

 FFI NOTAT

 HOTDOG : A HEURISTIC ON THE
DETERMINATION OF OPTIMUM GLOBALLY
USING THE MATHEMATICAL
PROGRAMMING LANGUAGE AMPL

 GROTMOL Øyvind, SUKKESTAD Jens Arne, BRAATHEN Sverre

 FFI/NOTAT-2001/03011

FFISYS/807/161

 Kjeller 9 August 2001

HOTDOG : A HEURISTIC ON THE
DETERMINATION OF OPTIMUM GLOBALLY
USING THE MATHEMATICAL PROGRAMMING
LANGUAGE AMPL

GROTMOL Øyvind, SUKKESTAD Jens Arne,
BRAATHEN Sverre

FFI/NOTAT-2001/03011

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

 3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

 FFI/NOTAT-2001/03011 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 29
 FFISYS/807/161 -
4) TITLE

HOTDOG : A HEURISTIC ON THE DETERMINATION OF OPTIMUM GLOBALLY USING THE
MATHEMATICAL PROGRAMMING LANGUAGE AMPL

5) NAMES OF AUTHOR(S) IN FULL (surname first)
 GROTMOL Øyvind, SUKKESTAD Jens Arne, BRAATHEN Sverre

6) DISTRIBUTION STATEMENT

 Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
 IN ENGLISH: IN NORWEGIAN:

 a) Global Optimization a) Global Optimering

 b) Mathematical Programming b) Matematisk programmering

 c) Nonlinear Programming c) Ikke-lineær programmering

 d) Large-scale problems d) Stor-skala problem

 e) Gradient-based search e) Gradient-basert søk

THESAURUS REFERENCE:

8) ABSTRACT

An approach for robust, large-scale global optimization is developed, where robust refers to obtaining feasible local
optimal solutions within constraints tolerances, and large-scale may imply nonconvex problems with hundreds to
thousands of decision variables.

A heuristic algorithm HOTDOG ("Heuristic On The Determination of Optimum Globally") is described for problems
with a restricted number of local optima. A simpler version of the algorithm called MICIO ("MInimum Computation by
Iterative Optimization") that uses the same local search procedure as HOTDOG, is also developed for use when the
number of local optima is very large. Both algorithms are developed using the features and generic functions in the
mathematical programming language AMPL, and both the HOTDOG and MICIO heuristics may therefore be invoked
by a standard include-statement command in AMPL (corresponding to m-files in Matlab).

To apply these heuristics certain AMPL modeling conventions have to be used. A modeling template describes these
conventions with an example. Test results comparing HOTDOG/MICIO with other algorithms are also given.

9) DATE AUTHORIZED BY POSITION

 This page only
9 August 2001 Bent Erik Bakken Director of Research

 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

 5

CONTENTS
 Page

1 INTRODUCTION 7

1.1 Problem formulation 7

2 ALGORITHM 9

2.1 General 9

2.2 Local search procedure 11

2.3 HOTDOG 12

2.4 MICIO 16

2.5 Parameters 17

3 AMPL MODELING TEMPLATE 19

3.1 Model 19

3.2 Constraints 19

3.3 Run-file and general modeling template 20

3.4 Result file 24

4 RESULTS 25

4.1 Example tests 25

5 CONCLUSION 27

 References 28

 Distribution list 29

 7

HOTDOG : A HEURISTIC ON THE DETERMINATION OF OPTIMUM
GLOBALLY USING THE MATHEMATICAL PROGRAMMING LANGUAGE
AMPL

1 INTRODUCTION

Global optimization of nonconvex, constrained problems is a challenging and difficult task, but
nevertheless often required for solving practical, realistic problems. Many suggestions and
algorithms have been reported with different properties and results (1)(2)(4)(6)(7)(8)(9). There
is (as yet) no altogether “best” method found, even though tunneling type algorithms show
promise (6)(7)(9). An approach for robust, large-scale global optimization is therefore of
interest, where robust refers to obtaining feasible local optimal solutions within constraints
tolerances, and large-scale may imply nonconvex problems with hundreds to thousands of
decision variables.

Here, a heuristic algorithm HOTDOG ("Heuristic On The Determination of Optimum
Globally") is described for problems with a restricted number of local optima. A simpler
version of the algorithm called MICIO ("MInimum Computation by Iterative Optimization")
that uses the same local search procedure as HOTDOG, is also developed for use when the
number of local optima is very large, much in the spirit of multi-level single-linkage type
algorithms (1). Both algorithms are developed using the features and generic functions in
AMPL itself (5), and both the HOTDOG and MICIO heuristics may therefore be invoked by a
standard include-statement command in AMPL (5) (corresponding to m-files in Matlab). This
may seem ineffective compared to ordinary solvers, but experience shows that this is not very
serious for small problems (where response times are short anyway), and may also be preferred
for large problems where other methods may fail to find feasible solutions. The pace of
technology also works to reduce the response times for large problems.

First, a general problem formulation is presented with a transformation to a total penalty
function form used by both heuristics. Then, in chapter 2 the general features of the heuristics
for HOTDOG and MICIO are presented, together with a detailed description of the common
local optimum search procedure used. A flowchart guide to both heuristics is also included with
a description of user input parameters. To apply these heuristic algorithms certain AMPL
modeling conventions have to be used. A general modeling template in chapter 3 describes
these conventions with an example. Finally, some test results comparing HOTDOG/MICIO
with other algorithms are given in chapter 4.

1.1 Problem formulation

A general nonconvex, constrained mathematical programming problem may be formulated as
shown in Problem 1, where f ()x is the basic objective function of the bounded decision
variables x �� to be optimized, and where both inequality n g()x and equality h constraint ()x

 8

functions are included. When one or more of the functions are nonconvex this is a global
optimization problem. Note that the symbol f is reserved for the basic objective function.

Problem 1:

min ()

() , ,...,
() , ,...,

x
x

x
x

x l,u

f

g i
h j

i

j

� �

� �

�

0 1
0 1

I
J

 (1.1)

This original problem is reformulated as a total penalty function to return a real number for all
real input values, even if the constraints are violated (i.e., the input value is an infeasible point).
The constraints are reformulated as expressions with nonpositive values when the constraints are
satisfied. This means that an equality constraint like hj(x) � 0 will be included as | hj(x) | in the
penalty function, while inequality constraints as represented above are unchanged. For each
constraint a tolerance limit Tol and a penalty weight Pen also has to be given to determine the
corresponding penalty function term. The penalty function term for each constraint is
reformulated as a combination of a quadratic term within the tolerance limit and a linear term
outside. If the constraint expression is vk ()x , then the corresponding penalty function term
combination will be:

 L Pen
Tol

Tol v Pen v Tolk
k

k
k k k k() min ,max , () max , ()x x�

�

� � �

2
0 0

2b gc h b gkx � (1.2)

The derivatives of this penalty function term with respect to x are continuous wherever vk ()x is
continuous. This makes the penalty function term easier to handle for the search algorithm. The
purpose of expressing the penalty function term in this way is to try to get a progression towards
the feasible area as a linear function, and at the same time trying to achieve convergence as a
quadratic function within the feasible area. The value of Penk should be set large enough to
make the value of the total penalty function deteriorate when outside the feasible area.

The reformulated version of Problem 1 with a total penalty function F()x may then be
expressed as follows:

Problem 2:

min () () ()

x
x x

x l,u

F f Lk
k

I J

� �

�

�

x
�

�
1 (1.3)

This problem reformulation will have the same minimizing solution as Problem 1 when the
constraints are satisfied within their tolerances and the Lk ()x terms are negligible.
(Note that a maximizing formulation may be expressed by instead minimizing �F()x .)

 9

The heuristic algorithms HOTDOG and MICIO are developed to solve the reformulated
Problem 2 version of the original Problem 1. An AMPL general modeling template is described
in chapter 3 to guide the Problem 1 reformulation process to a Problem 2 representation.

Equalities are in general more difficult to handle than inequalities, since the equalities are
always active. The equalities should therefore mainly be used to eliminate variables by using
the defined variable features of AMPL (5). Thereby, both the number of decision variables and
the number of constraints are reduced. The equalities kept should be given the highest possible
acceptable tolerance limit.

2 ALGORITHM

To solve Problem 2, two heuristic algorithms are developed for effective and robust search for a
global minimum in large nonconvex, constrained problems with a restricted number of local
minima. First, a general description of the main ideas of the algorithm HOTDOG is given.
Then, the simpler version MICIO that uses the same local search procedure as HOTDOG is
described. The local search procedure steps are also described in more detail together with
flow-chart descriptions for both HOTDOG and MICIO. Finally, the set of input parameters of
the algorithms to control the optimization is described.

2.1 General

To find the global optimum of a function, a usual procedure (1) is to start a number of local
searches from different random initial start points and choose the smallest local optimum as an
estimate of the global optimum. However, to search for local optima in the same search space
more than once, will probably reach one of the local optima already found. Various methods of
choosing a subset of starting points from the set of generated points have been developed
(1)(4)(7). The main idea in these methods is to avoid searches to be started from points close to
another. Some of the methods also have criteria for instance related to the function values or the
gradient directions in the start points (1).

HOTDOG is a heuristic algorithm that tries to achieve improvements in performance by
terminating some of the local searches after they have started. If the number of local optima is
small compared to the number of searches started, we can achieve a considerable reduction in
local iterations. The main idea is to terminate a search as fast as possible if it is close to an
already found local optimum. In HOTDOG, this is included in the algorithm by storing the path
of local search legs as a point sequence forming continuous line segments. In this way, we can,
during a local search, test the distance to these previous path legs. If we are close, the search
will probably reach an earlier local optimum, and the search will be terminated.

If we visualize the problem as a multi-dimensional topography with “hills” and “valleys”, local
minimum searches will probably find the “valleys” quite fast. When testing for the distance to
previous path legs, a certain (user input) tolerance radius will determine a possible local search
cut-off, and the regions where the searches are terminated can thus be seen as a network of
"hotdogs" with thickness proportional to the tolerance radius (giving an association to the

 10

heuristic algorithm name). In a minimization problem the concentration of these will be in the
lower parts of the “valleys”, and most of the searches will terminate there. As new starting
points are generated the local searches should therefore tend to be terminated when hitting a
“hotdog” before a full search path is finished, thus saving some local iterations as shown in
Figure 2.1. This termination process should be most useful when a problem has a restricted
number of local optima.

1

2

3

Figure 2.1 The dotted lines represent the outer edges of the “hotdogs”, while the solid lines
represent the path legs in the local search. The filled arrows are the end point of a
path. The simple arrow in path 2 represents the end point of a path that lies within
the hotdog of another path.

If, on the other hand, the number of local optima is large, it is considered better to finish all local
searches. HOTDOG would in these cases only terminate a small part of the local searches with
a probably marginal efficiency improvement in the number of iterations at an increased storage
requirement. In these cases, methods that test only the initial start points are probably even less
helpful (1). We can then only hope that the best local optimum found is a good estimate of the
global optimum. Therefore, for these kind of problems a simpler algorithm MICIO is also
developed, which uses the same local search procedure, but does not store and test previous
local search path legs for cut-offs, thus giving a random multi-start algorithm (1). Every local
search is then run to the end, and the best local optimum found is used as an estimate of the
global optimum. This simpler logic is the only difference between HOTDOG and MICIO, but
since MICIO does not store any path search legs, this algorithm may be used for slightly larger
problems. Both HOTDOG and MICIO are designed for robust optimization of large problems
(> 100 variables) and implemented using features and generic functions in AMPL itself only (5).
Thus, there is no need for a special solver tool, since both the HOTDOG and MICIO heuristics
may be invoked by a standard include-statement command in AMPL (5).

As a further possible improvement, a number of user specified phases can be continued for
further local optimization searches. If some of the local searches in the initial phase exited with
too many iterations, and the best of these are almost as good as the best end point so far, the best
of these are continued with further local searches until the number of phases are equal to
max_phase, the total number of searches equals max_totalrep, or the improvement in the last

 11

phase of the particular search was too small. Thus, both algorithms may be tailored to the
particular needs or characteristics of each problem.

2.2 Local search procedure

Both HOTDOG and MICIO use the same basic local search procedure for optimization
problems with a gradient-based search. A vector related to the second-order derivative is also
calculated, giving some of the advantages using the complete Hessian matrix, but without the
extra calculations and storage requirements necessary for the Hessian (2). Thus, the algorithm is
especially suitable for large, nonlinear problems where gradient methods based upon the Hessian
are too costly (2)(3).

The local search procedure uses the total penalty function F()x of Problem 2, where each of the
decision variables xi can take all values within lower and upper bounds li , u . As seen, the
constraints are included as penalty terms in the function

i

F()x to be optimized. User defined
penalty coefficients and constraint tolerances are supposed given relative to the basic objective
function f ()x , such that this function and F()x are both optimized (with negligible penalty
terms). A description of certain modeling template requirements for using HOTDOG or MICIO
with an AMPL problem is given in chapter 3.

The local search procedure uses AMPL’s internal support for gradient calculations of a function
�F()x (= x) based on the effective and elegant method of automatic differentiation (2)(5).
The algorithm draws a (user specified maximum) number of random start points within the
lower and upper bounds (.lb and .ub), and starts local searches from these initial start points.
HOTDOG also stores the path legs that is generated, and terminates the current search if it gets
too close to a previous path leg (hitting one of the “hotdogs”).

.rc

An assumption for the local search procedure heuristic is that the function F()x may be
approximated locally by quadratic functions of the variables. Therefore, major iteration steps

 are calculated individually for each variable dxi xi based upon two gradients, which are also
applied in the minor iterations step updates as a quadratic interpolation local line search.

The main characteristics of the local search procedure heuristic in HOTDOG/MICIO can be
summarized as follows expressed in AMPL ‘pseudo-code’ (dx is a vector notation with
individual components dx). i

0. Set local termination criteria OptTol, MaxIters, MaxRed and precision �
1. Let dx:=0, rc:=0, make a random draw for initial start point:= x ;

2. Major iterations:

 Let f1:=F(x), let x1:=x, let rc2:=rc, let rc :=�i i F()x ·|u -i li| ;(rc scaled)
3. If |rc|�OptTol or MaxIters=true then stop -> x,F(x) is local optimum.

4. Let dx := if |dx |�� then (if rc <0 then 0.01 else if rc >0 then -0.01) i i i i

 else
rc dx
rc rc

i

i i

�

�2
i ; (step:local quadratic approximation)

 (The test also keeps the variables within bounds, and also prevents too

 large changes or changes in the wrong direction)

 12

5. Minor iterations:

 Let xi := x i1 + |u -i li|·dxi ; (new point = rescaled update for all i)

6. If F(x)<f1 - � ·(1+|F(x)|) then go to step 2 ; (improvement found)

7. If F(x)<f1 + � ·(1+|F(x)|) then go to step 2 ; (no further improvement?)

8. If MaxRed=true then go to step 2 ; (too many minor iterations)

9. Let dx := dx ·(if dx ·�i i i i F()x �� then 1 else
rc

rc F
i

i i�� ()x
) ;

 (step:line search with quadratic interpolation)

10.Go to step 5

If it is preferable, an ordinary gradient direction search may be made after exit to try to get an
even better result.

The penalty function parameters Pen of the total penalty function F()x should initially be set to
values that give a resulting penalty that outweighs the corresponding improvement of the basic
objective function f ()x if violating the constraints of the feasible region. In this way, the
gradients will usually point in a direction towards the feasible area. There can, of course, be
certain cases where some of the local optima are also infeasible. If this is only a small part of
the total local optima found, it would be acceptable to select the best of the local feasible optima,
first eliminating the infeasible ones. If we get too many infeasible solutions, the corresponding
penalty function parameters for the violated constraints must be increased. However, certain
kinds of constraints can make problems for the algorithm if the penalty function terms are large.
Thus, they shouldn't be exaggerated. To automatically assign penalty function parameter values
may be a potential area for future research in further algorithmic improvement work.

If there are less than 300 variables in the problem, the student version of AMPL is sufficient for
using HOTDOG or MICIO. If either a separate analytic expression for the gradient of the
penalty function, or an alternate approximate gradient calculation procedure is available, the
algorithms may also be implemented as ordinary solvers for large-scale problems.

2.3 HOTDOG

A flowchart of the HOTDOG algorithm is shown in Figure 2.3 where the (coloured) dotted lines
and boxes represent the special HOTDOG features of the algorithm, while the solid (black) parts
are the common local search algorithm described above.

The common local search algorithm is the inner core of both the HOTDOG and MICIO
algorithm and will be explained in detail also referring to the 10 step description in chapter 2.2.

The task of HOTDOG is to determine the global minimum of the basic objective function f of
Problem 2. The modeling template for the total penalty function F in equation 1.3 is described
in chapter 3, and the first box of the flowchart generates this total penalty function from the
modeling template information using a reserved objective function name Obj. The first box also
sets all parameters and required options, assigning preset default values to options if they aren't
given as input. A header is also printed to the main output file before starting the search.

 13

The outermost loop of the algorithm controls the phases of the optimization. This loop and all
tests related to it are marked green (dotted) in the flow chart. The parameter Qphase counts the
number of finished phases (green loops), while the parameter Qc counts the number of local
search (partial) paths. A path that has been terminated because max_iters iterations have been
made is called a partial path. For each phase (green loop), the endpoints of the partial paths in
last phase are tested, and this test determines which of these paths (if any) should be continued.
This test is explained in detail in g) below.

The following detailed description of the HOTDOG algorithm is grouped according to the letters
a) to h) shown on the flowchart in Figure 2.3:

a/b)
In the first phase, we randomly draw a user determined number of starting points _svar[i],
i=1,...,QN (the number of variables). In the other phases, end points from the partial paths in the
last phase already exist, and these are used as continuation points for the next phase.

c/d)
A search starts for another point with a smaller function value. First, we test if the current point
is within already stored paths, the "hotdogs". This hotdog test checks whether or not the current
point is closer to any of the line segments of the paths generated than the “hotdog” radius Qr
(default 0 0). To keep track of all the line segments, each point visited is stored in an
array Qpoint[Qct,l,i] referring to the i-coordinate of point l made in repetition Qct. The hotdog
test is done for all line segments in all paths. A hotdog test for one of these line segments is
shown in Figure 2.2 for a two-dimensional case. The test determines the distance from point C
to the line segment AB and checks if it is greater than Qr. Referring to the AMPL generic
synonyms, the point we wish to test, C, is called _svar[i]. Point A is the first and B is the
second of the two points of the line segment that is tested. These points are called Qpoint[Qct,l-
1,i] and Qpoint[Qct,l,i], and Qdist[Qct,l-1] in the code is equal to the squared distance c²
between the two points in the figure.

5. � QN

Figure 2.2 The distance from a point C to a “hotdog” line segment AB

If the angle � ABC > 90° then the distance from line segment AB to C is a
If the angle � BAC > 90° then the distance from line segment AB to C is b

 14

If both angle � BAC < 90° and �� ABC < 90° then the distance from line segment AB to C is x,
found by solving the following equation:

� �

4

22 2

222
222

2 c
bacba

x

�
���

�

If this test shows that the current point is within the “hotdog”, the algorithm goes to part g) as
shown in the flow chart. Otherwise, a search for a better point continues using the local search
algorithm described above. If the gradient norm is less than or equal to OptTol, the point is
considered a local minimum, and the local path is stopped. This will also happen if the total
number of iterations completed exceeds max_iters. Otherwise, a new search direction and step
length is evaluated as a vector Qdx by approximating the total penalty function locally by a
second order function and finding a minimum for each coordinate, using 2 gradients and keeping
the step inside the x domain. This will in general not be the best possible guess for a new point,
but more memory and time-consuming methods have to be used to do better.

e)
From the current point the individual directions and step lengths of the vector Qdx determine a
new point. If this new point is an improvement, we go directly to f). Else, the step length for
each coordinate is reduced with a line search procedure using quadratic interpolation with 2
gradients. This step reduction loops no more than max_red times, in which case we jump to g).

f)
Here, a new point has been found that is kept as the next point of the local search path. At this
moment, there is a greater chance that the new point is inside the “hotdog” around the last line
segment than ever, so it would probably be more efficient to take the hotdog-test just for this
line segment now. But, we will this time just check whether the distance from the last point to
this new point is less than 2·Qr. If not, this new point is accepted as the next point in the local
search path, and the algorithm repeats from c).

g)
To get here, one of four conditions are TRUE:

1. The last point is within one of the “hotdogs”
2. || gradient || ≤ OptTol
3. max_iters iterations exceeded
4. The step length has been reduced more than max_red times

In cases 1, 2 and 4 a local search path is completed and a comment is printed to the output file
corresponding to "Hotdog hit", "Local minimum" or "Cannot be improved" respectively. In
case 3, the comment "Too many iterations" is printed to the file, but then the path will not
immediately be considered as completed, but instead possibly continued as a partial path in later
phases.

 15

One local search repetition started at c) is now completed. In phase Qphase, this loop is run
Qphaserep[Qphase] times. In the initial phase 0, a certain fixed number of random starting
point repetitions given by the input parameter Qphaserep[0]= rep is searched. For each later
phase, the number of partial paths is checked to make sure that Qphaserep[Qphase] number of
repetitions is made. If not, the algorithm returns to step b), otherwise the repetitions limit,
max_totalrep, or the phases limit, max_phase is tested. If the limits are reached, the algorithm
continues at h). If not, the repetitions that are to be continued in the next phase are chosen.

Objective function:

a)
b)

Qc:

Yes No Qphase:

c)
d)

Yes Hotdog:

No
Gradient:

Yes OptTol:

No
Yes Qnumber:

max_iters:
No

Qdx:
e)

Yes

No
Yes Qn_red:

max_red:
No

No Qr:

Yes

g)

No rep:

Yes

Yes max_totalrep:

No
Yes max_phase:

No
Criterion for this:

No Qphaserep[i]:

Yes h)

Print header to file

Qphase = Qphase + 1

Qc � max_totalrep

Update start point

Print information to file

Does the hotdog cover the point?

f)

Qc ��rep

Qn_red = Qn_red + 1
Reduce step length

|| Qdx || � 2·Qr

Qc = Qc+1

New start point = end
point from memory

Choose a random
start point

Qphase = 0

Qnumber � max_iters

Calculate gradient

|| gradient || � OptTol

Reduction of step
length:

Print end situation to file

Qphase � max_phase

Choose the repetitions which are to be continued

Qphaserep[Qphase] = 0

Find best result and call it an estimate of global optimum

Qnumber = Qnumber + 1
Calculate step Qdx

Is the new point an improvement?

Qn_red � max_red

Make objective function
Define parameters

Counter for local searches

Counter for phases

See below

Scaled by domain size

Counter for iterations
Maximum number of iterations in one local search

Counter for step lenght reductions
Maximum number of step length reductions in one iteration

Maximum number of local searches in each phase

Maximum number of local searches in all phases

Maximum number of phases

See below

Number of local searches we want to continue on in phase i

The radius of the "hotdogs" relative to the standard value,
which is 0.05*sqrt(N), where N is the number of variables

Step vector based upon local 2. order approximation within
bounds

Line search with quadratic interpolation using 2 gradients

Generated by combining the function f, which is to be
optimized, and penalty function terms for the constraints

If a point is to be regarded as a local minimum,
then || gradient || has to be less than OptTol

Hotdog: Points nearby former visited points are covered by a virtual hotdog to make sure that we don't test these

points because we believe that these points will lead to the same local minimum as we already have found.

1.
2. The function value of this end point is less than or equal to the best function value reached so far plus

the absolute value of this function value multiplied by the parameter PhaseTol.

Criterion for continuing a
local search:

The local search in phase i-1 has been stopped because Qnumber � max_iters.

Figure 2.3 Flow chart for HOTDOG algorithm

 16

To determine the partial paths that should be continued in new phases, the best of the repetitions
so far is found. This repetition is stored as best_rep, and Objs[best_rep] is its objective value.
Then, among the case 3 repetitions with "Too many iterations", the repetitions that are within a
certain tolerance PhaseTol of best_rep, i.e. < (Objs[best_rep] + PhaseTol . | Objs[best_rep] |)
are selected, assuming that a relatively good partial path will become better than the other partial
paths. The number of repetitions to continue in the next phase Qphaserep[Qphase] and the
indexes to the partial paths chosen Qextra[Qc] are then updated.

If there are no further partial paths to continue, Qphaserep[Qphase] = 0, and the algorithm
finish at h), else a new phase starts by returning to a).

h)
At the end of the algorithm, results are printed to file. The most interesting information is of
course the object function value and variable values of the global minimum estimate, which has
to be evaluated first. This is done by comparing all the local minima found that have feasible
solutions, choosing the best as the global minimum estimate. Other types of information of
interest is the total number of gradient evaluations made, the length of all the paths, and in
addition all the local minima values found.

The solution to the problem, that is, the variable values of the global minimum estimate are in
general printed to another file executed from the problem run-file (see chapter 3.3), but if the
number of variables is less than 10, the variable values of the local minima are also printed to
the HOTDOG output file.

This ends the HOTDOG algorithm, which may be invoked by an AMPL include-statement. The
algorithm may also be written as an ordinary solver, if gradient calculation programs/procedures
are provided. The version described works as an interpreted solver in the same way as m-files in
MATLAB, and is straightforward to use when certain modeling conventions are followed.
These are described in chapter 3.

As mentioned, the HOTDOG algorithm works best for problems having a reasonably small
number of local minima, since storage of local search paths and additional testing of distances to
them are made. A simpler algorithm version MICIO is therefore also developed which may be
faster when the number of local minima is very large.

2.4 MICIO

MICIO is an algorithm using the same random starting procedure and repetitive optimizing
phases as HOTDOG, but without the hotdog test for stored path distances (see Figure 2.4).
Therefore, because of these similarities no in-depth description of the contents of MICIO is
made, just in general referring to chapter 2.3.

The basic parts of MICIO are the same as in HOTDOG, that is, the method of finding a local
minimum is the same in both algorithms. By skipping the hotdog test, MICIO becomes less

 17

memory consuming than HOTDOG, giving the possibility to increase the number of variables in
the model or making the model more complex.

The MICIO algorithm is also grouped according to the letters a) to h) shown on the flowchart in
Figure 2.4 below, with the same content except the hotdog test of d) and f) which are missing.
The same phase logic of g), and final result reports of h) as in HOTDOG are also included in
MICIO. The only difference should be the number of iterations and gradient evaluations made.

2.5 Parameters

The algorithms for HOTDOG and MICIO may be controlled by a set of user input parameters.
The most important of these are shown in the following AMPL-code of the initializing part
‘Define parameters’ of the algorithms. These parameters are described together with suggested
default values.

Objective function:

a)b)

Qc:

c)

Gradient:

Yes OptTol:

No
Yes Qnumber:

max_iters:
No

Qdx:
e)

Yes

No
Yes Qn_red:

max_red:
No

No rep:

Yes

Yes max_totalrep:

No
Yes max_phase:

No
Criterion for this:

No Qphaserep[i]:

Yes

Qphase = Qphase + 1

Qc � max_totalrep

Update start point

Print information to file

Qc ��rep

Qn_red = Qn_red + 1

g)

Qnumber � max_iters

Print header to file

Print end situation to file

Qphase � max_phase

Choose the repetitions which are to be continued

Qphaserep[Qphase] = 0

Find best result and call it an estimate of global optimum

Reduction of step
length:

Choose a random start point

Is the new point an improvement?

Qn_red � max_red

Calculate gradient

|| gradient || � OptTol

Reduce step length

Flow chart for MICIO

Qnumber = Qnumber + 1
Calculate step Qdx

Make objective function

Qc = Qc+1

Define parameters

Counter for local searches

Scaled by domain size

Counter for iterations
Maximum number of iterations in one local search

Counter for step lenght reductions
Maximum number of step length reductions in one iteration

Maximum number of local searches in each phase

Maximum number of local searches in all phases

Maximum number of phases

See below

Number of local searches we want to continue on in phase i

Line search with quadratic interpolation using 2 gradients

Generated by combining the function f, which is to be
optimized, and penalty function terms for the constraints

If a point is to be regarded as a local minimum,
then || gradient || has to be less than OptTol

Step vector based upon local 2. order approximation within
bounds

Figure 2.4 Flow chart for MICIO algorithm

 18

AMPL-code of ‘Define parameters’:
if {'file'} not within _PARS then print "param file symbolic default 'HotDog.tmp';" >> options;

if {'output'} not within _PARS then print "param output default 2;" >> options;

if {'xl'} not within _PARS then print "param xl default 0;" >> options;

if {'StartDef'} not within _PARS then print "param StartDef default 1;" >> options;

if {'OptTol'} not within _PARS then print "param OptTol default 0.03;" >> options;

if {'rep'} not within _PARS then print "param rep default 10;" >> options;

if {'max_red'} not within _PARS then print "param max_red integer default 13;" >> options;

if {'max_iters'} not within _PARS then print "param max_iters default 250;" >> options;

if {'max_step'} not within _PARS then print "param max_step default 0.1;" >> options;

if {'max_acc'} not within _PARS then print "param max_acc default 1e-16;" >> options;

if {'max_phase'} not within _PARS then print "param max_phase default 10;" >> options;

if {'max_totalrep'} not within _PARS then print "param max_totalrep default 2*rep;" >> options;

if {'PhaseTol'} not within _PARS then print "param PhaseTol default 0.1;" >> options;

if {'Qr'} not within _PARS then print "param Qr default 1;" >> options;

include options;

The meanings of these parameters are as follows:

file: The name of the file you want HOTDOG/MICIO to print the results to.
output: The amount of information that should be written to the file:

0 gives no information at all
1 gives a short summary
2 gives a summary of each repetition
3 gives a more detailed summary of each repetition

xl: 0 gives a text file, 1 makes converting the output files to Excel-format easier
StartDef: Set to 1 if the local search is to be started from the default values of the variables
OptTol: If || gradient || is smaller than OptTol, the point is considered a local minimum
rep: The number of repetitions in the first phase
max_red: The maximal number of step reductions in each iteration
max_iters: The maximal number of iterations in each repetition
max_step: The maximum change in each variable relative to the difference of the upper and

lower bounds of the variable
max_acc: The maximum accuracy in the minor iterations
max_phase: The maximal number of extra phases
max_totalrep: The maximal number of total repetitions
PhaseTol: If the difference of the value of f at the end point of a partial path and the best

local point so far is greater than PhaseTol, the partial path will not be continued
Qr: The radius of the "hotdogs" that are generated around the paths in

HOTDOG, relative to the standard value 0.05·sqrt(N), where N is the
number of variables. In MICIO, this parameter will have no effect.

 19

These parameter values should be modified to suit the problem being optimized, but the default
values may be used as a first trial compromise. The values are easily changed when necessary.

3 AMPL MODELING TEMPLATE

To use HOTDOG and MICIO certain AMPL modeling conventions have to be followed. A
demonstration example applying an AMPL modeling template is given. Both algorithms are
called from a run file, which also uses include–statements for the files formulating the problem
according to the modeling template. The problem is conveniently divided into a model file, a
constraints file, a data file and a run file.

An example will show how these files can be made. The run file has to be designed in a special
way in order to make HOTDOG/MICIO work correctly using the general modeling template.
The example considers the well known problem of minimizing the volume of a cube containing
n spheres of radius 1 (10). The formulation of this problem is shown in the different file listings
below for the model-, constraints- and run-file.

3.1 Model

The following code is the content of the spheres problem model file 'spheres.mod':

param n integer > 1 default 19; # the number of spheres

var pos {i in 1..n, dim in 1..3} >=1, <=(1+2*floor((n-1)^(1/3)));

 # 3-dimensional sphere coordinates

var f = <function to be minimzed>, NB! Reserved basic objective name f!

var f = (1+max {i in 1..n, dim in 1..3} pos[i,dim]); # cube side length

The basic object function may also be given a defined name for readability

var cube = f;

A separate data file may also be specified, but is not used for this example.

3.2 Constraints

Each constraint must have the form shown in Problem 2 of chapter 1.1 and be declared as a
defined variable. To get a correct reference to the constraint variables two pointers QD and QM
are updated using the AMPL generic feature _nvars. These pointers relate the constraint
tolerances and penalty parameters to the corresponding defined constraint variables, and are
updated in a constraint let-block. One such constraint let-block must follow each new constraint
definition. To illustrate the use the spheres-example is shown; constraint definitions using the
general modeling template is described in the next section.

 20

Even though the constraint definitions may be included directly as part of the model-file, the
following constraint definition code shows the application of the general modeling template
written to a separate constraint file 'spheres.con':

Constraint definitions

var constraint {i in 1..n, j in 1..n: i>j} = (4 - sum {dim in 1..3}

(pos[i,dim]-pos[j,dim])^2); # the constraint variable as a difference

Constraint let-block

let QM:=_nvars; # the current variable pointer

let {i in QD..QM} FeasTol[i] := 1e-2; # the feasibility tolerances

let {i in QD..QM} Pen[i] := 1e-2; # the penalty parameters

let QD:=QM+1; # the next constraint pointer

One such constraint definition and constraint let-block must be given for each new constraint of
the problem formulation.

3.3 Run-file and general modeling template

To apply the HOTDOG/MICIO algorithms the following general modeling template should be
used. By replacing the filenames ‘spheres.mod’ and 'spheres.con' with other model- and
constraint-filenames using the same modeling template, a general run-file is made. A data-file
may also be included after the model-file in the usual way for AMPL models.

The following code example shows the general modeling template applied to make the content
of the spheres problem run-file 'spheres.run':

GENERAL MODELING TEMPLATE HAS THREE PARTS:

I) RUN PARAMETERS

II) MODELING PART

III) SOLVER PART

I) RUN PARAMETERS

Reset AMPL

reset;

reset options;

option omit_zero_rows 0;

option display_eps 1e-5;

option show_stats 0;

 21

option times 0;

option linelim 0;

option substout 0;

option pl_linearize 0;

option presolve 1;

Declarations of HOTDOG/MICIO input parameters

param QC;

param QD;

param QM;

param FeasTol {QC+1..QM};

param Pen {i in QC+1..QM};

HOTDOG/MICIO input parameter default settings

option bane '';

param file symbolic default 'hotdog.tmp';

param output default 2;

param xl default 0;

param StartDef default 0;

param OptTol default 0.01;

param rep default 8;

param max_red default 16;

param max_iters default 2000;,

param max_step default 0.02;

param max_acc default 1e-16;

param max_phase default 8;

param max_totalrep default 2*rep;

param PhaseTol default 0.01;

param Qr default 1;

(In the spheres and the Lennard Jones20 problems, the parameters rep, max_phase, max_totalrep and PhaseTol are
omitted. The search is instead stopped when a function value close to the global optimum of the problem has been
found. This method is only used for testing the algorithm, and is used only on problems with known optimum values
to test the performance of the algorithm.)

let file := ($bane & file);

 22

II) MODELING PART

Problem

All the declarations of sets, parameters and variables of the problem are

set here.

Data files (if any) are to be loaded here. AMPL will generate the actual

model for further adjustment to HOTDOG/MICIO use.

The information can be put in model- and data-files respectively, and

these can be included to give a better overview of the run, e.g. like this:

include <mymodel.mod>

data <mydatafile.dat>

include spheres.mod; # This is the spheres-example model above, no data-file

Mandatory let-block to define number of variables and constraint reference

let QC:=_nvars; # Number of variables generated so far, that is, before the

constraints

let QD:=QC+1; # Used for convenient reference to the constraint variables

All the constraints are to be set here.

A constraint "let-block" has to be included between constraints with

different tolerance limits or penalty parameters. All the constraints

defined since last let-block will be associated with the values that are

put into the let-block. It should always be a let-block at the end whether

there are any constraints or not.

Constraints are made by defining variables that are supposed to be non-

positive when inside the feasible area.

An example showing how to formulate the constraint Kari: c(x)<=g(x):

var Kari = c(x)-g(x);

An example showing how to formulate the constraint Ola: c(x)=h(x):

var Ola = abs(c(x)-h(x));

As for the model variables, the constraints can be put in a constraint file

to give a better overview:

include <myconstraints.con>;

include spheres.con; # This is the spheres-example constraints above

 23

Mandatory constraint let-block for each different constraint definition

-- This is a constraint "let-block" --

let QM:=_nvars;

let {i in QD..QM} FeasTol[i] := 1e-1;

let {i in QD..QM} Pen[i] := 3; # The constraint variables are given

tolerance and penalty values in the Objective function in HOTDOG/MICIO

let QD:=QM+1;

-- This is the end of the "let-block"

Each such "let-block" is best included as part of the constraint-file

III) SOLVER PART

Search for a minimizing solution with HOTDOG/MICIO

include micio.txt # Remove the #-mark at the line start to use MICIO

include hotdog.txt # Remove the #-mark at the line start to use HOTDOG

include hotdog.txt; # This starts a spheres-example HOTDOG search

Print the results using AMPL generic features:

The following files are generated automatically:

"zInf.tmp" with all the constraints where the slack exceeds FeasTol/2

"zVar.tmp" with the value and gradient for all the variables, and also the

slack and dual value for the constraints

"zSol.tmp" that can be used to include the solution to restart AMPL later

(To do this, write:

include zSol.tmp;

after the model and the constraints are loaded)

print {i in 1.._snvars}: "let", _svarname[i], ":=", _svar[i], ";" > ($bane &

'zSol' & '' & '.tmp');

print {i in QC+1..QM : _var[i] > Feas_Tol[i]/2 } : _varname[i], _var[i] >

($bane & 'zInf' & '' & '.tmp');

print {i in _VARS} ('display ' & i & ', ' & i & '.rc, ' & i & '.dual' & " >

('" & $bane & "zVar' & '' & '.tmp');") > display.tmp;

close;

include display.tmp; # The print statements are executed

close;

END OF RUN_FILE

END OF GENERAL MODELING TEMPLATE

 24

This run-file template description will work in general for all type of NLP-problems with real
variables without the need of separate solvers, if the above template with the let-blocks are used
and the AMPL gradient computations <var.rc> are available. Other gradient computations may
also be used, but then the HOTDOG/MICIO gradient reference statements must be modified
accordingly.

3.4 Result file

An example of the 'hotdog.tmp' log-file for the spheres problem (19 spheres) is shown below:

Variables: 57
Constraints: 171

Draw Iters Total Grad Feas Penalty Function End
1 351 351 3.995 1 3.7e-05 5.848 Cannot be improved
2 334 685 3.994 1 2.4e-06 5.787 Cannot be improved
3 235 920 3.845 0 0.02645 5.916 Cannot be improved
4 250 1170 3.956 1 2.4e-05 5.83 Cannot be improved
5 86 1256 3.849 0 0.00442 5.902 Cannot be improved
6 485 1741 3.961 0 0.00017 5.83 Cannot be improved
7 381 2122 3.899 0 0.00026 5.904 Cannot be improved
8 248 2370 4 0 0.03329 5.85 Cannot be improved
9 399 2769 3.985 1 8.6e-05 5.809 Cannot be improved
.
.
.
3262 1596 778100 3.996 1 6.4e-05 5.475 Cannot be improved

Gradient evaluations: 2325000

Local minimum points:
Objs[j] [*] :=
 1 5.8482
 2 5.7872
 4 5.8298
 9 5.8091
 .
 .
 .

3262 5.4746

;

Global minimum point: (?)

best_rep = 3262

f = 5.4745

Obj = 5.4746

feas = 1

sum{i in 1 .. Qc} Qline[i] = 17627

(sum{i in 1 .. Qc} Qline[i])/Qc = 5.4037

The output file first shows the number of variables and constraints of the spheres problem. Then
one line for each repetition show: Draw (the repetition number, and also (i-j) if new phases j are
tried for repetition number i), Iters (number of iterations for this repetition), Total (the
accumulated number of iterations so far), Grad (the gradient norm at the end point), Feas
(feasibility tolerance indication: 1 feasible, 0 infeasible), Penalty (the summed value of the
penalty terms for the constraints), Function (the basic objective function f value at the end
point), End (a search stop message for the repetition), Last improvement (the improvement of (i-

 25

j) : a new phase j of repetition i), Total improvement (the accumulated improvements of (i-j) :
all phases including j of repetition i).

Then follows the total accumulated gradient evaluations �var.rc� for all the iterations of all the
repetitions as an indication of algorithm efficiency.

All feasible local minimum points are then listed, and the best one is suggested as a global
minimum point (?) if feasible, shown with repetition number, basic objective value f, total
objective value including penalty terms and feasibility indication.

Also shown are the HOTDOG accumulated line segment number for all paths, and average
number of line segments of each path.

The output level of detail may be controlled by the output parameter. Here, output = 2.

4 RESULTS

4.1 Example tests

Results of benchmark tests with HOTDOG/MICIO are compared with other methods referenced
(1)(4)(6)(7). The number of iterations and total gradient- and function-evaluations are used as
criteria for comparison of the methods.

The test functions used are the unconstrained optimization problems Rosenbrock100,
Rosenbrock1000 (4), Shubert (4), Shekel4,10 (4), Lennard-Jones20 (20-atom molecule potential
energy function) (1), Spheres (10), and a constrained problem labelled Test-constraints (equal to
example 4.1 of (8)). These tests together exercise the global optimization properties of the
HOTDOG/MICIO algorithms.

The methods referenced for comparison are Simple Linkage (SL) of (1), the standard Multi-level
Single-Linkage (MLSL) (1)(6), the Enhanced Continuous Tabu Search (ECTS) of (4), the
Gradient Descent Dynamic Tunneling (GRDT) of (7), the Value-Estimation Function Method
of (8), and last, but not least, the Terminal Repeller Unconstrained Subenergy Tunneling
(TRUST) algorithm of (6).

Table 4.1 shows the number of function evaluations required of each method for the various test
problems, where the results are taken from the references where available (otherwise – is
marked in the table). For HOTDOG/MICIO the tests are run with results shown as mean values
based upon 10 trials runs for each example test function.

It is seen that the HOTDOG/MICIO algorithms altogether compare favourably with the other
referenced methods where applicable, apart from TRUST for the Shubert function (6), which is
5-6 times more effective in the number of function evaluations. Both algorithms also solve the
rather large 1000 variables Rosenbrock problem with acceptable efficiency and success rate.

 26

 Test-functions

 Methods

Rosenbrock100

 Rosenbrock1000

 Shubert

 Shekel4,10

 Lennard-Jones20

Spheres19

 Test-Constraints

SL _ _ _ _ 358160 _ _

MLSL _ _ _ _ 291054 _ _

ECTS 162532 (.75) _ 370 898 (.75) _ _ _

GRDT _ _ 502 469 _ _ _

VEF _ _ _ _ _ _ 149

TRUST _ _ 72 _ _ _ _

HOTDOG 10931 (.90) 18480 (.80) 364 234 318152 3817900 97

MICIO 11315 (.90) 17094 (.80) 437 207 332544 3828200 132

Table 4.1 Results of tests comparing referenced methods with HOTDOG/MICIO. The
number of function evaluations required for reaching a global optimum are
shown. In parenthesis are also shown success rates of the methods where
applicable.

The best found minimum value of the Spheres19 problem with HOTDOG/MICIO is 5.461. The
global minimum of this problem is (currently) 5.459 (10). The number shown in the table is an
average number of gradient/function evaluations required for reaching 5.475, which is 0.3%
above the assumed global minimum.

The solver MINOS5.5 was used very effectively for the Rosenbrock problems (1250 function
evaluations for Rosenbrock100). However, MINOS5.5 used in a random multistart loop did not
reach feasible solutions for the Spheres19 nonconvex problem with an ordinary AMPL
formulation in a comparable number of function evaluations. Of course, MINOS5.5 may be
used as local search algorithm in HOTDOG/MICIO for possible improved efficiency of Problem
2 type formulations.

The test examples above with HOTDOG and MICIO were made with the following parameter
configurations:

HOTDOG:
Rosenbrock100: max_iters = 600 rep = 4 max_phase = 2

Rosenbrock300: max_iters = 500 rep = 4 max_phase = 3

Rosenbrock1000: max_iters = 800 rep = 4 max_phase = 3

Shubert: max_iters = 10 rep = 60 max_phase = 3

Shekel: max_iters = 30 rep = 15 max_phase = 3

LJ20: max_iters = 1200 (rep and max_phase are not used)

Spheres19: max_iters = 800 (rep and max_phase are not used)

Test-Constraints: max_iters = 30 rep = 50 max_phase = 3

 27

MICIO:
Rosenbrock100: max_iters = 600 rep = 4 max_phase = 2

Rosenbrock300: max_iters = 500 rep = 4 max_phase = 3

Rosenbrock1000: max_iters = 650 rep = 4 max_phase = 3

Shubert: max_iters = 10 rep = 50 max_phase = 3

Shekel: max_iters = 30 rep = 10 max_phase = 3

LJ20: max_iters = 1200 (rep and max_phase are not used)

Spheres19: max_iters = 800 (rep and max_phase are not used)

Test-Constraints: max_iters = 20 rep = 50 max_phase = 3

The results indicate that HOTDOG/MICIO may be used for nonconvex optimization of rather
large problems, even though parameter tuning for each problem is required to get good results.
Hopefully, further work may suggest more automatic computation of constraint penalty weights
and parameter settings (2)(3)(9).

5 CONCLUSION

A heuristic algorithm HOTDOG is described for nonconvex problems with a restricted number
of local optima, together with a simpler version of the algorithm called MICIO used when the
number of local optima is very large. Both algorithms are developed using the features and
generic functions in the mathematical programming language AMPL, and both the HOTDOG
and MICIO heuristics may therefore be invoked by a standard include-statement command in
AMPL (corresponding to m-files in Matlab).

To apply these heuristics, certain AMPL modeling conventions have to be used. A modeling
template describes these conventions with an example.

Test results comparing HOTDOG/MICIO with other reference algorithms show a generally
favourable performance in the number of function evaluations to reach an optimal solution.

To reach good results with HOTDOG/MICIO parameter tuning for each problem is required.
Hopefully, further work may suggest more automatic computation of constraint penalty weights
and parameter settings.

If there are less than 300 variables in the problem, the student version of AMPL is sufficient for
using HOTDOG or MICIO. If either a separate analytic expression for the gradient of the
penalty function, or an alternate approximate gradient calculation procedure is available, the
algorithms may also be implemented as ordinary solvers for large-scale problems.

Both the HOTDOG and MICIO algorithms are available from the Norwegian Defence
Research Establishment (FFI) upon request, subject to agreed conditions for use.

 28

References

(1) Schoen F (1999): Global optimization methods for high-dimensional problems, Eur Jnl

of Op Res (EJOPR) 119, 345-352.

(2) Nash S G, Sofer A (1996): Linear and Nonlinear Programming, McGraw-Hill, N.Y.,

USA.

(3) Fletcher R (1987): Practical Methods of Optimization (2nd ed), J Wiley, UK.

(4) Chelouah R, Siarry P (2000): Tabu search applied to global optimization, Eur Jnl of Op

Res (EJOPR) 123, 256-270

(5) Fourer R, Gay D M, Kernighan B W (1993): AMPL - A Modeling Language for

Mathematical Programming, Boyd & Fraser, Mass., USA.

(6) Barhen J, Protopopescu V, Reister D (1997): TRUST: A Deterministic Algorithm for

Global Optimization, Science 276, 1094-1097.

(7) Roychowdhury P, Singh Y P, Chansarkar R A (2000): Hybridization of Gradient

Descent Algorithms with Dynamic Tunneling Methods for Global Optimization, IEEE
Trans. on Systems, Man and Cybernetics, part A 30, 3 (May), 384-390.

(8) Sun X L, Li D (1999): Value-Estimation Function Method for Constrained Global

Optimization, Jnl of Opt. Theory and Appl. 102, 2 (august), 385-409.

(9) Banze I M, Csendes T, Horst R, Pardalos P M (eds) (1997): Developments in Global

Optimization, Kluwer Academic Publ..

(10) Boll D W, Donovan J, Graham R L, Lubachevsky B D (2000): Improving dense

packings of equal disks in a square, Electronic jnl of Combinatorics (see also
http://www.frii.com/~dboll/packing.html) 7, (#R46).

 29

DISTRIBUTION LIST

 FFISYS Dato: 9 august 2001
RAPPORTTYPE (KRYSS AV) RAPPORT NR. REFERANSE RAPPORTENS DATO

 RAPP X NOTAT RR 2001/03011 FFISYS/807/161 9 august 2001
RAPPORTENS BESKYTTELSESGRAD ANTALL EKS

UTSTEDT
ANTALL SIDER

Unclassified 30 29

RAPPORTENS TITTEL FORFATTER(E)

HOTDOG : A HEURISTIC ON THE
DETERMINATION OF OPTIMUM GLOBALLY
USING THE MATHEMATICAL PROGRAMMING
LANGUAGE AMPL

GROTMOL Øyvind, SUKKESTAD Jens Arne,
BRAATHEN Sverre

FORDELING GODKJENT AV FORSKNINGSSJEF: FORDELING GODKJENT AV AVDELINGSSJEF:

 EKSTERN FORDELING INTERN FORDELING

ANTALL EKS NR TIL ANTALL EKS NR TIL
1 Øyvind Grotmol, 2 FFI-Bibl
 NTNU 1 Adm direktør/stabssjef
 1 FFIE
 1 FFISYS
 1 FFIBM
 1 Ragnvald H Solstrand, FFISYS
 1 Bent Erik Bakken, FFISYS
 1 Jan Erik Torp, FFISYS
 1 Anne Lise Bjørnstad, FFISYS
 1 Sverre Braathen, FFISYS
 1 Bård Eggereide, FFISYS
 1 Geir Enemo, FFISYS
 1 Ole Martin Halck, FFISYS
 1 Øyvind Karlsrud, FFISYS
 1 Tor Langsæter, FFISYS
 1 Terje Nilsen, FFISYS
 1 Tor-Erik, Schjelderup, FFISYS
 1 Ole-Jakob Sendstad, FFISYS
 1 Jens Arne Sukkestad, FFISYS
 1 Hans Olav Sundfør, FFISYS
 FFI-veven

 FFI-K1 Retningslinjer for fordeling og forsendelse er gitt i Oraklet, Bind I, Bestemmelser om publikasjoner
 for Forsvarets forskningsinstitutt, pkt 2 og 5. Benytt ny side om nødvendig.

	INTRODUCTION
	Problem formulation

	ALGORITHM
	General
	Local search procedure
	HOTDOG
	MICIO
	Parameters

	AMPL MODELING TEMPLATE
	Model
	Constraints
	Run-file and general modeling template
	Result file

	RESULTS
	Example tests

	CONCLUSION
	DISTRIBUTION LIST

