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Abstract: Remote sensing is a tool of interest for a large variety of applications. It is becoming
increasingly more useful with the growing amount of available remote sensing data. However, the
large amount of data also leads to a need for improved automated analysis. Deep learning is a
natural candidate for solving this need. Change detection in remote sensing is a rapidly evolving
area of interest that is relevant for a number of fields. Recent years have seen a large number of
publications and progress, even though the challenge is far from solved. This review focuses on deep
learning applied to the task of change detection in multispectral remote-sensing images. It provides
an overview of open datasets designed for change detection as well as a discussion of selected models
developed for this task—including supervised, semi-supervised and unsupervised. Furthermore, the
challenges and trends in the field are reviewed, and possible future developments are considered.
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1. Introduction

Remote sensing (RS) denotes the acquisition of information about an object from a
distance. Often, as will also be the case here, the term is used more specifically to refer
to the imaging of the Earth’s surface from above, such as from a satellite or an aircraft.
Technological development has led to an unprecedented amount of RS imagery being
available today. The information in these images is of interest for a number of fields
and applications, such as cartography [1], agriculture [2,3], nature conservation [4,5],
climate [6,7] and disaster monitoring [8,9], archaeology [10,11], law enforcement [12] and
urban planning [13].

The amount of information provided by RS poses a challenge in filtering out the rele-
vant data. Manual exploration of the images is slow and laborious, and most applications,
thus, require methods for the efficient processing of RS imagery. One of the tasks common
to practically all fields where RS is used is change detection (CD)—or, more accurately
stated: relevant change detection.

1.1. Detection of Relevant Changes in Remote Sensing Images

Change detection in the context of remote sensing refers to the process of identifying
differences in the structure and/or properties of objects and phenomena on Earth by
analysing two or more images taken at different times [14]. Change detection can serve as a
basis for understanding the development of various natural or human-related phenomena
through time and the interactions between them.

The goal of change detection is usually to identify the pixels within the (two or more)
images that correspond to changed objects on the ground. It is, however, also possible to
work at the level of a scene, i.e., to identify whether the classification of the depicted scene
has changed (for example, a field turning into a residential area). Some methods also seek
not only to identify changed pixels (or scenes) but also to classify the type of change that
has occurred, referred to as semantic change detection.
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The main challenge of change detection lies in the identification of changes that are rel-
evant for the given task. Observed changes can be divided into three categories—apparent,
irrelevant and relevant changes. The first category—apparent changes—comprises the
changes seen in the images that do not result from actual changes happening to the de-
picted objects. Instead, changes resulting from variations in imaging equipment and
circumstances, such as light and atmospheric conditions, belong in this category.

The other two categories—relevant and irrelevant changes—include all the real
changes that are happening to the observed objects. The boundary between relevant
and irrelevant changes is entirely dependent on the application. For instance, the relevance
of seasonal changes, such as snow cover or the state of the foliage on the vegetation, is
determined by the specifics of the task.

While snow cover is unimportant in urban planning and might be considered an
irrelevant change, it is highly relevant for assessing the state of glaciers. Similarly, the level
of vegetation hydration is of no interest in cartography but is essential in the monitoring
of draughts or in crop assessment. The relevance of human-made changes is also deter-
mined by the specifics of the task, e.g., the presence or absence of vehicles is irrelevant in
archaeology or cartography but is important for activity monitoring.

1.2. Multispectral Imagery

RS can be divided into active and passive. Active RS methods, such as radar, use a
signal generated by the system, the echo of which is then detected by its sensors. Passive
RS relies solely on naturally occurring radiation reflected and/or emitted from the sur-
face. This review focuses on the latter, more specifically on remote sensing using optical
multispectral images.

Optical images can be divided into hyperspectral, multispectral and panchromatic.
Multispectral images have several (usually 3–15) spectral bands, while hyperspectral im-
ages sample the spectrum much more finely with tens to hundreds of narrow bands.
Panchromatic images gather all the visible light into one single band. Multispectral sensors
typically work in the visual, near infrared and short-wave infrared range of the spec-
trum. Red, green and blue (RGB) images are an often-used and well-known subset of
multispectral imagery.

The wavelength distribution of the light reflected or emitted from an object contains
valuable information about the object’s nature, reflecting its material composition and
properties, which can, in turn, be used in RS for various tasks, such as classification
or change detection. Hyperspectral images have the highest spectral resolution, while
panchromatic have the lowest.

Hyperspectral images with their high spectral resolution can then take full advantage
of the information provided by fine sampling of the objects’ spectral signature. The large
number of bands makes hyperspectral imaging well suited for anomaly detection [15] but
also allows for applications in change detection [16].

However, in order to maintain a high signal-to-noise ratio, the dense spectral sampling
of hyperspectral sensors comes at the expense of lower spatial resolution and/or lower
sensor coverage, as well as additional challenges due to the greatly increased complexity
and very high dimensionality of the data [17]. In addition, full spectral sampling is
not always necessary. Depending on the application, a number of spectral bands exists
that will provide the most utility, and adding more bands will often lead to diminishing
returns [18,19].

Multispectral sensors lie between the two extremes of panchromatic and hyperspec-
tral images both in terms of spectral and spatial resolution. While the number of bands
is considerably lower than that of hyperspectral images, they have moderate-to-high
spatial resolution while still containing important information regarding the colours, tex-
tures and material properties of the imaged objects without excessively increasing the
data dimensionality.
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In addition, multispectral images (and RGB colour images especially) are very
common—nearly ubiquitous, simple and affordable to obtain and, thus, an important
resource in RS. They are also easy to interpret (even for the general public) and, in that
regard, easier to manually annotate.

Multispectral images inherit some challenges both from panchromatic and hyperspec-
tral images. Due to their higher number of spectral bands, there is a need to identify and
utilize this additional information efficiently. On the other hand, while their high spatial
resolution provides valuable information that can be used for change detection, it also cap-
tures more variability, details and higher frequency noise, which, in turn, makes automated
change detection more challenging, especially for data with a limited number of spectral
bands. With more detailed and challenging terrain, the need for precise co-registration
increases [20], and the accurate detection of complex boundaries between objects becomes
more important [21].

1.3. Change-Detection Methods

The task of identifying changes in images of the Earth’s surface is not a recent
problem [14]. The techniques used to accomplish this task can be divided into four groups:
algebra-based, statistics-based, transformation-based and deep-learning-based.

1.3.1. Algebra-Based Methods

Algebraic methods usually consist of two steps. In the first step, a difference image
is constructed, for example, by taking a difference or a ratio of the pixel values of the two
images, and, in the second step, a form of thresholding is used to create a change map.
Some examples of algebra-based change-detection methods include image differencing,
image regression, image ratioing and change vector analysis (CVA). These methods can
detect changes that are greater than a chosen threshold. The choice of threshold is crucial
for the performance of these algorithms as it determines their specificity and sensitivity,
and it has to be adjusted for each unique dataset and each goal [22].

1.3.2. Statistics-Based Methods

Another group of methods are based on the statistical properties of either the whole
image or parts of it. The distribution of pixels and their properties are then used to detect
anomalous or different objects between the images. Statistical techniques are most often
used for hyperspectral [16] and synthetic aperture radar (SAR) images [23,24], as these tend
to exhibit fewer apparent changes than high-resolution multispectral images.

1.3.3. Transformation-Based Methods

Transformation-based methods, such as principal component analysis (PCA), multi-
variate alteration detection (MAD), Gramm–Schmidt and tasseled cap, rely on first trans-
forming the images in a way that enhances the changes and suppresses the apparent
differences of the unchanged areas. Some of these methods, such as PCA, can also be cate-
gorized as classical machine learning. These methods are able to emphasise the information
of interest. However, they still rely on the appropriate selection of a threshold for detecting
changes, and the interpretation of the changed areas can be more difficult when using the
transformed images [22].

Pixel-wise classification of images preceding change detection can also be included in
the category of transformation-based methods. In effect, it transforms an image into a new
simplified version of it—a class map—that makes it easier to identify changes. The objects
in the images are first classified into their categories through semantic segmentation, and
then the classification maps from different times are simply compared in order to uncover
changes. This process, however, is not sensitive to changes that happen without a change
of category, such as changes to a single building.
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Methods used for classification often fall into some of the other categories. For example,
a model by Zhang et al. [25] first performs a deep-learning-based classification before the
classes of each pixel pair are compared and evaluated for class change.

1.3.4. Deep-Learning-Based Methods

The last group of methods is deep-learning-based change detection. Deep learning
is a subset of machine learning. It uses neural networks consisting of a large number of
layers (hence, the name deep) to learn and represent data.

With the development and growing popularity of deep-learning methods within
computer vision, it is natural to also apply them to the problem of CD in remote sensing.
Deep-learning models are able to represent complex and hierarchical features within the
data, which makes them good candidates for RS CD.

One of the biggest challenges of change detection is the presence of apparent changes.
Every pixel from the image taken at an earlier time can be changed in the image taken at a
later time, without there being any changes to the objects depicted in them. This poses a
challenge for the more classical algorithms (algebraic, statistic and transformation-based),
which are more rigid and not able to represent complex features, thus, leading to many
false positives and a need to fine-tune the detection threshold for each application. Due
to the flexibility, scalability and hierarchical structure of deep-learning models, they have
the potential to learn to represent data that are too complex to be described by simpler
models. Each pixel can thus be considered within the context of its surrounding pixels, as
higher-level features are used for decision making.

Classical approaches to multispectral image exploitation often rely on spectral
indices [26], which combine various bands in order to emphasize the desired properties.
Choosing the right index or combination of bands is a task requiring expert knowledge,
and, in the end, only a portion of the available information (the information contained in
the selected bands) is used. Deep learning allows the use of all the available bands without
the need for expert-led pre-selection. The importance and contribution of each band is
simply learned by the model in the training process.

Deep-learning change-detection models can be broadly divided into two categories:
fully supervised models and models that are not fully supervised, i.e., semi-supervised
and unsupervised. Fully supervised methods almost always require a large amount of
labelled data in order to train the network, while semi- and unsupervised methods reduce
or eliminate the need for ground-truth-labelled data.

1.3.5. About This Work

In recent years, a growing number of articles has been published on this topic as well
as several reviews. Four reviews specifically on change detection using deep learning
have been published recently by Shi et al. [27] and Khelifi et al. [28] in 2020; and Shafique
et al. [29] and Jiang et al. [30] at the beginning of 2022. In addition, there are a number
of reviews dealing with classical RS CD [14,16,22,31] or with deep learning in RS [32–36]
in general. Due to the rapidly growing interest in this topic and a large number of new
models introduced in recent years, our review reports on methods not previously included
in review articles and focuses solely on multispectral change detection and its specific
challenges in greater depth. We also provide an in-depth overview and comparison of
some of the most relevant CD models.

The rest of this review is organized as follows: first, an overview and discussion
of openly available multispectral datasets for CD is provided. The need for (annotated)
datasets is an important requirement for most deep-learning models and is a common
bottleneck in the process of developing reliable CD methods. Then, a variety of deep-
learning models for change detection are presented, divided into supervised methods and
un-/semi-supervised methods. The most common model structures are identified, and
published CD networks are categorized, described and compared. Finally, the challenges
and outlooks of deep-learning-based CD are discussed.
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2. Data Sets

As with most applications of deep learning, the development of reliable models heavily
depends on the availability of large annotated datasets. This issue can be circumvented
by various semi-supervised or fully unsupervised methods; however, even in these cases,
there can be a need for at least some (although often fewer) annotated examples.

In this section, we list and describe some of the most used freely available datasets
for change detection in multispectral RS images. The open datasets and some of their key
characteristics are listed in Table 1. Links to all of the datasets are in the Appendix A.

Table 1. Openly available bitemporal multispectral remote sensing datasets annotated for
change detection.

Data Set Number of Image Pairs Image Size Number of Pixels Resolution (m) Number of Bands Year

SZTAKI [37] 13 952 × 640 8 × 106 1.5 3 2008
AICD [38] 1000 800 × 600 4.8 × 108 0.5 3 2011
OSCD [39] 24 600 × 600 8.6 × 106 10, 20, 60 13 2018
CDD [40] 16,000 256 × 256 1 × 109 0.03–1 3 2018
WHU Building CD [41] 1 32,507 × 15,345 5 × 108 0.075 3 2018
HRSCD [42] 291 10,000 × 10,000 3 × 1010 0.5 3 2019
LEVIR-CD [43] 637 1024 × 1024 6.7 × 108 0.5 3 2020
DSIFN [44] 394 512 × 512 1 × 108 2 3 2020
MtS-WH [45,46] 1 7200 × 6000 4.3 × 107 1 4 2020
Google Data Set [47] 1067 256 × 256 7 × 107 0.55 3 2020
SYSU-CD [48] 20,000 256 × 256 1.3 × 109 0.5 3 2021
SECOND [49] 4662 512 × 512 1 × 109 3 2021
3DCD [50] 472 400 × 400 7.6 × 107 0.5 3 2022
Hi-UCD [51] 40,800 512 × 512 1 × 1010 0.1 3 2022
Landsat-SCD [52] 8468 416 × 416 1.5 × 109 30 3 2022

Dataset Origin Type of changes

SZTAKI Aerial, Hungary Buildings, building sites, groundwork, ploughed land,
large groups of trees

AICD Synthetic Buildings
OSCD Sentinel-2, World Buildings and roads
CDD Aerial (Google Earth) Buildings, roads, vehicles, not seasonal changes
WHU Building CD Aerial, Christchurch, New Zealand Buildings
HRSCD Aerial, France Semantic, artificial surfaces, agricultural areas, forests, wetlands, water
LEVIR-CD Aerial (Google Earth), Texas Buildings
DSIFN Aerial, China Buildings, roads
MtS-WH IKONOS, Wuhan Scene classification, parking, water, sparse/dense houses,

residential, idle, vegetation, industrial
Google Data Set Aerial (Google Earth) Buildings
SYSU-CD Aerial, Hong Kong Buildings, groundwork, change of vegetation, roads, sea constructions
SECOND Aerial, China Semantic, non-vegetated ground surface, trees, low vegetation,

water, buildings, playgrounds
3DCD Aerial, Valladolid, Spain Based on changes to elevation—mostly focused on buildings.
Hi-UCD Aerial, Tallinn, Estonia Semantic, 9 types of land cover, 48 types of semantic change.

Water, grass, building, greenhouse, road, bridge, bare land,
woodland, other

Landsat-SCD Landsat series, China Semantic, time series with 10 land cover change types

One of the datasets is composed of Sentinel-2 images, namely, the Onera Satellite
Change Detection dataset (OSCD). This dataset has the largest number of bands (13) and
contains images from a wide range of areas in the world. Another dataset composed of
satellite images is the Multi-temporal Scene Wuhan (MtS-WH) dataset, acquired using
IKONOS and focusing on the region of Wuhan city. The MtS-WH dataset provides pairs
of images of the same area from different times, thus, allowing for change detection.
However, the annotation does not focus on pixel-level changes, as is the case for the rest of
the datasets mentioned here. Instead, it is based on scene classification, where frames of
150 × 150 pixels are classified into various categories. Images containing a mix of categories
are not classified.
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The remaining datasets are aerial datasets, often acquired via Google Earth and
focusing on smaller regions, such as one city, area, state or country. They are composed of
high-resolution RGB images that are often with a spatial resolution below 1 m. The list also
contains one synthetic dataset—the Aerial Imagery Change Detection (AICD) dataset.

Change detection can be described as a weakly-defined problem because the nature of
the changes to be detected depends, to a great extent, on the goal of the investigation. This
is reflected in the variety of changes that the datasets focus on. Several focus entirely on
changes to buildings, such as the AICD, the WHU Building CD (which is a subset of a larger
WHU Building dataset made for building segmentation), the three-dimensional change
detection (3DCD) dataset and the Google Data Set. Other datasets include additional types
of changes. Changes to roads, groundwork and vegetation are commonly included.

Among these, the SZTAKI dataset (composed of two datasets, named Szada and
Tiszadob, which are often treated separately), the OSCD, the Change Detection (CDD)
dataset, the Sun Yat-Sen University Change Detection (SYSU-CD) dataset and the Deeply
Supervised Image Fusion Network (DSIFN) dataset. The rules guiding the annotation
of ground truth changes in these datasets are not identical. While, for example, changes
to vegetation are marked as a change in the SYSU-CD dataset, the CDD includes a large
number of seasonal variations and does not mark most changes to vegetation and snow
cover as a change. Examples from several of the datasets are shown in Figure 1.

Image A Image B Ground truth

Levir-CD

OSCD

CDD

Figure 1. Examples of images and ground truth from various datasets, namely, Levir-CD [43] (with a
focus on building changes), OSCD [39] and CDD [40] (various changes to infrastructure annotated).

Lastly, several of the datasets provide semantic information on the type of the changes
taking place between the two imaged time points. The High-Resolution Semantic Change
Detection (HRSCD) dataset (shown in Figure 2) is a large dataset containing over 10-fold
more pixels compared with the next largest one. It contains aerial images from the BD
ORTHO database of Institut géographique national (IGN), depicting two areas of France,
where land cover maps from Urban Atlas were used for ground truth annotation. This
dataset, thus, contains ground truth specifying the land cover class as well as the change to
the land cover class.
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The classes, however, are fairly broadly defined, such as artificial surfaces or agricul-
tural areas. Hence, this dataset is not suitable for the detection of smaller changes, such as
changes to individual buildings, the presence/absence of vehicles or the state of vegetation.
The relatively small number of broadly-defined classes also means that changes are rarer,
i.e., 99.232% of pixels are labelled as no change, which is a larger proportion than for most
other datasets.

HRSCD
A B

Image

Class 
ground
truth

Change 
ground
truth

Figure 2. Examples of images, ground truth classes and change ground truth for the semantic
change-detection dataset HRSCD [42].

The second semantic dataset is the SEmantic Change detectiON Dataset (SECOND).
This dataset features aerial images from several cities in China, and the ground truth
provides land-cover segmentation into six different categories—non-vegetated ground
surface, trees, low vegetation, water, buildings and playgrounds. The change ground truth
is obtained indirectly by comparing the annotated land-cover categories.

The Ultra-High Urban Change Detection (Hi-UCD) dataset is a large and detailed land
cover and change dataset of optical images with a very high spatial resolution of 0.1 m. It
provides both land cover labels, as well as 48 types of semantic change. This dataset has
not yet been openly published as of December 2022, but the authors are planning to do so.

Another very recently published semantic dataset is the Landsat Semantic Change
Detection (Landsat-SCD) dataset. Unlike the previous ones, it does not provide land cover
types, only land cover changes and it is the only listed dataset that has more than two
images of a given location, namely, it includes time series of 28 images spanning a total
time span of 1990–2020 with individual images being 3–23 years apart. The datasets vary
in size considerably, with the total number of pixels in the largest dataset (HRSCD) being
3 × 1010, while some of the smaller datasets contain several million pixels.

3. Supervised Deep-Learning Models for Multispectral Change Detection

Supervised change-detection methods require annotated data in order to train the net-
work. Unlike many of the staple tasks in computer vision (such as classification or semantic
segmentation), change detection receives as input two (or more) images, rather than a
single one, along with a single ground truth image. The two input images can be processed
in various ways, which can be roughly divided into single- and double-stream structures.
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In the single-stream structure, also referred to as early fusion, the two images are joined
before they are fed to the network, either by simple concatenation or other procedures,
such as differencing.

The alternative—double-stream structure—is based on processing each of the images
on its own before they are again joined together and compared. Double-stream architectures
(depicted in Figure 3c) feature two identical subnetworks that run parallel to each other,
with each one taking one of the images as input. This type of structure is usually referred
to as Siamese, if the subnetworks share weights, and pseudo-Siamese, if they do not
share weights.

An overview of selected supervised change-detection networks is shown in Table 2
along with a categorization of their network structure, the dataset they were applied to by
their authors and notes detailing their features.

Table 2. Overview of selected supervised change-detection models published between 2018 and 2022,
listed chronologically.

Network Name Network Structure Data Set Note Year

TransUNetCD [53] Transformer + UNet CD
Double-Stream UNet
+ Transformer

WHU, CDD, LEVIR,
DSIFN

UNet + transformer 2022

UVACD [54] Double-Stream CNN
+ Transformer LEVIR, WHU transformer 2022

ChangeFormer [55] Change Transformer
Double-Stream
Transformer LEVIR, DSIFN

transformer, 4 feature
difference modules, simple
decoder

2022

Pyramid-SCDFormer
[52]

Pyramid, semantic CD
Transformer

Double-Stream
Transformer WHU, LEVIR

transformer encoders, MLP
decoder, conv units with
different kernels

2022

MAEANet [56] Multi-scale Attention and
Edge-Aware Net

Double-Stream UNet,
Attention WHU, LEVIR

spatial & contour attention,
UNet for feature extraction +
feature fusion

2022

FTN [57] Fully Transformer Net
Double-Stream
Transformer,
Attention

WHU, LEVIR, SYSU,
Google

Swin transformers, attention,
multiple loss functions 2022

MCTNet [58] Multi-Scale CNN
Transformer Net

Double-Stream
UNet/Transformer
hybrid

LEVIR, CDD hybrid ConvTrans blocks 2022

MFATNet [59] Multi-Scale Feature
Aggregation via Transformer

Double-Stream
Transformer,
Attention

WHU, LEVIR, DSIFN
feature extracion by ResNet,
input to transformer, channel
attention

2022

RFNet [60] Region-Based Feature
Fusion Net

Double-Stream CNN WHO, SECOND
CNN, multi-level feature
fusion, region similarity
module

2022

AFSNet [61]
Attention-Guided Siamese
Full-Scale Feature
Aggregation Net

Double-Stream
UNet-like, Attention LEVIR, CDD

full-scale skip connections,
spatial and channel attention 2022

IRA-MRSNet [62]
Multi-Scale Residual Siamese
Network fusing Integrated
Residual Attention

Double Stream
UNet-like, Attention

CDD, WHU, LEVIR,
SYSU

MultiRes blocks (fusion of
different size kernels) instead
of traditional convolutions,
channel attention

2022

Recurrent CNN [63] Double-Stream +
LSTM Taizhou LSTM 2018

FC-EF [64] Fully Conv. Early Fusion Single-Stream UNet SZTAKI, OSCD early fusion 2018

FC-Siam-conc [64] Fully Conv. Siamese
Concatenation

Double-Stream UNet SZTAKI, OSCD Siamese concatenation 2018

FC-Siam-diff [64] Fully Conv. Siamese
Difference

Double-Stream UNet SZTAKI, OSCD Siamese difference 2018

SSJLN [65] Spectral-spatial joint learning Double-Stream other new loss 2019

DLSF [66] Dual-learning Siamese
Double-Stream+
GAN SZTAKI, other GAN-domain transfer 2019

CD-UNet++ [67] Change Detection UNet++ Single-Stream UNet CDD UNet++ 2019

DSMS-FCN [68] Deep Siamese Multi-scale
FCN

Double-Stream UNet other
conv units with different
kernels 2019

FC-EF-Res [42] Fully Conv. Early Fusion
Residual

Single-Stream UNet HRSCD, OSCD
landcover mapping + CD
in one 2019
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Table 2. Cont.

Network Name Network Structure Data Set Note Year

UNetLSTM [69] Double-Stream UNet
+ LSTM OSCD LSTM 2019

SiamCRNN [70] Siamese Conv. RNN
Double-Stream +
LSTM other LSTM 2019

STANet [43] Spatial-Temporal
Attention Net

Double-Stream,
Attention LEVIR, SZTAKI ResNet, attention 2020

DSIFN [44] Deeply Supervised Image
Fusion

Double-Stream UNet CDD, DSIFN 2020

TCDNet [71] Trilateral CD Net 3× Double-Stream other parallel CNNs, dilated conv 2020

DASNet [72] Dual Attentive Siamese Net
Double-Stream,
Attention CDD VGG16, attention 2020

AG-GAAN [73] Attention Gates Generative
Adversarial Adaptation Net

GAN, Attention CDD attention, new loss, GAN 2020

SNUNet-CD [74] Siamese Network UNet Double-Stream UNet CDD Nested UNet, attention 2021

CLNet [75] Cross-Layer CNN
Single-Stream UNet,
Attention CDD, LEVIR, WHU conv with different strides 2021

SRCDNet [76] Super-Resolution CD Net
GAN +
Double-Stream CDD, Google ResNet 2021

ESCNet [77] End-to-end Superpixel
(FE) Superpixel segm
+ Double-Stream
UNet

CDD SZTAKI superpixel segmentation 2021

CapsNet [78] Capsule Net Double-Stream SZTAKI, other capsule network 2021

BIT_CD [79] Bitemporal Image
Transformer CD

Double-Stream
Transformer LEVIR, WHU, DSIFN ResNet18, then transformer 2021

CEECNet [80] Compress–Expand/Expand–
Compress Net

Double-Stream,
Attention LEVIR, WHU attention, CEEC unit, new loss 2021

FDORNet [81]
Feature Decomposition–
Optimization–
Reorganization Net

Double-Stream LEVIR
boundary extraction, strided
conv 2022

MLDANets [82]
Multilevel Deformable
Attention-Aggregated
Networks

Double-Stream UNet,
Attention LEVIR, SECOND

attention module with
deformable sampling 2022

Siamese_AUNet [83] Siamese attention + UNet
Double-Stream UNet,
Attention LEVIR, WHU, SZTAKI

attention, atrous spatial
pyramid pooling 2022

DARNet [84] Densely Attentive
Refinement Nets

Double-Stream UNet,
Attention CDD, SYSU, LEVIR

attention and refinement
module 2022

SwinSUNet Swin Transformer Siamese
U-shaped Net

Double-Stream
Transformer

CDD, WHU, OSCD,
HRSCD

Swin transformer 2022

UCDNet [85] Urban Change Detection Net Double-Stream UNet OSCD
residual connections, new
spatial pyramid pooling, new
loss

2022

BESNet [21] Boundary Extraction
Constrained Siamese Net

Double-Stream CDD, DSIFN, LEVIR boundary extraction 2022

HFA-Net [86] High Frequency
Attention Net

Double-Stream UNet,
Attention WHU, LEVIR, Google attention, boundary 2022

ISNet [87] Improved Separability Net
Double-Stream,
Attention LEVIR, SYSU, CDD

attention, margin
maximization 2022

Among the reviewed models, networks based on the UNet architecture [88] are the
most common. In fact, all of the featured single-stream networks are UNet-based. The
general structure of a UNet-based single-stream network is shown in Figure 3a. A UNet can
also be employed in a double-stream (Siamese) manner (Figure 3b), which can be seen as a
subcategory of double-stream structures. In this case, however, the feature extraction and
fusion processes are intertwined, as the fusion is happening at several feature extraction
stages rather than at the end of it.

In the following, the use of UNets in CD will first be discussed before describing other
types of networks.
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Image at time T1

Image at time T2

encoder
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change map

Image at time T1

Image at time T2
fusion encoder decoder

change map

shared weights
or not

Image at time T1

Image at time T2
fusion

feature 
extraction

change map

feature 
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classifier

decision 
algorithm

or

(a) Single-Stream UNet

(b) Double-Stream UNet

(c) General Double-Stream Architecture

Figure 3. Structures of supervised CD models. (a) Single-Stream UNet-like network. The image data
from two time points is first fused together, usually by concatenation, and then input into a UNet-like
network featuring an encoder, a decoder and skip connections for semantic segmentation. The output
of the model is a change map. (b) Double-Stream UNet. Each images is input separately into the
encoder. The output of the two encoders is fused on multiple levels and fed to a single decoder,
which produces a change map. (c) General Siamese Feature Extraction-based network structure. The
individual images are first input into two identical Siamese (shared-weights) or pseudo-Siamese
(different weights) subnetworks for feature extractions. The extracted features are then fused together,
and either an automatic decision model or a machine-learning-based classifier is then used to produce
a change map.

3.1. UNet in Change Detection

UNets and various modified versions of UNets are often used for the task of change
detection. This fully convolutional neural network was developed for semantic segmenta-
tion [88] and is, thus, well suited for the task of pixel-wise change detection as well. In order
to provide a class prediction for every pixel in the image, a UNet consists of an encoder and
a decoder part. A contracting feature extractor, the encoder, is followed by an expanding
decoder, which uses upsampling instead of pooling in order to increase the resolution of
the output.
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The contracting and expanding parts of the network are symmetrical and joined by
so-called skip connections where outputs of the encoder are concatenated with the inputs
to the decoder at the same level of contraction. Single-Stream UNet-like networks have
a structure as depicted in Figure 3a. The images are fused in the first step, usually by
simple concatenation. They are then input into a UNet-like network where features are first
extracted by the encoder and then up-sampled by the decoder.

UNets can also be employed in the form of a Siamese architecture (as shown in
Figure 3b). In this case, each of the images is progressing through the encoder part of
the model separately, while the fusion takes place at the level of the skip connections
with the decoder.

One of the earliest and most cited neural networks for supervised change detection is
indeed a version of a UNet introduced by Daudt et al. in 2018 [64]. This work reports on
three variations of a UNet-inspired fully convolutional neural network. All three networks
consist of an encoder and a decoder with skip connections between them linking the layers
with the same subsampling scales. The three networks are depicted in Figure 4, reproduced
from the original article introducing these networks [64].

Figure 4. Schematics of the three architectures proposed by Caye Daudt et al. [64] for change de-
tection. (a) Fully Connvolutional Early Fusion (FC-EF) network, which is a single-stream UNet-like
network. (b) Fully Convolutional Siamese—Concatenation (FC-Siam-conc) and (c) Fully Convolu-
tional Siamese—Difference (FC-Siam-diff) networks which are double-stream UNets. Block colour
legend: blue is convolution, yellow is max pooling, red is concatenation, and purple is transpose
convolution. Red arrows illustrate shared weights. Copyright © IEEE. All rights reserved. Reprinted
with permission from Caye Daudt et al. [64].

The first network, Fully Convolutional Early Fusion (FC-EF), is single-stream. It
concatenates the two input images before feeding them to the network, thus, treating
them simply as different bands. The other two networks have a Siamese architecture
where the encoder part of the network is run in parallel for each of the images, and they
differ in how the skip connections are performed. For FC-Siam-conc (Fully Convolutional
Siamese/hl—Concatenation), the two skip connections coming from each encoding stream
are simply concatenated before joining the decoder, while in the second network FC-Siam-
diff (Fully Convolutional Siamese—Difference) the skip connections from each stream are
first integrated together by taking the absolute value of their difference. All three network
variations achieved good results surpassing classical approaches, with FC-Siam-diff being
the best, closely followed by FC-EF.
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While the early fusion type network did not perform badly in comparison with the
Siamese structure in the aforementioned study, Siamese architectures have been favoured
by most authors in the subsequent years.

In any case, the UNet has featured heavily in the field of change detection, either
as the original, or as a large number of variations, all having the same key components:
a contracting encoder, an expanding decoder and skip connections connecting them at
multiple levels.

3.2. Single-Stream Networks—UNets

Apart from the work of Daudt et al. [64] introduced in the previous Section 3.1, only
three more of the reviewed articles featured a single-stream architecture, and they are all
variations of a UNet.

The first one is a Fully Convolutional Early Fusion Residual (FC-EF-Res) network [42],
which is a modified FC-EF UNet with added residual blocks. It combines several UNets to
perform both land cover mapping and change detection simultaneously.

The second one, CD-UNet++ [67], is a UNet that fuses information from various levels
through upsampling and dense skip connections. The output from the various levels can
be combined for change prediction.

The third one is Cross-Layer Network (CLNet) [75], which is a modified UNet with
novel Cross Layer Blocks (CLB). A CLB splits the input temporarily into two parallel
but asymmetrical branches, which use different convolution strides in order to extract
multi-scale features.

3.3. Double-Stream Networks

Double-stream networks are based on initial feature extraction (FE) from each of the
images and subsequent comparison of the features leading to identification of changes. The
images are first processed in parallel for FE, and then the outputs are joined to be fed to
the decision making part of the model as seen in Figure 3c. The parallel feature extraction
subnetworks can share weights (Siamese networks), which is more common, or not share
weights (pseudo-Siamese). The extracted features are then fused together, often employing
some form of attention, and subsequently input into an algorithm that compares them and
outputs a change map. The algorithm responsible for comparing the feature maps can
either be a more traditional, automatic decision algorithm, such as a Gaussian distance,
or it can be a neural network-based classifier, which needs to be trained with the rest of
the network.

3.3.1. UNets

Double-stream UNets, similar to the aforementioned (Section 3.1) FC-Siam-conc and
FC-Siam-diff, can be viewed as a subcategory of general double-stream networks. The
UNetLSTM [69] combines a UNet with a long short-term memory (LSTM) [89] block, which
is a type of a recurrent neural network (RNN). Its UNet-based encoder–decoder architecture
has a convolutional LSTM block added at each encoder level. This LSTM block is inserted
at the level where the comparison of the two images takes place.

The Siamese Network UNet for Change Detection (SNUNet-CD) [74] is, similarly to
the aforementioned CD-UNet++, based on a UNet++ (also referred to as a nested UNet) [90],
which uses a more compact information transition between the encoder and the decoder by
adding upsampled modules and skip connections between corresponding semantic levels.
However, while the CD-UNet++ has a single stream structure, the SNUNet encodes each
image separately and employs their differences as well.

The Deeply Supervised Image Fusion Network (DSIFN) [44] also has a structure
similar to a double-stream UNet with two parallel contracting streams, which extract
features from each of the images. The features from each image are then concatenated
and upsampled through an expanding stream. Lower level features from the contracting
streams are concatenated to the corresponding expanding levels through skip connections.
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The authors also employ a difference discrimination network for deep supervision, which
combines outputs from the various layers.

Similarly, the End-to-end Superpixel Change Network (ESCNet) [77] features a UNet
subnetwork for change detection. The main contribution of this network, however, is in
the preprocessing of the images before they are fed to the UNet. Two Siamese superpixel
sampling networks are used to extract features and perform superpixel segmentation on
the input images. The features are fed to a UNet-like network, and the information about
the superpixels is used to reduce the noise and improve edge identification.

The Deep Siamese Multi-scale Fully Convolutional Network (DSMS-FCN) [68] is a
fully convolutional network with encoder and decoder parts similar to those of a Siamese
UNet, including difference-based skip connections. It introduces a multi-scale feature
convolution unit, which is a modified convolution unit that splits the input into several
branches and performs convolution with different kernel sizes before joining them again.
This unit allows for the extraction of multi-scale features in the same layer. The network
also employs change vector analysis to refine the resulting change maps.

The Region-Based Feature Fusion Net (RFNet) [60] aims to reduce the impact of
spatially offset bitemporal images, such as due to imperfect co-registration or differences
resulting from differing viewing angles. It is a fully convolutional double-stream network
with feature interaction modules and region-based feature-fusion modules between the
encoders and the decoder. The feature interaction modules fuse features from different
scales, similar to dense skip connections in other UNet-like networks, and the region-based
feature-fusion modules compare the features with those in their neighbourhoods in order
to account for possible spatial offset between the images.

3.3.2. UNets with Attention

Attention blocks [91] have been used increasingly often in the last year, as adding an
attention mechanism often leads to considerable improvement in performance. Many of
the UNet-based networks employ this strategy. The attention mechanism can be employed
at various stages in the model.

As in the case of the aforementioned SNUNet, an attention module can be used as
a last step in order to best combine the multiple outputs of the decoder. The Attention-
Guided Full-Scale Feature Aggregation Network (AFSNet) [61] resembles a double-stream
UNet, with the encoder based on VGG16. Similarly to other UNet variations, its main
feature is the enhanced full-scale skip connection to combine features from different scales.
The multiple side-outputs, again at various scales, are refined by an attention module
combining spatial and channel attention and then fused for the final CD map. However, the
attention is most commonly inserted between the encoder and the decoder of the network.

The Multilevel Deformable Attention Aggregated Networks (MLDANets) [82] is a
double-stream UNet that uses a single attention module, which receives features from
all levels of the Siamese VGG16-based encoder and outputs new improved features into
multiple levels of the decoder. The attention module uses deformable sampling with a
learnable shape.

Another recent Siamese UNet with attention mechanism is the Siamese Attention +
UNet (Siamese_AUNet) [83]. Unlike the MLDANets, which feed features from multiple
levels of the encoder into the attention module, this model inserts an attention block as
the last step at every level of the encoder. The attention comprises non-local attention
(addressing relationships between pixels regardless of their position) as well as channel
and local spatial attention. The last step of the two Siamese encoders is an atrous spatial
pyramid pooling (ASPP) [92], which uses atrous sampling with various rates to improve
the learning of multi-scale features.

The Urban Change Detection Network (UCDNet) [85] also uses a version of spatial
pyramid pooling (SPP) [93], namely, new spatial pyramid pooling (NSPP) between the
double-stream encoders and the decoder. The model also features modified residual
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connections in the encoder. These introduce additional maps of feature differences between
the streams at each level of the encoders in order to improve change localization.

The Densely Attentive Refinement Network (DARNet) [84] is another double-stream
UNet with attention modules. The DARNet has dense skip connections, where features
from various levels are being combined. The hybrid attention module (combining temporal,
spatial and channel attention) is inserted at the level of the skip connections. Its output
is then fed to the decoder, again, at various levels. The decoder also features a recurrent
refinement module with deep supervision inserted at the end of each decoder layer.

The Multi-Scale Residual Siamese Network Fusing Integrated Residual Attention (IRA-
MRSNet) [62] resembles a double-stream UNet in its overall structure; however, instead of
the typical convolutions, it introduces multi-resolution blocks in order to enhance feature
extraction at multiple scales. In essence, these blocks combine convolutions with kernels of
different sizes. It also employs an attention unit between the encoder and the decoder.

3.3.3. UNets with Enhanced Boundary Detection

Boundaries and edges of depicted objects are areas that can be difficult to identify and
correctly assess, since they tend to be represented by high-frequency features, especially in
high-resolution multispectral images. Some networks seek to improve CD performance by
addressing edges specifically. Among these are the High Frequency Attention Net (HFA-
Net) [86], which is a Siamese UNet; the Multi-scale Attention and Edge-Aware Siamese
Network (MAEANet) [56]; and several double-stream networks that are discussed later.

The HFA-Net employs both attention and boundary detection for enhanced change
detection. This is achieved by adding a High-Frequency Attention Block (HFAB) at each
level of the encoders and the decoder. It consists of a spatial attention part and high-
frequency enhancement part. High-frequency enhancement is based on the application of a
classical method, namely, the Sobel operator [94].

The MAEANet similarly uses attention and edge detection, namely, it employs Siamese
UNets with full encoder–decoder structures for multi-scale feature extraction, to then fuse
the features and apply an attention module with spatial and contour attention, followed
by an edge-aware module for enhanced edge detection. The MAEANet does not follow
the typical structure of double-stream UNets as depicted in Figure 3b. This is because the
full UNet is used for feature extraction, rather than only the encoder part. In this case,
both images go separately through the whole UNet, encoder and decoder alike, before
feature fusion takes place. In this regard, this model can be categorized as a more general
double-stream network featuring a UNet, rather than a double-stream UNet.

3.3.4. Non-UNet Double-Stream Models

The general structure of double-stream networks (Figure 3c) allows for a variety of
different models. At its base is a Siamese feature extractor followed by feature fusion and
a decision-making module. Among these networks, we can list the Spectral-Spatial Joint
Learning Network (SSJLN) [65], which uses a CNN to extract features from the images
in parallel. The features are then fused, and a fully connected subnetwork is used for
comparison and change detection.

There are several networks implementing recurrent neural networks (RNN), usually
in the form of long short-term memory (LSTM) [89], such as the Recurrent CNN [63], the
SiamCRNN [70] (and the UNetLSTM, which was discussed in the previous section). The
idea behind including a RNN in change detection is its ability to handle related sequences
of data. In the case of change detection, the sequence usually consists of images from two
different time points. The Recurrent CNN and the SiamCRNN resemble each other in
overall architecture. They both first use two Siamese CNNs for feature extraction from the
bitemporal images. The features are then fed to a recurrent sub-network, which adds a
temporal component to the extracted features, and, finally, a decision on binary or multi-
class change is made by applying fully-connected layers. The SiamCRNN is also designed
to handle bitemporal images from heterogenous sources.
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A form of attention was used by a number of UNet-based networks and is also one
of the main features of several double-stream networks. Among them, the Dual Attentive
Siamese Net (DASNet) [72], which is a fully convolutional network consisting of two
Siamese contracting streams (namely, VGG16) followed by a dual attention module, which
uses both channel and spatial attention.

Similarly, the Spatial-Temporal Attention Net (STANet) [43] employs Siamese feature-
extracting CNNs (in this case, ResNets), followed by an attention module. The Compress–
Expand/Expand–Compress Network (CEECNet) [80] introduces not only a new attention
module but also a number of modifications that distinguish this network from most others,
such as a new loss function, new feature extraction building blocks and a new backbone
architecture.

The Super-Resolution-Based Change Detection Network (SRCDNet) [76] is designed
to perform change detection on images with different resolutions. Using a generative
adversarial network (GAN) super-resolution module, a higher resolution version of the
low-resolution image is generated in order to obtain images with the same resolution to
be used for change detection. The two images with the same resolution are then fed to
ResNet-based feature extractors in parallel. The process of feature extraction is aided by a
stacked attention module, which enhances useful information from multiple layers. The
final change map is generated by calculating a distance map between the features.

The Capsule Network (CapsNet) [78] was designed to better deal with different view-
points in bitemporal images and perform well with less training data. Vector-based features
are extracted by two pseudo-Siamese capsule networks. The features corresponding to
unchanged regions are kept more consistent by an unchanged region reconstruction mod-
ule, and, finally, a change map is generated by analysing the vector cosine and the vector
difference of the image features.

The Dual Learning-Based Siamese Framework for Change Detection (DLSF) [66] is a
network that performs two tasks simultaneously. First, it uses a GAN to translate each of
the bitemporal images into the domain of the other image in order to suppress irrelevant
changes in the images. Each original image and the corresponding translated version of
the other image are then input into a Siamese CNN feature extractor. The features are then
compared using a pixel-wise Euclidean distance in order to generate the change predictions.

The Trilateral Change Detection Network (TCDNet) [71] is composed of three different
CNNs acting as feature extractors in parallel. The main module is based on a ResNet
and is an early fusion module into which the images are input together. There are two
auxiliary modules that are both Siamese: the difference module and the assimilation
module, which focus on changed and unchanged areas, respectively. The network uses
dilated convolutions instead of pooling in order to increase the receptive fields without
losing information.

The Attention Gates Generative Adversarial Adaptation Network (AG-GAAN) [73]
is a GAN-based network with an attention mechanism. The image pair is input into the
generator, which generates a change map attempting to deceive a discriminator. The
discriminator seeks to distinguish the real change map from the generated one. Attention
gates are added to the generator to improve its performance.

Similarly to the HFA-Net described in the section about UNet-based models, there are
several more networks employing edge detection to improve their performance For exam-
ple, the Feature Decomposition–Optimization–Reorganization Network (FDORNet) [81]
seeks to improve the detection performance of the edges by decomposing the images
into edges and main object bodies. In order to achieve this, the standard initial feature
extraction by a Siamese network (here, a ResNet) is followed by a module designed to
separate the main body and edge pixels by leveraging convolutions with larger strides
to identify low-frequency features corresponding to the main bodies of objects. The fea-
tures are then optimized using the ground truths and eventually reorganized in order to
uncover changes.
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Similarly, the Boundary Extraction Constrained Siamese Net (BESNet) [21] focuses on
the extraction of edges. The model is composed of a double-stream feature extractor (VGG-
based), which runs parallel to a multi-scale boundary extraction stream that uses CNNs
with a Sobel operator (as does the HFA-Net) in order to learn gradients and extract object-
boundary positions. The outputs from both streams are then fused in order to explore the
relationships between various feature maps and the information about boundary positions
is used to refine the features extracted by the Siamese encoders. The model also introduces
a loss function that takes the gradient into account.

In order to improve edge detection, the Improved Separability Network (ISNet) [87]
uses an attention mechanism and a margin maximization strategy to maximize the feature
difference between changed and unchanged regions. The model is composed of three
parts: a feature extractor, a feature-refinement module and a classification module. First,
the images are input into a Siamese feature extractor based on a ResNet backbone with
channel-attention modules added at each level. Then, the features from several levels are
combined in a feature-refinement module consisting of margin maximization and spatial
attention. Margin maximization uses, among other methods, also a deformable convolution.
Finally, the last step consists of classification performed on the refined features.

3.3.5. Transformers

Following the success of transformers in the field of natural language processing [91,95],
they have been appearing increasingly often within computer vision topics [96], and change
detection is not an exception. A number of models based on transformers have been
published in the last year (2022). Transformer models are predominantly double-stream,
and most of them use transformers together with other elements, such as a UNet, other
CNNs, additional attention blocks and more.

The Bitemporal Image Transformer Change Detection (BIT_CD) [79] incorporates
a bitemporal image transformer (BIT) after an initial feature extraction. Siamese CNNs
(ResNet18s) are first used to extract the features of each image, and the features are then
converted into a set of semantic tokens using spatial attention. A transformer is applied to
the tokens to model contexts in space and time. The resulting tokens are projected back to
pixel space, and a feature difference image is computed from the two context-rich feature
maps. Finally, a CNN is used to make the change predictions.

Similarly, the UNet-like Visual Transformer for CD (UVACD) [54] also uses a double-
stream CNN feature extraction, which is then followed by a transformer for feature enhance-
ment, and, finally, a decoder. In the case of the Transformer + UNet CD (TransUNetCD) [53],
the transformer module is placed between the Siamese encoders of a double-stream UNet
and its decoder.

The Swin Transformer Siamese U-shaped Net (SwinSUNet) [97] and Fully Transformer
Net (FTN) [57] both use Swin transformers [98], and both can be described as pure trans-
former models. SwinSUNet uses Swin transformer blocks to encode, fuse and decode
features of the bitemporal images. FTN similarly uses Swin transformers for feature extrac-
tion at various levels, followed by feature enhancement and change prediction. An attention
module is added, and, finally, multiple loss functions are combined for improved results.

The ChangeFormer [55] consists of a double-stream transformer-based encoder, four
feature difference modules and a lightweight fully connected CNN decoder.

The Pyramid Semantic CD Transformer (Pyramid-SCDFormer) [52] is designed for
semantic CD. It features a double-stream pyramid transformer encoder based on shunted
self-attention designed to more efficiently capture multi-level features, followed by a
lightweight decoder.

Lastly, the Multi-Scale CNN Transformer Net (MCTNet) [84] uses a combination of
transformers and CNN within a single block. The overall structure of this model resembles
a double-stream UNet with its Siamese encoders connected by skip connections to a decoder.
However, each level of the MCTNet features a ConvTrans block—a block that combines
transformer modules and CNN layers.
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4. Semi-Supervised and Unsupervised Deep-Learning Models for Multispectral
Change Detection

One of the biggest challenges within deep learning for change detection is the avail-
ability of large annotated datasets. A possible way to deal with this issue lies in reducing
or eliminating the need for the annotations, since unannotated data are abundant. Semi-
supervised networks aim to reduce the amount of annotations needed, while unsupervised
networks do not require any annotated data at all.

It can often be easier to achieve good results on end-to-end trained supervised
networks compared to semi- and unsupervised networks. However, the availability,
or rather unavailability, of annotated training data makes semi- and unsupervised net-
works very attractive. Table 3 provides an overview of selected unsupervised and semi-
supervised change-detection networks.

Table 3. Overview of selected unsupervised and semi-supervised change-detection models published
between 2017 and 2021.

Unsupervised

Network Name Type Year

VGG16_LR [99] VGG16 Low Rank pretraining superpixels, VGG16 on scene
class., low rank decomp 2017

GDCN [100] Generative Discriminatory
Classified Network generates training set GAN, CVA for training set 2019

DCVA [101] Deep Change Vector Analysis pretraining CNN on scene class., deep CVA 2019

DSMS-CN [68] Deep Siamese Multi-Scale generates training set CVA for training set, Double-
Stream UNet 2019

S2-cGAN [102] Self Supervised Conditional
GAN generates training set trained on no change, GAN,

Generator (UNet) 2020

KPCAMNet [103] Kernel Principal Component
Analysis Network unsupervised layerwise training of KPCA

modules 2021

Semi-supervised

FDCNN [104] Feature Difference CNN pretraining VGG16 pretrained on RS scene 2020
Self-supervised Pre-training [105] pretraining pretrained on a pretext task 2021

SemiCDNet [47] Semi-Supervised Change De-
tection Network semi-supervised GAN, Generator (UNet) + 2x

Discriminator 2020

IAug_CDNet [106] Instance-Level Augmentation
CD Net semi-supervised, augmentation GAN 2021

GCN [107] Graph Convolutional Network semi-supervised graph conv net 2021

4.1. Unsupervised

Most unsupervised change-detection networks can be divided into two categories
based on their structure. The first type of structure is depicted in Figure 5a and relies, in
essence, on transfer learning. A double-stream architecture provides a natural way of using
transfer learning. The parallel subnetworks that fulfill the role of feature extraction can be
pretrained on tasks other than change detection. The feature extraction step is then followed
by an automated algorithm that uses the features to make a decision about changed areas
in the images without the need for additional training. The task used for pretraining is
often related to the end goal of the method, such as using RS scene classification to pretrain
the feature extractors.

This approach is employed both by the VGG16_LR [99] and by the Deep Change Vector
Analysis (DCVA) Network [101]. VGG16_LR first uses Simple Linear Iterative Clustering
(SLIC) [108]—a superpixel model—to segment the image into meaningful superpixels. The
feature vectors for these segments are then extracted via Siamese VGG16s finetuned on
aerial classification images, and a feature difference vector is calculated as an absolute
difference of the segment feature vectors of each image. A low-rank decomposition and
a simple thresholding are then used to create a binary change map. While the feature
extractors require pretraining on labelled images, the rest of the network is unsupervised.
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This method, thus, allows the use of data annotated for classification (which is an
easier task than annotating pixel-wise change detection) to be used for pixel-based change
detection without any need for pixel-annotated change data.

Image at time T1

Image at time T2
fusion

decision 
algorithm

feature 
extraction

change map

feature 
extraction

pretrained

Image at time T1

Image at time T2

unsupervised
CD

training set 
annotation

supervised 
deep learning 

CD

change map

(a) Pretraining 

(b) Training Set Generation

Figure 5. Two possible unsupervised network structures. (a) Network with pretrained feature extrac-
tors. Siamese feature extractors that have been pretrained on a related task are used to automatically
extract image features. The features are then input into an automatic decision algorithm that compares
them and outputs a change map. (b) Using an unsupervised classical change-detection method to
create a labelled training dataset for a supervised deep-learning-based CD model.

The DCVA Network [101] has a similar overall structure, in that it is composed of a
pretrained CNN for feature extraction and a more classical decision algorithm. It consists
of a feature extraction using a CNN pretrained on classification of aerial images, followed
by an automatic feature selection. The feature vectors are then compared in order to obtain
a change vector, which can be analysed using deep change vector analysis—a procedure
similar to traditional change vector analysis. DCVA is used to identify the pixels with
markedly changed features and produce a change map.

Another method often used to achieve unsupervised change detection is automated
training-set generation (Figure 5b). In this case, a method that does not require annotations
is used to (often partially) annotate the data. The CVA is a commonly used algorithm for
this purpose, which provides initial classifications for image pixels, dividing them into
changed, unchanged and undecided categories. This auto-generated partially annotated
training set is then used to train a deep-learning-based supervised classifier, which outputs
a change map. In many cases, GANs are used as part of the method to generate annotations.
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The Deep Siamese Multi-Scale Convolutional Net (DSMS-CN) [68] is an unsupervised
version of DSMS-FCN discussed previously. As with DSMS-FCN, it uses the multi-scale
feature convolution unit that splits the input and performs convolution with varying kernel
sizes. It is a fully unsupervised network with no pretraining, which uses classical change-
detection methods to generate annotations and, thus, create a training set. Suitable training
samples are generated by an automatic preclassification algorithm consisting of a change
vector analysis (CVA) and a fuzzy c-means clustering (FCM). Using preclassification,
the pixels are divided into three groups: nearly certainly changed wc, nearly certainly
unchanged wu and undetermined wtbd. Then, small patches around wc and wu pixels
are used as training samples for a UNet-like fully convolutional neural network with a
Siamese encoder, which then learns to predict the change probability of the central pixel in
the patch.

The Generative Discriminatory Classified Network (GDCN) [100] is an unsupervised
model taking advantage of generative adversarial networks. The model consists of two
subnetworks: a generator and a discriminatory classified network (DCN). Unlabelled input
data pixels are first classified into three categories: changed, unchanged and no-label. This
process is performed using automatic methods (namely, CVA followed by Otsu [109]) to
label all pixels as changed and unchanged as well as the application of a neighbourhood-
based criterion to select the pixels where this automatic CD is sufficiently reliable and those
that should remain unlabelled. The automatically labelled data, the unlabelled data and a
set of fake data created by the generator are then input into DCN, which has the task of
distinguishing between the changed, unchanged and fake pixels.

The Self-Supervised Conditional Generative Adversarial Network (S2-cGAN) [102] is
composed of a generator and a discriminator. For training, it requires pairs of images with
no relevant changes. The authors of the paper have, in this case, created a second image
by adding noise to the first one. During training, the generator (UNet-based) is fed one of
the images and trained to output a similar image with no relevant ground changes. The
discriminator learns to distinguish pairs of unchanged pixels (i.e., from the real images)
from pairs of changed pixels (one of them generated by the generator). Effectively, the
generator learns to produce unchanged images, while the discriminator is trained to
recognize changed/fake pixels. During inference, both the generator and the discriminator
are used: change detection is based both on the reconstruction error of the generator and
on the pixel-based out-of-distribution likelihood produced by the discriminator.

The Kernel Principal Component Analysis—Mapping Network (KPCA-MNet) [103] is
an unuspervised model that introduces a Kernel Principal Component Analysis (KPCA)
convolution module. A Siamese deep convolutional network utilising the KPCA convo-
lution first extracts features from the images. The feature difference map is then mapped
into a 2D polar domain, and change detection is performed by thresholding segmentation
and clustering. The feature extractor network is trained layerwise in an unsupervised
manner—random input patches from the previous layer are selected, and the parameters
of the KPCA are calculated. KPCA fuses deep learning and classical methods by using a
deep CNN architecture with a KPCA-based components, effectively avoiding the need for
annotated training data.

4.2. Semi-Supervised

In the case of semi-supervised networks, the need for training data is reduced but
not completely eliminated. This can be achieved through various approaches. As with
fully unsupervised models, pretraining can be used, such as in the case of the Feature
Difference CNN (FDCNN) [104]. This network consists of Siamese CNNs (namely, VGG16s)
for feature extraction, followed by a feature difference CNN and a feature fusion CNN.

The contracting VGG16, together with the expanding feature difference CNN, resem-
bles UNet, and all of the networks are fully convolutional. The authors pretrained the
VGG16 on scene-level classification of remote-sensing images; thus, the training of the
whole network for change detection only involves the last feature fusion CNN. Pretraining,
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in this case, allows for fewer pixel-annotated change maps, thereby taking advantage of
the easier obtainable scene classifications.

The method by Leenstra et al. [105] uses self-supervised pretraining in order to
improve change detection in Sentinel-2 images, namely, the model is pretrained on a pretext
task that does not require supervision but is designed to teach the model to recognize
features important for change detection. One such pretext task is deciding whether two
image patches from bitemporal images are spatially overlapping. The model can then be
further trained on a smaller annotated dataset.

Another possibility to reduce the amount of necessary annotated data is to use a
generative adversarial network. The SemiCDNet [47] is a semi-supervised GAN-based
convolutional network designed for change detection. It consists of one generator G and
two discriminators Ds and De and is trained using a combination of labelled and unlabelled
data. G is a UNet++ segmentation network that outputs predicted change/no-change
labels for the input images. The segmentation discriminator Ds is fed both ground truths
and the predictions output by the generator and its goal is to distinguish between the two.
During testing, this leads to the generated labels resembling the ground truths more. To
further improve the results, the entropy discriminator De encourages the entropy maps of
the generator’s predictions from unlabelled data to resemble its predictions from labelled
data. The two discriminators are trained alternately during the training process.

The Instance-Level Augmentation CD Net (IAug_CDNet) [106] also uses a GAN,
in this case, however, for image augmentation, which precedes the change detection. A
GAN is used to add buildings into the images and, thus, supply additional labelled data.
The change detection part of IAug_CDNet is based on a UNet, although, in this case, the
UNet sub-network is, strictly speaking, used to extract the features from the two images
in parallel and another sub-network (here, a shallow fully convolutional neural network)
then uses the difference of these features to predict the changed pixels.

A different approach can be seen in the Graph Convolutional Network (GCN) [107],
which takes advantage of some labelled data within an unlabelled dataset by employing a
graph convolutional network. The Graph CNN encodes multitemporal images as a graph
via multi-scale parcel segmentation capturing the features of the images. The information
from the labelled data is then propagated to the unlabelled data over training iterations.

5. Performance

Several performance metrics can be used to evaluate the results of a change detection
process. Change detection is, in essence, a classification task, classifying each pixel into
categories of changed/unchanged. If we designate change as a “positive” and no change as
“negative”, there are four possible outcomes: true positive (TP) being a correctly identified
change/positive, true negative (TN) being a correctly identified no change, false positive
(FP) being an unchanged pixel labelled as changed and false negative (FN) a changed pixel
labelled as unchanged.

The simplest metric of performance is the overall accuracy (OA), which quantifies the
fraction of correctly labelled pixels:

OA =
TP + TN

TP + TN + FP + FN
(1)

For the task of change detection, however, OA can be misleading due to the large class
imbalance. The rarity of changes means that a model can achieve a high OA by simply
labelling all pixels as unchanged.

It is, therefore, more common to employ other metrics that provide a more nuanced
insight into the performance of the model. The most used are precision (or positive
predictive value (PPV)) and recall (also called sensitivity or true positive rate (TPR)):

precision = PPV =
TP

TP + FP
(2)



Remote Sens. 2023, 15, 2092 21 of 30

recall = sensitivity = TPR =
TP

TP + FN
(3)

Another commonly used metric is the F1 score, defined as:

F1 =
2 · precision · recall
precision + recall

(4)

Table 4 shows an overview of the performance metric values reported for models
featured in this review. The precision, recall, F1 and OA are listed, and the models are
grouped by the datasets they were evaluated on. Many models were tested on one or
several of the reported open datasets to allow for comparison.

Table 4. Performance values of a selection of models grouped by the dataset used for evaluation.
Semi-supervised models are denoted with *. The best results for each dataset are shown in bold,
the second best are underlined, and the (third best) results are enclosed in parentheses (). For some
semi-supervised models, the percentage of the dataset used for training is also stated.

Network Name Precision (%) Recall (%) F1 (%) OA (%)

SZTAKI–Szada

FC-EF 43.57 62.65 51.4 (93.08)
FC-Siam-conc 40.93 (65.61) 50.41 92.46
FC-Siam-diff 41.38 72.38 52.66 92.4
DSMS-FCN 52.78 63.39 57.72 94.57
STANet (45.5) 63.5 53.0
ESCNet 48.89 58.21 (53.73) 94.07
CapsNet 44.4 68.9 54.0
* FDCNN 56.05 92.86

SZTAKI–Tiszadob

FC-EF (90.28) 96.74 93.4 97.66
FC-Siam-conc 72.07 96.87 82.65 93.04
FC-Siam-diff 69.51 88.29 77.78 91.37
DSMS-FCN 89.18 88.56 88.86 96.20
STANet 95.0 90.8 (93.0)
ESCNet 76.33 72.87 74.56 (93.95)
CapsNet 96.8 (95.3) 96.0

OSCD

FC-EF 64.42 50.97 56.91 96.05
FC-Siam-conc 42.39 65.15 51.36 93.68
FC-Siam-diff 57.8 57.99 (57.92) 95.68
FC-EF-Res 54.93 66.48 60.15 95.64
UNetLSTM (63.59) 52.93 57.78 (96.00)
* FDCNN (65.47) 91.17
UCDNet 92.53 86.16 89.21 99.30
SwinSUNet 55.0 54.0 54.5 95.3

CDD

CD-UNet++ 89.54 87.11 87.56 96.73
DSIFN 94.96 86.08 90.30 97.71
DASNet 92.2 93.2 92.7 98.2
SNUNet-CD 96.3 96.2 96.2
CLNet 94.7 89.7 92.1 98.1
SRCDNet 92.07 88.07 90.02
ESCNet 90.90 (96.35) 93.54 98.47
ISNet 95.18 94.43 94.80 98.78
BESNet 95.20 92.40 93.78 98.51
DARNet 97.05 96.91 96.98 99.29
SwinSUNet 95.7 92.3 94.0 98.5
TransUNetCD (96.93) 97.42 97.17
MCTNet 96.56 95.33 95.94 (99.05)
ASFNet 98.44 92.85 95.56 98.94
IRA-MRSNet 96.81 96.13 (96.47) 99.14
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Table 4. Cont.

Network Name Precision (%) Recall (%) F1 (%) OA (%)

LEVIR

STANet 83.8 (91.0) 87.3
CLNet 89.8 90.3 90.0 98.9
BIT_CD 89.24 89.37 89.31 98.92
CEECNet 93.81 89.92 91.83
* IAug_CDNet 20% 90.1 85.1 87.5
* IAug_CDNet 100% 91.6 86.5 89
ISNet 92.46 88.27 90.32 99.04
HFA-Net 88.32 98.90
BESNet 94.41 84.26 89.05 97.69
SiameseAUNet 85.82 87.02 85.57
DARNet 92.67 91.31 91.98 97.76
MLDANets (93.08) 90.18 (91.57) 99.15
FDORNet 91.29 90.42 90.85 99.07
TransUNetCD 92.43 89.82 91.11
UVACD 91.90 90.70 91.30 99.12
ChangeFormer 92.05 88.80 90.40 99.04
Pyramid-SCDFormer-B 92.72 90.18 91.41 98.39
MAEANet 88.84 (91.00) 89.90 89.35
FTN 92.71 89.37 91.01 99.06
MCTNet 91.21 90.76 90.98 (99.08)
MFATNet 91.85 88.93 90.36 99.03
ASFNet 90.74 91.06 90.90 99.07
IRA-MRSNet 84.81 89.37 86.23 98.74

DSIFN

DSIFN 67.11 67.54 67.33 88.86
BIT_CD 68.36 70.18 69.26 89.41
BESNet (83.60) (72.17) (77.47) 97.98
TransUNetCD 71.55 69.42 66.62
ChangeFormer 88.48 84.94 86.67 (95.56)
MFATNet 88.65 86.62 87.62 95.84

WHU

CLNet 96.9 95.7 96.3 99.7
CEECNet (95.57) (92.04) (93.77)
* IAug_CDNet 20% 86.8 78.1 82.2
* IAug_CDNet 100% 91.4 86.9 89.1
* SemiCDNet 5% 82.90 94.34
* SemiCDNet 10% 85.28 95.17
* SemiCDNet 20% 86.57 95.59
* SemiCDNet 50% 87.74 95.95
HFA-Net 88.23 97.58
SiameseAUNet 82.02 86.33 84.47
SwinSUNet 95.0 92.6 93.8 99.4
TransUNetCD 93.59 89.60 93.59
UVACD 94.59 91.17 92.84 99.14
Pyramid-SCDFormer-B 92.22 86.86 89.31 96.43
MAEANet 92.82 90.38 91.56 99.36
FTN 93.09 91.24 92.16 (99.37)
MFATNet 93.18 83.93 88.31 99.01
RFNet 95.72 89.46 92.49
IRAM-MRSNet 84.07 85.18 84.52 98.63

SYSU

ISNet 80.27 (76.41) 78.29 90.01
DARNet (83.04) 79.11 81.03 91.26
FTN 86.86 76.82 81.53 97.79
IRA-MRSNet 85.39 75.20 (79.98) (90.85)

Google

HFA-Net 82.77 96.47
FTN 86.99 84.21 85.58 97.92

All of the values featured in the three tables are taken from articles written by the
originators of each given model. It should be noted that this means that the training
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conditions for the various models can and do differ and the provided metric values can
only serve as a rough overview rather than as grounds for comparison. Ideally, in order
to provide fair comparison, all of the models should be reimplemented and tested under
identical conditions on a range of datasets.

However, this undertaking would be very time-consuming, and its accuracy and
utility would be questionable as the code has not been published for all of the models, thus,
making the risk of inaccurate and less-than-optimal reimplementations high. Therefore,
we chose to compile the metric values as reported by the respective originators of the
models in order to provide a general overview. Although reports on reimplementations
were published for a number of them, we decided to include only the performance values
published by the original authors.

There can be a large difference in the performance of a given model on different
datasets, as can be seen from a number of models used on both of the two SZTAKI sub-
datasets. The Szada sub-dataset appears to be more challenging than the Tiszadob, and all
of the models achieved significantly better results on the Tiszadob. Similar differences in
performance can be seen for other models that were evaluated on several datasets, such
as the DSIFN, which showed better performance on the CDD dataset compared with on
the DSIFN dataset. Where two or more models were evaluated on the same two or more
datasets, it is possible that one performed better on one of the datasets, while the other one
performed better on the other, such as CLNet being the best on the WHU dataset, while
CEECNet performed somewhat better on the LEVIR, even though both of these datasets
exclusively focus on buildings.

Almost all of the models, except for DSIFN and BIT_CD on the DSIFN dataset and
S2-cGAN, had an overall accuracy above 90% percent and often above 95%. However, this
is less a result of high performance and more an artefact created by the class imbalance
present in the datasets. Real relevant changes are rare in remote sensing, and the number
of changed pixels is relatively low, which artificially increases the overall accuracy.

The accuracy was over 90% for all of the models evaluated on the SZTAKI–Szada,
even when the precision of some of these models was below 50%, meaning that only half
of the pixels they labelled as changes were an actual change, and the other half were false
positives. To illustrate this further, the HRSCD dataset had as many as 99.232% of pixels
labelled as unchanged. Predicting "no change" for every pixel in this dataset would yield
an overall accuracy of 99.232%, while both the precision and the recall would be 0.

Semi-supervised models (marked with * in the tables) can achieve good performance
with only a fraction of the annotated data, but they tend to perform slightly worse than
their supervised counterparts.

6. Challenges and Outlook

Change detection in remote sensing is a useful but demanding task with a unique set of
challenges. Despite the large amount of available RS imagery, high-quality large annotated
CD datasets are not simple to create. They often need to be annotated pixel-wise by hand,
which is time-consuming and laborious. Furthermore, unlike most other applications of
deep learning, they require two or more images, which increases the amount of data to
acquire, makes the process of annotating more complex and introduces the additional need
for coregistration.

The fact that the idea of "change" itself can be defined in more than one way means that
there will be large differences between various annotated datasets. This leads to difficulties
comparing and evaluating networks if they have not been tested on the same data. It also
reduces the transferability of a network trained on one dataset to another dataset. One
could argue that the concept of change is so broad that it should not be affected by (minor)
differences between datasets; however, in reality, providing an annotation always implicitly
chooses the category of changes to be considered as relevant, as well as their context. A
network trained on one dataset will, thus, learn a particular type of changes and will not
necessarily be able to recognise a type of change that it has not encountered in training.
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An additional difficulty is posed by the fact that true changes are fairly rare in RS
imagery. This means that the vast majority of pixels within any dataset are unchanged, and
this large class imbalance requires a special approach, such as a well-chosen loss function.

The creation of a standard set of open test datasets would significantly facilitate the
evaluation and comparison of various models. It is currently difficult to efficiently compare
the published models, as comparisons of performance on different datasets are nearly
meaningless. Ideally, models should be evaluated on several datasets, as they can exhibit
significant differences.

From the presented overview of the reported models, several trends can be identified.
Convolutional neural networks with a double-stream architecture are the most commonly
used models for supervised change detection. The most recent ones generally include
some form of an attention mechanism, which seems to improve the model’s performance
significantly. It is also apparent that the choice of a loss function is an important factor due
to the class imbalance in the change-detection datasets. Among the most recent models
are several transformer-based ones, which naturally follows from the success transformers
have been having in the fields of natural language processing and computer vision.

In recent years, there has been more focus on unsupervised and semi-supervised
networks to eliminate or at least reduce the need for annotated datasets. However, these
models generally do not yet achieve the accuracy of their supervised counterparts. Using
an unsupervised model also leads to a loss of some control over the type of change to be
detected. The main method of teaching the model to distinguish between what we consider
relevant and irrelevant, lies in the annotation of the changes as such.

Unsupervised models that rely on automatic algorithms for preliminary annotations,
but also those that rely on pretraining on other types of data, give up this ability to fine-tune
the types of changes to be considered relevant. This minor loss of control over the type of
change is traded for the ability to train on much larger amounts of data with much less
upfront effort, which is the main advantage of unsupervised models. Further development
in the direction of unsupervised as well as semi-supervised models can be expected.

Deep-learning models have achieved great results in the application of change detec-
tion and, in the majority of cases, have surpassed more classical methods. This is largely
due to their ability to model complex relationships between pixels within the images, thus,
taking into account sufficient context to distinguish apparent and irrelevant changes from
changes of interest. This is particularly important for high-resolution images and images of
complex, varying landscapes.

Mountain areas, for instance, represent a large part of the Earth’s surface but present
unique challenges due to their high topographic variability, steep slopes, line-of-sight
challenges, snow cover of varying depths and difficulty establishing ground truth [110–112].
Deep learning has the potential to address some of these challenges, as it is well suited
for dealing with complex landscapes; however, in most cases, it is reliant on high-quality
abundant annotations. The need to monitor areas that are difficult to access and for which
it is difficult to establish ground truth once again emphasizes the utility of semi- and
unsupervised deep-learning models.

The development of change-detection methods for remote sensing goes hand-in-hand
with the development of the technology used for remote sensing. The amount of available
RS imagery is increasing every year as new and improved airborne and space-borne
platforms are being deployed. Satellites, in particular, are a source of large amounts of data,
due to their frequent revisit times and increasingly higher spatial resolutions. They provide
a means for monitoring hard-to-access areas as well as for observing changes regularly
over long periods of time.

In fact, the increasing availability of satellite images with frequent revisit times and
improved spatial resolution opens up the use of longer time-series, rather than focusing on
two-image change detection [113]. Time-series, by definition, include more information
and present a very interesting platform for change detection, which has been thus far
comparatively little explored. The facts that true changes are rare and that the revisit times
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of many satellites are short opens up possibilities for the development of self-supervised
models, exploiting the readily available time-series of images.

Another possible avenue for future research is semantic change detection, where not
only is the presence of a change detected but also the type of change is classified. Preparing
ground truth including this information is more challenging than simply focusing on
change/no-change, but some such datasets have already been published, such as the the
HRSCD and the SECOND datasets mentioned in Section 2. Models focusing on semantic
change detection are still rare compared to binary change detection. Change detection is
a complex and multifaceted problem to the point that one could say it is many problems
with some common characteristics. The choice of the right approach will heavily depend
on the type of data to be analysed and on the goal of the analysis, as the performance of
models will somewhat differ from dataset to dataset and task to task.

While the recent years have seen an unprecedented growth in the interest for change
detection in remote sensing, the challenge is far from solved.

7. Conclusions

Change detection lies at the core of many practical applications of remote sensing. In
recent years, deep learning has been increasingly used to address this task.

This review provides an overview of deep-learning methods applied to change de-
tection specifically within multispectral remote-sensing imagery. It includes a discussion
of currently available open datasets that are suited for change detection and an analysis
of a selection of recent deep-learning models along with their performance. The models
are categorized into supervised, unsupervised and semi-supervised, and their general
structures are described. The article also provides a discussion on the unique challenges of
change detection.
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The following abbreviations are used in this manuscript:

RS Remote sensing
CD Change detection
CVA Change vector analysis
RGB Red, green, blue
SAR Synthetic aperture radar
PCA Principal component analysis
MAD Mulitvariate alteration detection
LSTM Long short-term memory
CNN Convolutional neural network
RNN Recurrent neural network
GAN Generative adversarial network
TP True positive
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TN True negative
FP False positive
FN False negative
OA Overall accuracy

Appendix A

Table A1. Links to the reviewed datasets.

SZTAKI http://mplab.sztaki.hu/remotesensing/airchange_benchmark.html (accessed on 11 April 2023)

OSCD https://rcdaudt.github.io/oscd/ (accessed on 11 April 2023)

CDD https://drive.google.com/file/d/1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9/edit (accessed on 11 April 2023)

WHU Building CD https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html (accessed on 11 April 2023)

HRSCD https://rcdaudt.github.io/hrscd/ (accessed on 11 April 2023)

LEVIR-CD https://justchenhao.github.io/LEVIR/ (accessed on 11 April 2023)

DSIFN https://github.com/GeoZcx/A-deeply-supervised-image-fusion-network-for-change-detection-in-remote-sensing-
images/tree/master/dataset (accessed on 11 April 2023)

MtS-WH https://github.com/rulixiang/MtS-WH-dataset (accessed on 11 April 2023)

Google Data Set https://github.com/daifeng2016/Change-Detection-dataset-for-High-Resolution-Satellite-Imagery (accessed on 11 April
2023)

SYSU-CD https://github.com/liumency/SYSU-CD (accessed on 11 April 2023)

SECOND http://www.captain-whu.com/project/SCD/ (accessed on 11 April 2023)

3DCD https://bit.ly/3wDdo41 (accessed on 11 April 2023)

Landsat-SCD https://doi.org/10.6084/m9.figshare.19946135.v1 (accessed on 11 April 2023)
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