL of 0.563 on this task. Overall, the
computer vision perturbations that mesh well with the physics
of imaging improve performance, and the perturbations that
violate imaging physics degrade performance, except for the
case of large rotation and zoom. The pseudo-coloring study
aimed to evaluate the performance of different pseudo-color
images compared to grayscale. The study found that all
pseudo-coloring techniques performed worse than grayscale.
We believe that the loss of precision during the pseudo-
coloring process, combined with a much larger number of
input features was responsible for the reduced performance.
The Gerg colormap and grayscale showed better performance
in classifying yaw errors, indicating the importance of pre-
cision in data representation. Additionally, a correlation was
observed between no artifact and yaw classifications, sug-
gesting confusion between these categories. By simulating
diverse imaging conditions through perturbations in beam-
forming, we provide valuable insights for optimizing data
augmentation in training of neural networks.
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