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Summary

The subject of this report is the physics governing ballistic impact on ceramic plates. The report has
several goals:

• Develop FFI’s basic knowledge of ballistic impact phenomena.
• Provide a general literature review for anyone interested in learning more about ballistic impact

and its relation to contact mechanics.
• Evaluate the usefulness of existing analytical methods that describe the ballistic impact problem.

In the long term, the most suitable methods may be used as a first step toward the development
of an in-house material model for ceramics.

• Report preliminary ballistic impact simulations in IMPETUS Afea to evaluate its current simula-
tion capabilities.

The first part consists of a detailed literature study of several important cracking mechanisms that
may emerge during ballistic loading. In addition, we review analytical models that may form the
backbone of a new material model for ceramics subjected to projectile impact. The analytical models
capture all of the different crack types observed experimentally.

In the second part, we perform and evaluate concrete ballistic impact simulations in IMPETUS
Afea. The simulations are able to capture and describe the specific cracking modes and mechanisms.
Yet, in order to calibrate the model, we need to perform several in-house experiments at different
scales.

The development of an in-house ceramic material model as well as the calibration of the IMPETUS
Afea model seem promising but require more work.

FFI-RAPPORT 23/01815 3



Sammendrag

Overordnet handler denne rapporten om fysikken bak ballistisk støt mot keramiske plater. Rapporten
har flere mål:

• utvikle FFIs grunnkunnskap om fysikken som er relevant i ballistiske støt;
• være en litteraturstudie som er relevant for dem som er interessert i å lære mer om ballistisk

støt og dets relasjon til kontaktmekanikken;
• evaluere nytten av eksisterende analytiske metoder som forsøker å beskrive ballistiske støt.

På lang sikt vil (forhåpentligvis) de mest generelle modellene fungere som et springbrett mot
utviklingen av en ny keramikkmodell;

• rapportere om innledende simuleringer av ballistiske støt mot keramikkplater i IMPETUS Afea
og analysere programmets styrker og svakheter med tanke på den grunnleggende fysikken.

Rapportens første del består av en detaljert litteraturstudie av de dominerende oppsprekkingsmekan-
ismene som finner sted når et prosjektil treffer en keramikkplate. I tillegg ser vi på analytiske modeller
som forhåpentligvis (på lengre sikt) kan brukes til å utvikle en ny materialmodell som egner seg for å
beskrive keramikk som blir påført en ballistisk last. De analytiske modellene klarer å beskrive de
observerbare oppsprekkingsmekanismene.

I del to av rapporten utfører og evaluerer vi konkrete simuleringer av ballistisk støt mot en
keramikkplate i IMPETUS Afea. Simuleringene klarer å fange opp og beskrive sprekkene som
dannes, og de korresponderende mekanismene. Vi må allikevel kalibrere keramikkens materialmodell
gjennom tilpasning av eksperimenter som bør utføres på forskjellige skalaer.

Både utviklingen av en ny keramikkmodell og kalibreringen av IMPETUS Afea-modellen virker
lovende, men krever mer arbeid.
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1 Introduction
Lightweight systems for protection against armor piercing (hard core) small arms threats, are often
an ceramic plate (or tile) in combination with composite materials and ballistic fiber backings. The
ceramic is an essential component as it is capable of blunting, fracturing, and eroding different
types of projectiles due to its high hardness. Yet, the ceramic generally becomes highly fractured
locally around the point of impact. Once the ceramic’s structure is locally compromised, it provides
less protection for subsequent impacts. A simple solution is to use thicker ceramic plates, but due to
weight restrictions and decreased soldier and vehicle mobility this is often undesirable. Therefore
it is important to find a balanced armor system, that gives sufficient protection without being too
heavy. In practice, to keep the ceramic from falling apart when damaged, it is often covered by
a composite material such as a glass-fiber composite. The role of the ballistic fiber backing is
to absorb kinetic energy and prevent both the deformed projectile and ceramic fragments from
perforating the armor. In order to understand how to improve ballistic protection it is essential to
increase our understanding of the mechanisms governing the contact and fracture dynamics during
ballistic loading.

A long term goal at the Norwegian Defense Research Establishment (FFI) is to develop a model
that can capture the essential physics governing ballistic impact on an armor system. Of particular
importance is the development of a multi-scale material model that can describe ceramics. A
well-behaved ceramic model is of importance for the military and the defense sector, because it
enables a calculation that can predict whether a ceramic can defeat or will be defeated by a particular
projectile. In principle, the establishment of a high quality material model may supplement and
allow for a reduced number of necessary experiments on particular protection equipment. This
may be beneficial as experiments on protection equipment can be expensive, time consuming,
and in many cases the protection system is difficult to acquire in sufficient quantities to perform a
decent statistical analysis. Furthermore, a detailed calculation can in many cases provide relevant
information about underlying mechanisms that are hard to measure directly.

The report is divided into two parts. In part I, we provide a detailed reference of the physics
involved in ballistic impact. In addition, based on fundamental physical principles we rederive and
evaluate several analytical models which in principle can be used to describe and predict structural
failure in ceramic plates. In the future, we believe the analytical models can form the basis for a new
material model of ceramics. In part II, we use the finite element code IMPETUS Afea to evaluate a
more detailed numerical model. Both the analytical and numerical model produce crack patterns
that are consistent with experiments.
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2 Experimental crack patterns
In Fig. 2.1 we show various characteristic crack patterns that can be observed in ballistic experiments.
In this case, shots were fired at two targets: a bare alumina tile and an alumina tile with a glass-fiber
cover. The images show both the front side, back side, and a cross section of the alumina tile after
ballistic impact. From the images we observe the following cracks:

• There are both primary and minor cone cracks propagating through the tile, at an angle
relative to the front and back sides. On the front and back sides the cone crack manifests as
ring cracks. Note that for lower velocities (175 m/s in the examples shown) the cone crack is
not able to completely propagate through the tile.

• Radial cracks appear on both the front and back of the ceramic, and are typically initiated
at the point of impact (and directly below on the back side). The radial cracks propagate
relatively long distances, and in straight lines that are parallel to the front and back side.

• Directly below the point of impact, and straight through the tile, a median crack appears. The
median crack is approximately orthogonal to the tiles back side and front side.

• The horizontal cracks which connect the median cracks to the primary and minor cones are
called lateral cracks. The lateral cracks often horizontally split the cone, typically into two
(or three) large pieces.

• Directly below the point of impact a so-called plastic zone is formed close to the surface of
the tile. In the plastic zone the load is severe and the material exhibits crushing, microcracks,
and several other complicated plastic deformation modes.

To be specific, the goal of this report is to understand why these cracking modes appear, review
simple mathematical theories which correctly predicts the observed crack patterns, and perform
numerical simulations which generate the crack pattern. For additional background information, we
refer to the following literature review and related articles [1, 2, 3].
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Figure 2.1 An overview of the crack patterns observed in typical experiments. The figure is
adapted from [2].
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PART I

Overview of analytical models
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3 Development of the linear theory
Under standard conditions, ceramics, glass, and concrete are classified as brittle materials. Brittle
materials are typically very hard, but are prone to suddenly fail under loading with little deformation.
On the other hand, metals, such as steel and aluminum, are classified as ductile materials. A loaded
ductile material can be deformed significantly before it breaks, making it possible to shape and
form. The differences between the loading history of a brittle and ductile material are summarized
graphically in the stress-strain diagrams of Fig. 3.1. The crucial technical point is that, in contrast to
ductile materials, the brittle materials exhibit mostly linear behavior and fails while the deformation
is still close to being elastic. The linearity enables the use of semi-analytical models to predict
failure in ceramics. In broad terms, the dynamic ballistic impact problem is modeled as a quasistatic
process and closely follows the theory of Hertzian contact [4]. A review of the application of the
Hertzian contact theory to ceramics can be found in [5]. In the civil sciences, a similar linear model
is under development for laminated glass; a material which also behaves in a brittle manner [6, 7, 8].
The Hertzian contact theory can be extended by adding plasticity corrections in the far field limit.

Figure 3.1 A comparison between the general behavior of brittle and ductile materials.

3.1 Hertzian quasistatic contact theory and induced stress

Our discussion is based on Hertz’s [4] and Huber’s [9] work. Both authors consider the situation
where an isotropic elastic sphere of radius 𝑅 is quasistatically pressed with a force 𝑃 into an
isotropic elastic semi-infinite half space. Due to the rotational symmetry the solution is simplest in
a cylindrical coordinate system. We assume that the z-axis is perpendicular to the semi-infinite half
space. The geometry is displayed in Fig. 3.2. The complete solution was historically obtained in
two steps. First, Hertz obtained the stress and displacement solutions at the surface. Second, Huber
extended the solution and determined the induced stresses inside of the semi-infinite half space.
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Figure 3.2 Overview over the geometry, where an elastic sphere is pressed into an elastic
half space.

3.1.1 Hertz’s and Huber’s solutions

The process is assumed to be quasistatic so the static equilibrium equations hold,
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(3.1)

where we neglect body forces such as gravity whose only contribution is a small hydrostatic stress.
In addition, the following boundary conditions must be satisfied:

1. Infinitely away from the point of contact the displacements are zero.
2. Friction is ignored, so at the surface 𝑧 = 0 the shear stresses are zero.
3. The contact area is circular with an as of yet undetermined radius 𝑎. Outside (inside) the

contact area the pressure is zero (positive).
4. The surfaces do not penetrate into each other. Instead they deform elastically, giving rise to a

corresponding boundary condition.
In the original publication Hertz solves Eq. (3.1) with the appropriate boundary conditions by

using analogies from his work on electrostatics. Simply put he introduces two separate potentials
which satisfy the Laplace and Poisson equation respectively. These equations are special because in
electrostatics their solution is completely specified by the boundary conditions. The difficulty of the
problem lies in correctly implementing the 4th boundary condition regarding impenetrability. Hertz
overcomes this problem by proposing an ansatz for the contact pressure of the form

𝑝 =

{
𝑝0

√︁
1 − (𝑟/𝑎)2, 𝑟 < 𝑎,

0, 𝑟 > 𝑎,
(3.2)
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which, by using Hooke’s law, turns out to produce the correct contact surface. Here the mean
pressure over the contact area is 𝑝0 = 𝑃/𝜋𝑎2. The system of equations are then solved by standard
methods, and we refer to the original articles for the solution procedure.

As mentioned Huber extended the analysis and determined the induced stress distribution
throughout the entirety of the semi-infinite half space. The stress-tensor component’s explicit form
is given in App. A, where we also provide the solution for different indenter geometries. The surface
stress distribution obtained by Hertz are obtained by taking the limit 𝑧 → 0. The displacements
follow from Hooke’s law. At the contact surface, inside of the circular contact area the stresses are
primarily compressive. At the perimeter of the circular contact area the stresses changes sign and
becomes tensile. The largest tensile stress occurs on the perimeter of the contact circle and is given
by

𝜎max =
1
2
(1 − 2𝜈) 𝑝0. (3.3)

Since the largest tensile stress occurs on the surface at the perimeter of the contact area, this is
where we expect the cone crack to show up.

3.1.2 The impenetrability boundary condition

We will briefly comment on the impenetrability boundary condition, as it allows us to determine
analytical expressions for the contact radius, indentation, and maximum pressure without diving to
deep into the technical details. We consider the situation in Fig. 3.3 where a sphere is pressed into
a semi-infinite half space. In the figure, we define the indentation and displacements of the sphere
and half space as (𝛿1, 𝑢1) and (𝛿2, 𝑢2) respectively. The undeformed sphere is described to lowest
order by the parabola 𝑟2/2𝑅. The impenetrability boundary condition takes the form,

Figure 3.3 The detailed deformation of a sphere and elastic half space when pressed together.
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𝛿1 + 𝛿2 =
𝑟2

2𝑅
+ 𝑢1(𝑟) + 𝑢2(𝑟), inside the contact area.

𝛿1 + 𝛿2 >
𝑟2

2𝑅
+ 𝑢1(𝑟) + 𝑢2(𝑟), outside the contact area.

(3.4)

For convenience we define the total indentation as 𝛿 = 𝛿1 + 𝛿2. The contact pressure in Eq. (3.2)
produces the displacements

𝑢1,2 =
1 − 𝜈2

1,2

𝐸∗
𝜋𝑝0
4𝑎

(
2𝑎2 − 𝑟2

)
, 𝑟 < 𝑎. (3.5)

The constant 𝐸∗ is called the effective elastic contact coefficient and takes the form

1
𝐸∗ =

1 − 𝜈2
1

𝐸1
+

1 − 𝜈2
2

𝐸2
. (3.6)

Here {𝜈1, 𝐸1} and {𝜈2, 𝐸2} refer to the Poisson ratio and Young modulus of the indenter (sphere)
and semi-infinite half space (ceramic) respectively. In addition, the total load becomes

𝑃 =

∫ 𝑎

0
𝑝(𝑟)2𝜋𝑟d𝑟 = 2

3
𝑝0𝜋𝑎

2. (3.7)

By inserting Eq. (3.5) into Eq. (3.4) we find the contact radius

𝑎 =

(
3𝑃𝑅
4𝐸∗

)1/3
, (3.8)

and the indentation

𝛿 =
𝑎2

𝑅
=

(
9𝑃2

16𝑅𝐸∗2

)1/3
. (3.9)

Using Eqs. (3.7) and (3.8) the maximum pressure takes the form

𝑝0 =
3𝑃

2𝜋𝑎2 =

(
6𝑃𝐸∗2

𝜋3𝑅2

)1/3
. (3.10)

The expressions above are useful because the geometric properties of the problem are given as
functions of the external load.

Since both the indenter and half-space are elastic materials one might expect the relationship
between the force and indentation to be linear 𝑃 ∼ 𝛿, similar to the restoring force for a harmonic
oscillator. Yet, note that Eq. (3.9) can be rewritten to the form 𝑃 ∼ 𝛿3/2, where the exponent
represents a deviation from the harmonic oscillator. We can understand this explicitly by modeling
the elastic half space as a set of uncoupled springs, all with the same spring constant, see Fig.
3.4. In the literature, this particular discretization is known as Winkler’s elastic foundation model
[10]. Note that for a spherical indenter each spring is compressed by a different amount, causing
a non-uniform contact pressure. If all of the springs where compressed by the same amount the
system would be well described by a single harmonic oscillator. Thus it is the non-trivial geometry
of the contact surface which causes the peculiar exponent 3/2.
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Figure 3.4 A comparison between Hertz’s continuum and Winkler’s elastic foundation model.
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3.1.3 Direction of the cone crack

We will now discuss the relationship between the stress tensor and the direction of the induced
cone crack [11]. The direction of the cone crack can be obtained by studying the principal values
(eigenvalues) and the corresponding principal directions (eigenvectors),

𝜎1 =
1
2

©­«(𝜎𝑟𝑟 + 𝜎𝑧𝑧) +

√︄[
1
2
(𝜎𝑟𝑟 − 𝜎𝑧𝑧)

]2
+ 𝜏2

𝑟 𝑧
ª®¬ , 𝑉1 = (cos 𝜙∗, 0, sin 𝜙∗) ,

𝜎2 = 𝜎𝜃 𝜃 , 𝑉2 = (0, 1, 0) ,

𝜎3 =
1
2

©­«(𝜎𝑟𝑟 + 𝜎𝑧𝑧) −

√︄[
1
2
(𝜎𝑟𝑟 − 𝜎𝑧𝑧)

]2
+ 𝜏2

𝑟 𝑧
ª®¬ , 𝑉3 = (− sin 𝜙∗, 0, cos 𝜙∗) .

(3.11)

The angle 𝜙∗ is given by
tan 2𝜙∗ =

2𝜏𝑟 𝑧
𝜎𝑟𝑟 − 𝜎𝑧𝑧

. (3.12)

The principal values and directions were obtained by diagonalizing the Cauchy stress tensor as
shown in App. A.3. Note that 𝜎1, is always greater than both 𝜎2 and 𝜎3, making it the most
important contribution to crack formation.

In Fig. 3.5 we have plotted 𝜎1 as a function of position in a plane through the axis of symmetry.
The stress and position are normalized with respect to the mean pressure 𝑝0 and contact radius 𝑎
respectively. Directly below the region of contact there is a circular region where 𝜎1 is compressive
(𝜎1 < 0). Outside of this region 𝜎1 is tensile (𝜎1 > 0), and the numerical value decreases with
increasing distance from the surface. At the perimeter of the contact surface 𝜎1 takes its most tensile
value 𝜎1(𝑟 = 𝑎, 𝑧 = 0) = 𝜎max. In the compressive region the material is squashed together and may
become crushed, and in the tensile region the material is being torn apart and may begin to crack.

In Fig. 3.5, the dashed lines represent the 𝑉3 directions at each point. Note that the stresses
𝜎1, 𝜎2, and 𝜎3 are distinct and therefore have orthogonal eigenvectors 𝑉1, 𝑉2, and 𝑉3. If 𝜎1 pulls
the material in the ±𝑉1 direction a crack may begin to form in the 𝑉3 or 𝑉2 direction. Thus as
an approximation we conclude that the cracking proceeds orthogonally to 𝑉1. The crack path is
therefore determined by the trajectories (𝑉2 and 𝑉3) of the two other principal stresses. We would
expect the cone crack to initiate at the point where 𝜎1 is the largest, namely at the circle of contact.
The crack will simultaneously propagate around the symmetry axis (following the 𝑉2 trajectory) and
away (following the 𝑉3 trajectory) from the free surface. The net result is the primary cone crack.

In practice the Hertzian contact theory is accurate, and has withstood the test of time. Historically,
the theory was first applied to silicate glass (𝜈 = 0.25) as their transparency makes it easier to
measure the cracks with primitive equipment. The theory predicts that the cone crack initiates at
the perimeter of the contact circle 𝑟 = 𝑎. In practice, the cone crack typically initiates right outside
the contact circle, on average in the regime 𝑟 = 1.12𝑎 or 𝑟 = 1.19𝑎. The measured cone angle
of ≈ 68.5◦ is also very close to the theoretical value of ≈ 68◦. There are however documented
cases where the correspondence is worse [12]. The remaining discrepancies between theory and
experiment can typically be explained by the following reasons:

• The theory does not take into account that the cracks modify the stress distribution within the
sample.

• The experimental samples may contain inhomogeneity or anisotropies, for example in the
form of defects.
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• The onset of plasticity in certain regimes introduces new aspects that the elastic contact
theory does not take into account.

• An imperfect interface (contact friction, surface defects) may induce additional shear stresses
and thereby change the boundary condition.

Figure 3.5 Maximum principal stress 𝜎1 as a function of position in the semi-infinite half
space. The dashed lines are the 𝜎3 trajectories generated by 𝑉3, and they indicate
the direction of crack propagation.
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3.2 Hertzian dynamic impact theory

We have just considered the quasistatic loading of a ceramic plate. In terminal ballistics the load that
the projectile exerts on the ceramic plate is dynamic. The primary difference between the ballistic
and quasistatic case is that in the former the load is time dependent, and there are propagating stress
(shock)waves. First we present the aspects of the theory, the discussion is based on [13]. Finally,
we comment on the assumptions for the theory to be valid.

3.2.1 The quasistatic impact problem

We here consider the elastic regime, where both the sphere and half space is elastic. As derived in
Sec. 3.1.2 the relationship between the load 𝑃 and indentation 𝛿𝑧 is

𝑃(𝑡) = 4
3
𝐸∗

√︃
𝑅𝛿3

𝑧 ≡ 𝐾𝛿3/2
𝑧 (𝑡), (3.13)

where 𝑅 is the projectile radius, and 1/𝐸∗ = (1 − 𝜈2
1)/𝐸1 + (1 − 𝜈2

2)/𝐸2. Newton’s second law at
the contact interface describes the time evolution of the indentation

𝑚
d2𝛿𝑧

d𝑡2
= −𝐾𝛿3/2

𝑧 , (3.14)

where 𝑚 is the projectile mass. The second and first integral with respect to 𝛿𝑧 provides the
compression-time curve

𝑡 =
𝛿∗𝑧
𝑉𝑧

∫ d(𝛿𝑧/𝛿∗𝑧)√︁
1 − (𝛿𝑧/𝛿∗𝑧)5/2

, (3.15)

and the maximum compression

𝛿∗𝑧 =

(
5𝑚𝑉2

𝑧

4𝐾

)2/5

=

(
15𝑚𝑉2

𝑧

16𝑅1/2𝐸∗

)2/5

, (3.16)

respectively. Here the projectile’s impact velocity is given by 𝑉𝑧 = (d𝛿𝑧/d𝑡)𝑡=0. The compression
time curve is shown in Fig. 3.6.

Figure 3.6 Variation of the compression 𝛿𝑧 and force 𝑃 with time during Hertzian impact.
The dashed line represents the function sin(𝜋𝑡/2𝑡∗). The figure is adapted from
[13].
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During the contact, the indentation will first grow to its maximum value as the load increases
and then decrease to zero during the unloading phase. Thus from Eq. (3.15) we can obtain the
contact time between the sphere and half-space as

𝑇𝐶 = 2𝑡∗ = 2
𝛿∗𝑧
𝑉𝑧

∫ 1

0

d(𝛿𝑧/𝛿∗𝑧)√︁
1 − (𝛿𝑧/𝛿∗𝑧)5/2

≈ 2.94
𝛿∗𝑧
𝑉𝑧
. (3.17)

Here 𝑡∗(= 𝑇𝐶/2) is the time at which the load, radius, and indentation take their maximum values.
In the elastic regime the ballistic problem can be modeled as a time dependent load according

to Eq. (3.13). The time dependence of the contact radius is given by Eq. (3.8). The time evolution
is described by the compression-time curve in Eq. (3.15). At each time step the stress within the
half space is given by the corresponding equilibrium Cauchy stress tensor in Eq. (A.8). Note that in
the elastic theory the stresses vanish immediately when the load is removed, so the cracking which
occurs in the unloading phase is not captured by the theory.

3.2.2 Criteria of validity

The first assumption in the quasistatic theory is that the load changes ”slowly”. This is necessary so
that the system will have time to adjust to equilibrium each time the load changes. The assumption
is expected to be valid if the projectile velocity (≈ 100 − 850 m/s) is low compared to the speed of
sound in the ceramic (≈ 10000 m/s). Due to the ceramic’s high speed of sound this criteria is in
practice satisfied.

The second assumption is that we can ignore contributions due to stress wave reflections. The
stress wave that initiates at the point of impact will propagate both into the ceramic and also the
projectile. Since the ceramic is much heavier than the projectile the pressure wave is often reflected
back and forth within both materials many times, before the projectile looses contact with the
ceramic. The net effect of many consecutive reflections, is an averaging process such that the stress
can be decomposed into a sum of one large average stress field with small perturbations on top. The
average stress field is then given by the Hertzian impact theory, and we can neglect the perturbation.

We can make the criteria for ignoring stress waves mathematically more specific. The contact
time 𝑇𝐶 is given by Eq. (3.17). We introduce the wave time 𝑇𝜆 = 𝐿/𝑐0 , which is the time it takes
for a wave to propagate through either the ceramic or sphere. Here 𝐿 = 2𝑅 for the sphere (radius 𝑅)
and 𝐿 = 𝑑 for the ceramic (thickness 𝑑). The longitudinal speed of sound is defined as 𝑐0 =

√︁
𝐸/𝜌.

The ratio between the wave time and contact time then takes the form

𝑇𝜆

𝑇𝐶
≈ 0.2

𝐿

𝑅

(
𝑉𝑧

𝑐0

)1/5
(3.18)

which should be less than unity for the Hertzian theory to be valid. For impacts in the regime
100 − 850 m/s we obtain

𝑇𝜆

𝑇𝐶
≈ 𝐿

𝑅
(0.07, 0.12) ceramic,

𝑇𝜆

𝑇𝐶
≈ 𝐿

𝑅
(0.09, 0.14) sphere,

(3.19)

so the approximation seems reasonable.
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4 Extension to the nonlinear regime
The Hertzian contact theory allows us to understand the formation of cone cracks, yet it does
not explain the other types of cracks that occur. An overview of the possible cracks in ballistic
experiments were given earlier, see Fig. 2.1. In addition, the elastic theory is unable to describe the
unloading phase were the projectile loses contact with the ceramic.

4.1 Yoffe’s far-field plasticity theory

The problem of appropriately introducing plasticity into the quasistatic theory has been tackled
analytically by Yoffe [14]. The indenter is assumed to have circular contact area of radius 𝑎, such
that we can exploit axial symmetry. The contact pressure 𝑝 is assumed to be uniform, such that the
loading force is 𝑃 = 𝑝𝜋𝑎2. This is an assumption, since we do not know how the contact pressure
varies across a plastically deformed contact. Numerical calculations indicate that the assumption is
relatively accurate [15]. Nevertheless, the theory certainly captures and describes the underlying
mechanisms producing the different types of cracks.

The total stress field obtained by pressing an indenter into a semi-infinite half space is a sum of
two contributions, one elastic and one plastic. The primary elastic contribution of the indentation
is given by the so-called Boussinesq solution [16], which describes the field produced by a point
load 𝑃 on the flat surface of a semi-infinite half space. The resulting field is long range and
proportional to 1/𝑟2. Note that the elasticity theory is kept to a very simple1 analytic form, so that it
is easy to use herein. The plastic contribution is more complicated. The plastically deformed zone
beneath the indenter has changed shape and volume, but is still attached to the elastic half-space.
Mathematically, the plastic region is treated as a singularity which, in the far field, results in a local
’blister’2 field which decays like 1/𝑟3 [17]. The total solution for an indenter which plastically
deforms the half-space is

𝜎𝑟𝑟 =
𝑃

2𝜋𝑟2 [1 − 2𝜈 − 2(2 − 𝜈) cos 𝜃] + 𝐵

𝑟3 4
[
(5 − 𝜈) cos2 𝜃 − (2 − 𝜈)

]
,

𝜎𝜃 𝜃 =
𝑃

2𝜋𝑟2
(1 − 2𝜈) cos2 𝜃

1 + cos 𝜃
− 𝐵

𝑟3 2(1 − 2𝜈) cos2 𝜃,

𝜎𝜙𝜙 =
𝑃

2𝜋𝑟2 (1 − 2𝜈)
[
cos 𝜃 − 1

1 + cos 𝜃

]
+ 𝐵

𝑟3 2(1 − 2𝜈) (2 − 3 cos2 𝜃),

𝜏𝑟 𝜃 =
𝑃

2𝜋𝑟2 (1 − 2𝜈) sin 𝜃 cos 𝜃
1 + cos 𝜃

+ 𝐵

𝑟3 4(1 + 𝜈) sin 𝜃 cos 𝜃.

(4.1)

In the above, we are using spherical coordinates with 𝑟 =
√︁
𝑥2 + 𝑦2 + 𝑧2, polar angle 𝜃, and azimuthal

angle 𝜙 as shown in Fig. 4.1. The strength 𝐵 of the blister field is dependent on the maximum
applied load, the capability of the half-space to be compacted, and the geometrical shape of the

1In principle, we could have used the complete spherical-indenter solution instead of the Boussinesq solution.
Alternatively, the Boussinesq field can be viewed as an approximation to the spherical-indenter solution in the far-field
limit, 𝑟/𝑎 ≫ 1.

2In the literature, the word blister comes from the shape of the indentation volume.
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impacting projectile. For a material of hardness 𝐻 [N/m2], Young modulus 𝐸 [Pa], and under a
load 𝑃 [N], it follows from dimensional analysis that the strength of the Blister field takes the form

𝐵 = Dimensionless geometrical factor × 𝐸
(
𝑃

𝐻

)3/2
. (4.2)

The dimensionless geometrical factor depends on the geometry of both the indenter and plastically
formed cavity.

We will now demonstrate generally how the Blister field is calculated for an arbitrary indenter.
From Yoffe’s theory the general relationship between the displaced volume and the blister field is
given by

𝑉 𝑓 =
2𝜋𝐵 (1 − 2𝜈)

3𝐺
=

4𝜋 (1 − 2𝜈) (1 + 𝜈) 𝐵
3𝐸

. (4.3)

We here used the isotropy relationship 𝐸 = 2𝐺 (1 + 𝜈) between the shear and Young modulus. The
densification factor 𝑓 takes into account processes that do not conserve the volume in the plastic
zone. The limiting values 𝑓 = 1 and 𝑓 = 0 represents zero and maximal densification respectively.
Next, it is assumed that the displaced volume is equal to the volume of the crater created by the
indenter, which we denote as 𝑉𝑖. For a conical, pyramidal (called Vicker), and spherical indenter
the crater volume is

𝑉cone =
1
3
𝜋𝑎3 cot𝛼, (4.4)

𝑉Vicker =
2
3
𝜋𝑎3 cot𝛼, (4.5)

and

𝑉Spherical =
𝜋

3
𝑅3

{
2 −

[
1 − 𝑎2

𝑅2

]1/2 [
2 + 𝑎2

𝑅2

]}
(4.6)

respectively. The final relation which is required is the relationship between the hardness, load, and
contact area. Generally, this relationship is of the form

𝐻 =
𝑃

𝛼0𝑎2 , (4.7)

where 𝛼0 is a numerical prefactor which depends on the contact area’s shape. For a rectangular
area produced by a Vicker indenter 𝛼0 = 2. For a circular contact area (e.g. conical indenter or
sphere) 𝛼0 = 𝜋. By combining the above three relations we obtain the strength of the Blister field.
The simplest expressions are for a cone with angle 68◦ and a Vicker indenter pressed into glass
(𝜈 = 0.25), which takes the forms

𝐵Cone = 0.029 𝑓 𝐸
(
𝑃

𝐻

)3/2
(4.8)

and

𝐵Vicker = 0.026 𝑓 𝐸
(
𝑃

𝐻

)3/2
(4.9)

respectively. The expression for a spherical indenter is

𝐵Sphere =
2𝐸 𝑓

5
𝜋𝑅3

{
2 −

(
1 − 𝑃

𝜋𝑅2𝐻

)1/2 (
2 + 𝑃

𝜋𝑅2𝐻

)}
. (4.10)
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The method outlined here can in principle be used to determine the blister field strength for an
indenter of arbitrary shape. Examples for Vicker, conical, and spherical indenters are given in
[15, 18, 19, 20]

In Yoffe’s model it is assumed that the plasticity is present from the start, without the description
of a formation process. Hence, the Blister field does not depend on the yield strength 𝑌 . However,
by comparing the stresses between Yoffe’s model and a cavity expansion model it is found that the
models are equivalent if the blister field satisfies the relation

𝐵 =
2𝑌𝑐3

3
. (4.11)

Here 𝑐 is the plasticity radius. In the cavity expansion model there are three regions of interest:
the cavity zone 𝑟 < 𝑎, the plastic zone 𝑎 < 𝑟 < 𝑐, and the elastic zone 𝑟 > 𝑐. The correspondence
between Yoffe’s theory and the cavity expansion model is discussed further in [21, 22].

4.2 Cracking mechanisms

We will now discuss how Eq. (4.1) accounts for the various possible cracks. Because there are
many possible crack variations, it will be messy and perhaps confusing to plot all the vector fields as
we did for the Hertzian contact theory. Instead we will consider the stresses at the surface 𝜃 = 𝜋/2,
and along the symmetry axis 𝜃 = 0. For convenience, we set 𝜈 = 1/4. The plastic zone forms just
below the indenter and takes a hemispherical form. The stresses in the half-space are larger for
small values of 𝑟 , so we expect the cracks to initiate close to the plastic zone.

We first consider the stress field in the absence of plasticity, with 𝐵 = 0. The highest tensile
stress is 𝜎𝑟𝑟 (𝜃 = 𝜋/2) = 𝑃/4𝜋𝑟2 and occurs at the surface. The radial surface stress attempts
to form surface ring cracks, which develop into a cone crack upon increased loading. The cone
formation occurs close to the circle of contact where the radial tensile stress is the largest.

We will now gradually turn on 𝐵 to a small positive value. The radial surface stress and
axial polar stress changes by 𝜎𝑟𝑟 (𝜃 = 𝜋/2) = 𝑃/4𝜋𝑟2 − 7𝐵/𝑟3 and 𝜎𝜃 𝜃 (𝜃 = 0) = 𝑃/8𝜋𝑟2 − 𝐵/𝑟3

respectively. The axial polar stress 𝜎𝜃 𝜃 decays slower with 𝐵 than the radial surface stress 𝜎𝑟𝑟 . At
some point the axial polar stress becomes larger than the radial surface stress. When this happens
the median crack appears instead of the ring and cone crack.

If 𝐵 continues to increase the axial polar stress 𝜎𝜃 𝜃 (𝜃 = 0) will eventually become so small
that the median crack becomes suppressed. Yet, the surface azimuthal stress 𝜎𝜙𝜙 (𝜃 = 𝜋/2) =
−𝑃/4𝜋𝑟2 + 2𝐵/𝑟3 increases and eventually changes sign to become tensile, leading to the onset of
radial surface cracks.

When the load is removed 𝑃 → 0 and 𝐵 remains constant. The axial radial stress 𝜎𝑟𝑟 (𝜃 =

0) = −3𝑃/2𝜋𝑟2 + 12𝐵/𝑟3 becomes tensile upon unloading, and forms a lateral crack below the
indentation which is parallel to the surface. During unloading, the axial polar and azimuthal stresses
are both compressive. The surface azimuthal stress 𝜎𝜙𝜙 (𝜃 = 𝜋/2) = −𝑃/4𝜋𝑟2 + 2𝐵/𝑟3 becomes
tensile, potentially forming new surface radial cracks. During the unloading phase, there is also a
tendency of the existing median crack to propagate towards the surface.

In the above analysis it is clear that there is a connection between the type of crack and
component of the stress tensor. To summarize we can draw the following conclusions:

• The surface ring cracks and cone are created by a tensile surface radial stress𝜎𝑟𝑟 (𝜃 = 𝜋/2) > 0
• The surface radial cracks are created by a tensile surface azimuthal stress 𝜎𝜙𝜙 (𝜃 = 𝜋/2) > 0
• The interior median crack is created by a tensile axial polar stress 𝜎𝜃 𝜃 (𝜃 = 0)
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• The interior lateral cracks are created by a tensile axial radial stress 𝜎𝑟𝑟 (𝜃 = 0) > 0
The relationship between a specific cracking mode and the corresponding stress-tensor component
are graphically summarized in Fig. 4.1. All of the cracks occurring in a ballistic experiments, as
shown in Fig. 2.1, are captured. Importantly, the analytical theory can also be used to understand
how specific cracks can be mitigated by explicitly reducing specific components of the stress
tensor through appropriate boundary conditions. For instance the theory predicts that a horizontal
confinement pressure should reduce the cone, median, and radial cracks. Similarly, a vertical
confinement pressure should reduce the lateral cracking. Improved ballistic protection through
confinement has been experimentally verified [23, 24, 25, 26].
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Figure 4.1 An overview of the crack patterns predicted by Yoffe’s theory, depending on the
load 𝑃 and degree of plasticity 𝐵.
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4.3 Application to ballistics

In the quasistatic approximation, the crack growth in a terminal ballistic problem can be viewed in
three steps.

1. At the point of impact, there is zero plasticity (𝐵 = 0) and the load (𝑃) gradually increases.
A surface ring crack is produced which gradually develops into a propagating cone crack.

2. Eventually, plasticity occurs so that 𝐵 increases. For small plasticity, a median crack is
formed. With increasing plasticity we expect radial surface cracks to emerge.

3. The unloading phase is characterized by 𝑃 → 0 and 𝐵 = constant. We expect the median
crack to grow, and potentially new radial cracks to form on the surface.

The above applies to the case where the ceramic thickness is much larger than the projectile
length. In reality this is never the case. Instead, at the point of impact, a compressive spherical
shockwave that propagates in the ceramic is formed. When the shockwave reaches the opposite
side, it is reflected as either a tensile or compressive wave depending on the boundary conditions.
Concretely, if the ceramic is without backing a tensile wave is produced leading to additional
cracking on the back surface. Since, the shockwave is spherical it seems more likely that the
additional cracks will be radial. If the ceramic is backed the reflected shockwave is compressive,
and we do expect the cracks to be suppressed. Even without shockwave effects, we emphasize that
the theory in its current form has effectively captured all of the experimental cracks in Fig. 2.1.
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5 Advantages, limitations, and possible applications
In the previous sections we have reviewed a semi-analytical model to describe when a ceramic will
fail during ballistic impact. In this section we summarize the advantages and disadvantages of the
model.

The primary advantage of the semi-analytical model is that it is relatively simple to use and run
when compared with more technical finite element models. The semi-analytical model is based on
sound physical principles, with minimal need for experimental calibration of constitutive material
models. We have demonstrated that the Hertzian contact theory gives an explicit expression for the
cone crack trajectory, and that the Yoffe plasticity theory can be used to describe secondary cracks
such as median, radial, and lateral cracks. Historically, the theoretical trajectory (and angles) of the
cone crack has been shown to agree well with the experimental cone crack emerging in transparent
silicate glass. In contrast, there are a limited number of experiments on the crack propagation in
ceramics in the open literature, presumably because of its role in ballistic protection. Hence, a
direct comparison between the analytical model and relevant experiments is hard to perform with
confidence.

One disadvantage is that the material strength is independent of the sustained damage, i.e. as
the damage increases the material stays just as strong. Strictly speaking, the calculations presented
herein is only valid for semi-infinite systems. In real ceramic plates, used in ballistic protection,
finite size effects occur because: i) the ceramic is usually thin and ii) the projectile may hit the target
close to an edge. In principle, mechanical finite size effects can be incorporated into the model by
including appropriate boundary conditions at the edges and surfaces of the plate.

The primary disadvantage of the model is that dynamic effects, particularly the various shock
waves, are neglected. In a material subjected to a sudden load three different shock waves emerges
as shown in Fig. 5.1: the pressure waves (P-waves), the shear waves (S-waves), and Rayleigh waves
(R-waves). The pressure and shear waves are spherical and travels in the bulk of the material,

Figure 5.1 Overview over the three types of shock waves emerging in a material subjected to
a step-function load. The figure is adapted from [13].

while the Rayleigh waves are circular and propagate on the surface of the material. Consequently,
the pressure and shear waves decay like 1/𝑟2, and the Rayleigh waves as 1/𝑟. The situation is
further complicated by shock wave reflections from the ceramic edges in a way that depends on the
boundary conditions, for instance through the type of backing material. Experience indicates that
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the dynamic effects primarily causes a median crack on the backside of the ceramic, while the cone
crack is relatively unaffected.

In summary, we have here reviewed an analytical model which is capable of capturing all of the
relevant crack patterns, but lack a description of dynamic shockwave effects. We do not expect
the shockwave dynamics to significantly change the behavior of the cone crack, but it may affect
other minor crack modes. In its current form, the model can be used to predict simplified crack
patterns in the regime where dynamic effects are negligible. In the future the analytical model
may be expanded into a fully fledged ceramic material model for implementation in finite element
codes such as Impetus, LS-Dyna or Abaqus. Alternatively the analytical model can be used in finite
element codes as a simplified loading history, which the code will use to predict crack formation
and propagation.
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PART II

Finite element model
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6 Motivation for finite element simulations
In part I we discussed a simple semi-analytical model for crack prediction in thick ceramic plates.
The model assumes that the load and response can be described primarily by linear theory with
possible extensions to plasticity. In part II we use a finite element approach to describe the cracking
of a ceramic plate subjected to impact by a spherical steel projectile. The advantages of the finite
element approach compared to the semi-analytical model, is that we are able to incorporate dynamic
effects, as well as capturing nonlinear phenomena such as plasticity, and load-dependent material
strength. However, the physics can only be described accurately if the materials are being modeled
with appropriate material models, and at the same time the associated material parameters are
correct. Conversely, there are two things which may go wrong: i) the material model is incorrect
(and hence the parameters are irrelevant) and ii) the material model is representative, but the
parameters are wrong. In practice, to ensure high quality material models, the finite element
approach should be supplemented by several relevant experiments preferably performed at different
scales.

Theoretical material models in this work are developed from the experiments in [27]. Concretely,
we will model a steel projectile impacting a tile of alumina ceramic. The steel projectile is modeled
by the Johnson-Cook model. For the ceramic material model we compare the conventional
Johnson-Holmquist-2, to the so-called MMC model. The modeling is performed in the finite
element solver ”IMPETUS Afea” [28], which we in the following will refer to as Impetus.

Impetus is primarily a Finite Element code, used to describe non-linear mechanical problems
where extreme loadings can lead to large deformations. The code was initially developed to model
detonation of buried charges under vehicles, but has later grown to include many other uses. Impetus
has much in common with Autodyn, but is better suited for certain problems. One of the advantages
of Impetus is that it has been explicitly written to run on graphic processing units (GPUs). In many
cases GPUs are able to calculate very much faster than central processing units (CPUs). At FFI
the calculation part of Impetus is run on a dedicated server with a number of GPUs. This gives
considerably larger computing power and speed than Autodyn on a standard PC. Pre- and post
processing of the Impetus simulations are done on a standard PC.
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7 Screening of material models
The material models are used to describe the behavior of different materials under complex loading
conditions. A particularly important notion is that the material model tells us when the material
deforms elastically or plastically. Typically, this is encapsulated in a yield criteria which is generally
defined as

𝜎Equivalent < 𝜎𝑌 , Elastic deformation,
𝜎Equivalent = 𝜎𝑌 , Plastic deformation,

(7.1)

where 𝜎Equivalent and 𝜎𝑌 are the equivalent stress and material’s yield stress respectively. The
equivalent stress is a scalar that represents the amount of stress that a material is under, i.e. the
complex stress tensor 𝝈 is mapped to a simple scalar value 𝜎Equivalent. The yield stress, marks the
transition from elastic to plastic behavior. Concretely, it is the minimum stress at which a solid will
undergo permanent deformation or plastic flow without a significant increase in the load or external
force. The yield stress depends on the loading, but also on how damaged, stretched, or strained
the material has become during the loading process. A fundamental assumption of continuum
mechanics is that the equivalent stress can not be larger than the yield stress. Depending on the
model, during plastic deformation, the yield stress may increase or stay constant as the loading
increases. In any case, the equality 𝜎Equivalent = 𝜎𝑌 is always preserved in the plastic regime.

7.1 Von Mises yield criteria

One particular choice of equivalent stress is the von Mises stress, which we denote as𝜎𝑉 . Concretely,
the von Mises stress 𝜎𝑉 =

√
3𝐽2 is defined in terms of the second invariant of deviatoric stress

𝐽2 = 1
2 𝒔 : 𝒔, where 𝒔 is the deviatoric stress tensor.

The equation 𝜎𝑉 = 𝜎𝑌 defines the so-called material yield surface which, for the von Mises
case, takes the shape of a cylinder in the principal stress coordinate system (𝜎1, 𝜎2, 𝜎3). The radius
of the cylinder is

√︃
2
3𝜎𝑌 . Note that geometrically, since the Yield strength usually varies with e.g.

strain, the radius of the yield surface changes during loading. In finite element codes, the dynamic
behavior of the yield strength 𝜎𝑌 is typically controlled by constitutive relations. Two constitutive
relations that are relevant for this work are the Johnson-Cook model and Johnson-Holmquist model.

7.2 The Johnson-Cook model

In a general finite element description, the Johnson-Cook [29, 30] (JC) model is perhaps the most
common approach to describe the deformation of metals. In the context of terminal ballistics, the
metallic parts of the projectile and target is governed by the JC model. The three key material
responses, encapsulated by the JC model, are strain hardening, strain rate hardening, and thermal
softening. These three ingredients are combined in a multiplicative manner which gives rise to the
explicit form of the JC constitutive model

𝜎𝑌 =

[
𝐴 + 𝐵

(
𝜖
𝑝

eff

)𝑁 ]
︸              ︷︷              ︸

Strain hardening

[1 + 𝐶 ln ¤𝜖]︸        ︷︷        ︸
Strain rate hardening

[
1 − (𝑇𝐻)𝑀

]︸          ︷︷          ︸
Thermal softening

. (7.2)
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Here the physical variables are the von Mises yield stress 𝜎𝑌 , the effective plastic strain 𝜖 𝑝eff, the
effective plastic strain rate ¤𝜖 = ¤𝜖 𝑝eff/ ¤𝜖0, and the homologous temperature 𝑇𝐻 = (𝑇 − 𝑇𝑅) /(𝑇𝑀 − 𝑇𝑅).
Furthermore, ¤𝜖0 and 𝑇𝑅 are the reference strain rate and temperature. The local and melting
temperature is denoted by 𝑇 and 𝑇𝑀 respectively.

Figure 7.1 An illustration of (𝑎) strain hardening, (𝑏) strain rate hardening, and (𝑐) thermal
softening.

To get a better understanding of the behavior of the JC model it is useful to consider how the the
numerical parameters {𝐴, 𝐵, 𝑁}, {𝐶}, and {𝑀} are obtained from experiments. We will assume
that we have performed measurements to obtain three sets of curves as in Fig. 7.1.

To determine {𝐴, 𝐵, 𝑁} we use a single stress-strain curve as shown in Fig. 7.1 (𝑎). The test
was performed at some fixed temperature and strain rate which we choose to be our reference
variables 𝑇𝑅 and 𝜖0. The stress at which the material ceases to behave elastically is the yield stress
𝐴. If we express the JC model as

ln (𝜎𝑌 − 𝐴) = 𝑁 ln 𝜖 + ln 𝐵 (7.3)

and plot the left hand side (LHS) as a function of logarithmic strain ln 𝜖 , then 𝑁 and 𝐵 is found
from the the slope and intercept of the straight-line best fit.

To determine 𝐶 we consider a family of stress-strain curves whose individuals all have the same
temperature 𝑇 = 𝑇𝑅 but different strain rates as shown in Fig. 7.1. (𝑏). We then express the JC
model as

𝜎

𝐴 + 𝐵
(
𝜖
𝑝

eff

)𝑁 = 1 + 𝐶 ln ¤𝜖 (7.4)

and plot the LHS as a function of logarithmic strain rate ln ¤𝜖 . The parameter 𝐶 is then determined
from the straight-line best fit whose intercept is 1.

To determine 𝑀 we consider a family of stress-strain curves whose individuals all have the
same strain rate ¤𝜖 = ¤𝜖0 but different temperatures as shown in Fig. 7.1. (𝑐). By expressing the JC
model as

ln
©­­«1 − 𝜎𝑌

𝐴 + 𝐵
(
𝜖
𝑝

eff

)𝑁 ª®®¬ = 𝑀 ln𝑇 (7.5)

and plotting the LHS as a function of the logarithmic temperature ln𝑇 , the parameter 𝑀 is given as
the slope of the straight-line best fit which passes through the origin.
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The JC model is considered the go-to description for the deformation of metals during high
strain rates. Yet there are at least three limitations. Firstly, the JC model can not describe the necking
mechanism, where the stress decreases with increasing strain. Secondly, since the hardening and
softening effects are included in a multiplicative law the effects are independent and not coupled
to each other. Thirdly, the model is isotropic and can therefore not take into account directional
dependence.

As the metal deforms plastically, it gradually becomes more and more damaged. The damage
accumulation is described by

¤𝐷 =
¤𝜖 𝑝eff
𝜖 𝑓
, (7.6)

where the plastic strain required to fracture is given by

𝜖 𝑓 =

[
𝐷1 + 𝐷2 exp𝐷3

(
𝜎𝑚

𝜎𝑉

)]
︸                          ︷︷                          ︸

Tension softening

[1 + 𝐷4 ln ¤𝜖]︸         ︷︷         ︸
Strain rate hardening

[1 + 𝐷5𝑇𝐻]︸        ︷︷        ︸
Thermal softening

. (7.7)

The expression in the first bracket says that the fracture strain decreases as the hydrostatic tension
𝜎𝑚 increases. The expressions in the second and third bracket represent the effects of strain rate
and temperature respectively.

7.3 Ceramic Johnson-Holmquist 2 model

In the literature, when modeling ceramic behavior under ballistic impact the standard solution is to
use the Johnson-Holmquist 2 (JH2) model3. The JH2 model is a so-called soft plasticity model,
which means that as the material is loaded it eventually becomes damaged and gradually goes from
an intact to a completely damaged state. The yield function for the JH2 model has the form

𝑓 (𝝈, 𝐷) = 𝜎𝑉 (𝝈) − 𝜎𝑌 (𝝈, 𝐷) (7.8)

where 𝜎𝑉 is the von Mises equivalent stress, 𝜎𝑌 is the yield stress, and 𝐷 is a scalar that represents
the amount of damage. In the JH2 model the current yield stress is given as an interpolation between
the intact and completely damaged yield strength curve,

𝜎∗
𝑌 (𝝈, 𝐷) = (1 − 𝐷)𝜎∗

𝑖 (𝝈) + 𝐷𝜎∗
𝑓 (𝝈). (7.9)

The asterisk (∗) indicates that the values are normalized with respect to the equivalent stress at
the Hugoinot elastic limit. Note that when 𝐷 = 0 and 𝐷 = 1 the ceramic is completely intact and
completely damaged respectively.

The yield strength of an intact and completely damaged (fractured) ceramic can be expressed as

𝜎∗
𝑖 (𝝈) = 𝐴

(
𝑇 + 𝑝(𝝈)
𝑃HEL

)𝑛
(1 + 𝐶 ln ¤𝜖) ,

𝜎∗
𝑓 (𝝈) = 𝐵

(
𝑝(𝝈)
𝑃HEL

)𝑚
(1 + 𝐶 ln ¤𝜖) .

(7.10)

3The ”2” represents that the original Johnson-Holmquist model was modified. The modification was necessary
because the transition from an intact to a damaged material was originally treated as discontinuous.
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Here 𝐴, 𝐵, 𝑛, 𝑚, 𝑇 and 𝑃HEL are material properties and ¤𝜖 is the rate of equivalent plastic strain
normalized with respect to the reference rate ¤𝜖0.

The accumulation of damage in the JH2 model is very similar to the JC model. The difference
is that the plastic strain required to fracture is given by

𝜖 𝑓 = 𝐷1 (𝑝∗ + 𝑇∗)𝐷2 (7.11)

in the JH2 model. Here 𝐷1 and 𝐷2 are the damage parameters.
The material pressure is defined through the trace of the stress tensor 𝑝 = −𝜎𝑖𝑖/3, and it obeys

a polynomial equation of state on the form

𝑝 =

{
𝐾1𝜇 + 𝐾2𝜇

2 + 𝐾3𝜇
3 + Δ𝑝 Compression,

𝐾1𝜇 Tension.
(7.12)

The equation of state is independent of the damage model. Here 𝜇 = 𝜌/𝜌0 − 1 is the change in
density during a deformation. The term Δ𝑝 is known as the bulking pressure, and increases as the
material gradually becomes damaged.

The greatest weakness of the JH2 model (and ceramic models in general) is that it contains a lot
of parameters, where only some are measurable. The remaining parameters must be inferred, by
assuming the mathematical model to be true. This has led to that in the literature there are several
different parameter choices for the same material. We have extensively analyzed the literature,
and provide examples of the parameter values for alumina in Tab. 7.1. It is beyond the scope of
this project to determine these parameters from experiment. Therefore we have in the following
relied on parameter choices used in the literature. Arguably the most important reference is the
implementation of the JH2 model in LS-Dyna [31], because it typically serves as a baseline for
parameter choices in other references. For completeness we also include the LS-Dyna parameter
choices for other ceramics than alumina in Tab. 7.2. We emphasize that the uncertainty in parameter
choices makes it possible to tune parameters to better fit a particular set of experimental data, which
leads to loss of generality. In this report we will not attempt parameter tuning, but instead extract
universal features and attempt to qualitatively understand the underlying physics which after all has
the most value in designing new armor systems.
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7.4 Preliminary JH2 simulations

In the following we present simulations of spherical projectile impact upon ceramic tiles. The
simulation setup is inspired by the experimental data provided in [27]. A spherical steel projectile with
velocity 300 m/s and diameter 𝐷 = 6.35 mm, impacts a stationary 101.6 mm × 101.6 mm × 13 mm
alumina tile. Both the projectile and alumina tile is discretized by quadratic hexahedral elements.
The projectile is modeled by a simple Johnson-Cook model with parameters as shown in Tab.
7.3. In the simulations, we have kept the projectile parameters constant, and varied the ceramic
parameters. We have utilized quarter symmetry, i.e. only a quarter of the projectile and ceramic
is modeled. The mesh is refined (level 3) around the point of impact in a cylindrical region with
radius 5𝐷.

Table 7.3 The Johnson-Cook parameters for the spherical projectile.

Parameter Symbol Unit Value
Density 𝜌 kg/m3 7800

Young’s modulus 𝐸 GPa 210
Poisson’s ratio 𝜈 - 0.3

Initial yield strength 𝐴 GPa 2.4824
Hardening parameter 𝐵 GPa 1.4985
Hardening exponent 𝑛 - 0.19
Strain rate hardening 𝐶 - 0.027

Thermal softening exponent 𝑀 - 0.66
Reference temperature 𝑇𝑅 K 293.15
Melting temperature 𝑇𝑀 K 1760.15

Heat capacity 𝐶𝑝
J

kg K 476.97501
Linear Hugoinot slope coefficient 𝑆 - 1.578

Gruneisen gamma Γ - 1.60

As pointed out in Sec. 7.3, there is large uncertainty in the literature parameter choices when
using the JH2 model to simulate alumina. One might expect that the aforementioned parameter
uncertainty arises because the results are relatively independent of a subset of the corresponding
parameters. In the following, we demonstrate that the ceramic behavior is very sensitive on the
choice of JH2 parameters. Our findings explicitly points out that the parameter uncertainty is a
significant unresolved issue when modeling ceramics with the JH2 model. In Fig. 7.2 we have
plotted simulations with the JH2 parameter choices shown in Tab. 7.1. Based on the experiment we
expect to see a clear cone fracture and a couple of radial cracks. Only three (Toussaint, Westerling,
Lundberg) out of six simulations somewhat captures the cone fracture. The radial cracks may
become more distinct by decreasing the element size. In the remaining three (LS-Dyna, Tasdemirci,
Ning) the cone fracture is absent, and the ceramic appears to be too easily shattered. The absence of
the cone might be explained by considering that the corresponding JH2 parameters has been adapted
to experiments which only focus on the penetration process, without including a description of crack
formation. All six simulations share a common issue, namely that the elements eventually become
very inverted. This occurs because when an element becomes completely damaged (𝐷 = 1) the
material model dictates that the element looses its resistance to deformation for negative pressures,
but not for positive pressures. It is possible to partially mask this behavior by introducing geometric
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erosion criteria, but not in a systematic way. The issues pointed out here, in addition to those pointed
out in [2], indicates that it is difficult to tune the JH2 parameters to obtain experimentally consistent
simulations. Therefore we will in the following investigate the new material model (MMC), which
has been developed by the Impetus team as an alternative to the JH2 model.

7.5 The Impetus MMC model

Due to the aforementioned issues with the JH-2 model, the Impetus team has developed an alternative
which is referred to as the MMC model. In this section we provide an overview of how the MMC
model works. Similar to the JH-2 model, the material strength 𝜎𝑌 is described as a function of
pressure by an intact and failed curve.

The intact failure strength is defined by two known points and a cap, a total of four input
parameters, as shown in Fig. 7.3. The point (𝜎𝑐/3, 𝜎𝑐) corresponds to an uniaxial compression
test and (𝑃𝑥 , 𝜎𝑥) is an arbitrary point on the yield strength curve. Explicitly the yield strength is
defined as

𝜎𝑌 =

{
𝑐1𝑃 + 𝑐2, 𝑃 < 𝑃𝑡 ,

𝜎cap
(
1 − 𝑒−𝑐3𝑃+𝑐4

)
, 𝑃 > 𝑃𝑡 ,

(7.13)

where the transition point is given by 𝑃𝑡 = max{𝜎𝑐, 𝑃𝑥}. The parameters 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are
calculated in the solver based on the input {𝜎𝑐, 𝜎𝑥 , 𝑃𝑥 , 𝜎cap}, and are chosen to ensure continuity
at the transition point.

The failed material strength are specified by two parameters 𝛼 and 𝜖fail. The first is known as the
failed-to-intact material strength ratio and is defined as 𝛼 = 𝜎𝑌,Failed/𝜎𝑌,Intact. Note that if 𝛼 = 0
the material is completely broken, and if 𝛼 = 1 the material is indestructable. In addition to the
reduction according to 𝛼, the failed material strength is shifted so that it passes through the origin
such that the hydrostatic tensile strength of the failed material is zero. Similar to the JH-2 model
the current material strength is given as a damage-dependent interpolation between the intact and
failed material strength. The damage parameter is given as 𝐷 = min{1.0, 𝜖𝑝/𝜖fail}. So the amount
of plastic strain 𝜖𝑝 determines the damage of the material, where the element can maximally sustain
a plastic strain of 𝜖fail. Note that if 𝜖fail = 0, the element becomes completely damaged as soon as
plastic strain occurs which is a relevant limit for a brittle material such as ceramics.

There are three possible yield criteria, von Mises (Yield = 0), Rankine (Yield = 1), or an
interpolation (Yield ∈ (0, 1)) between the two. Here ”Yield” refers to a specific Impetus parameter.
We utilize the von Mises criteria, as we do not want to overcomplicate an already complicated
system.

The MMC model is also able to describe bulking, where a damaged material expands in volume
and typically the pressure increases with plastic flow. The maximum bulking strain is set by the
cap on volumetric strain 𝜖𝑣,max. A parameter 𝛽 controls the direction of plastic flow. For 𝛽 = 0
the pressure is constant with plastic flow, and for 𝛽 = 1 the pressure increases with plastic flow.
Bulking is described by 𝛽 > 0 and 𝜖𝑣,max > 0.

To describe strain rate dependency the yield strength is scaled up by a factor

rfac = (1 + ¤𝜖/ ¤𝜖0)𝐶 . (7.14)

Here ¤𝜖0 is the reference strain rate, and 𝐶 is the strain rate exponent. The hydrostatic tensile strength
is scaled by an additional parameter 𝜓.
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Figure 7.2 Crack formation as a function the various JH2 parameters in Tab. 7.2. The
simulations show a spherical projectile (300 m/s) impacting a 101.6 mm ×
101.6 mm × 13 mm alumina plate. We have used quarter symmetry and a
cylindrical mesh-refinement region.
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Figure 7.3 The yield strength as a function of pressure for an intact and damaged ceramic,
in the MMC model.

The damping is modeled through a viscous stress 𝜎𝑣 which is added to the elastic stress. The
viscous stress is proportional to the strain rate ¤𝜖 . The strength of the damping is controlled by the
parameter 𝑑 [Pa s], and the time the damping is active is controlled by the parameter 𝑑dec [s]. For
𝑑dec > 0 the strain rate at time 𝑡 contributes to the viscous stress at 𝑡 + 𝑑dec. For 𝑑dec = 0 the viscous
stress depends only on the instantaneous strain rate. Mathematically, the damping is implemented as

𝜎𝑣 =

{
𝑑

𝑑dec

∫ 𝑡

0 ¤𝜖 (𝜏)𝑒
𝑡−𝜏
𝑑dec d𝜏 𝑑dec > 0,

𝜎𝑣 = 𝑑 · ¤𝜖 (𝑡) 𝑑dec = 0.
(7.15)

In Impetus, the default parameters of the MMC model is calibrated for silicon carbide. The
ceramic of relevance here is alumina. The appropriate parameter values for alumina was extracted
from the experiments performed by Toussaint [27]. Specifically the parameters 𝜌,𝐺 = 𝐸/(2 (1 + 𝜈)),
𝜎𝑥 , and 𝑝𝑥 were updated based on Tab. 1 in Toussaint’s article. The MMC model takes a single
value of shear stress as input instead of the Young’s modulus and the Poisson ratio. For 𝜎𝑐 and
𝜎𝑥 we used the measured uniaxial yield strength and uniaxial tensile strength respectively. The
complete alumina model is given in Tab. 7.4.
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Table 7.4 The MMC parameters for the alumina ceramic, inspired by [27].

Parameter Symbol Unit Value
Density 𝜌 kg/m3 3860

Shear modulus 𝐺 GPa 147.6
Uniaxial compressive strength 𝜎𝑐 GPa 5.75

Arbitrary stress point 𝜎𝑥 GPa 0.26
Arbitrary pressure point 𝑃𝑥 GPa 0.09

Stress cap 𝜎cap GPa 15
Failed-to-intact ratio 𝛼 - 0.6

Maximum plastic strain 𝜖fail - 0
Type of yield surface - - 0 (Mises)

Bulk modulus 𝐾 GPa 234.6
Bulking parameter 𝛽 - 0.0

Cap on volumetric strain of bulking 𝜖𝑣,max - 0
Strain rate parameter 𝐶 - 0.03
Reference strain rate ¤𝜖0 1/s 0.01

Rate dependency of hydrostatic tensile strength 𝜓 - 0
Damping strength 𝑑 Pa s 100

Damping decay coefficient 𝑑dec s 0
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8 Ballistic loading and crack formation in an MMC ceramic
We will here show the results of a preliminary simulation using the MMC model, using the
parameters from Tab. 7.4. The Impetus file can be found in App. B.2. Except for that the ceramic
is now modeled using the MMC model, the simulation setup is exactly the same as in Sec. 7.4. For
convenience we re-state the simulation details here:

• Spherical projectile with impact velocity 300 m/s and diameter 𝐷 = 6.35 mm, described by
the Johnson-Cook model in Tab. 7.3.

• The alumina tile has dimensions 101.6 mm × 101.6 mm × 13 mm and is described by the
MMC model with parameters from Tab. 7.4.

• Both the projectile and alumina are discretized by quadratic hexahedral elements.
• Utilized quarter symmetry, and the mesh is refined (level 3) around the point of impact in a

cylindrical region with radius 5𝐷.
In Fig. 8.1 we plot the damage evolution of the ceramic. Each subfigure also shows the projectile

velocity as a function of time. The order of crack initiation is as follows:
1. The cone crack initiates almost immediately after impact, see Fig. 8.1a.
2. Upon impact a compressive wave traverses the ceramic. At the backside the compressive

wave is reflected as a tensile wave, due to the free boundary condition. Consequently, a
localized plastic zone is created at the backside, directly below the point of impact, see Fig.
8.1b. From the localized plastic zone radial and median cracks are initiated, see Fig. 8.1c.

3. During the unloading phase, where the projectiles velocity changes sign, lateral cracks
(parallel to the top surface) are initiated from the central median crack, see Figs. 8.1e, 8.1f,
8.1g, and 8.1h.

4. The cone crack has propagated throughout the thickness of the ceramic, and a ring crack
on the backside becomes visible. At 𝑡 = 38.5 𝜇s new radial cracks are initiated on the top
surface (not shown in Fig). The radial cracks, which initiated on the back side, have grown
all the way around to the frontside. These features can be seen in Figs. 8.1i and 8.1j.

The order of the crack initiation during the ballistic impact in Fig. 8.1, is remarkably similar to the
crack initiation predicted by the Yoffe plasticity theory in Fig. 4.1. The only difference is that we
did not observe radial cracks on the front surface during the loading phase, but that might change as
the impact velocity is increased.

In Fig. 8.2 we directly compare the JH2 model, the MMC model, and experimental results. The
preliminary simulation suggests that the MMC model outperforms the JH2 model in several ways.
Not only does the crack pattern seem to more closely match the experiments, the MMC elements
does not suffer from distortion as was the case for the JH2 model. Based on these observations, we
choose to proceed with studying the MMC model.
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(a) 𝑡 = 1.002 𝜇s (b) 𝑡 = 2.001 𝜇s

(c) 𝑡 = 3 𝜇s (d) 𝑡 = 5.002 𝜇s

(e) 𝑡 = 6 𝜇s (f) 𝑡 = 7.001 𝜇s

(g) 𝑡 = 8.002 𝜇s (h) 𝑡 = 17.5 𝜇s

(i) 𝑡 = 35 𝜇s (j) 𝑡 = 50 𝜇s

Figure 8.1 The crack development in the MMC ceramic as a function of time.
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Figure 8.2 A comparison between the JH2 model, the MMC model, and experimental results.
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8.1 Damage vs velocity

In the following we will vary the projectile velocity from 10 − 800 m/s for a 13 mm thick MMC
ceramic plate. Our goal is to estimate qualitatively when the characteristic damage mechanisms
occur. Figures 8.3 and 8.4 show a contour plot of the damage as a function of velocity and the
coefficient of restitution respectively. The coefficient of restitution is defined as 𝑒 = 𝑉𝑅/𝑉0, where
𝑉𝑅 is the projectiles rebound velocity and 𝑉0 is its impact velocity. If 𝑒 = 1 the collision is perfectly
elastic, and deviations from unity indicate the onset of plasticity. Strictly speaking, 𝑒 = 1 implies
an elastic collision only if the plate does not move, here this is approximately satisfied since the
projectile’s mass is much smaller than the plate’s mass. The plate’s velocity after impact was
≈ 1.6 m/s when the projectile’s impact velocity was 800 m/s.

For low velocities (𝑉 = 10 & 50 m/s) neither the ceramic or projectile becomes damaged, and
the high coefficient of restitution indicates that the collision is close to being perfectly elastic. As the
velocity increases to 𝑉 = 100 m/s we observe small hints of the beginning of cone formation close
to the surface. However, the primary damage occurs inside of the ceramic, in the form of a median
crack. The median crack is connected to damage contours that take the form of lateral and radial
cracks. Continuing to increase the projectile velocity results in that the cracks increase in severity,
and that the coefficient of restitution decreases. For 𝑉 = 200 m/s, we obtain a complete primary
cone crack, and for 𝑉 = 300 m/s we obtain a secondary cone crack. For even higher velocities
the projectile begins to deform, and eventually the plate becomes bent in addition to experiencing
significant interior damage.
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(a) 𝑉 = 10 m/s (b) 𝑉 = 50 m/s

(c) 𝑉 = 100 m/s (d) 𝑉 = 200 m/s

(e) 𝑉 = 300 m/s (f) 𝑉 = 400 m/s

(g) 𝑉 = 500 m/s (h) 𝑉 = 600 m/s

(i) 𝑉 = 700 m/s (j) 𝑉 = 800 m/s

Figure 8.3 Damage to the MMC ceramic as a function of velocity.
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Figure 8.4 Coefficient of restitution as a function of velocity.

52 FFI-RAPPORT 23/01815



8.2 Symmetry

In Fig. 8.5 we compare the 𝑣 = 300 m/s impact of the MMC ceramic plate for the cases of quarter
and zero symmetry. In the quarter symmetry case (left), the radial cracks initiates close to the
symmetry planes, and one might therefore believe them to be a consequence of the quarter-symmetry
boundary conditions. We explicitly tested this, by performing a calculation without any symmetry
boundary conditions (right). The simulations utilizing quarter and zero symmetry are globally
similar, with only minor differences to secondary cracks. The simulation with and without symmetry
suggests that the application of symmetry boundary conditions does not substantially change the
cracking pattern. Nevertheless, we do advise to use zero (alternatively half) symmetry conditions
in the future to describe projectiles with finite pitch and yaw.
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(a) 𝑡 = 2.001 𝜇s (b) 𝑡 = 2.01 𝜇s

(c) 𝑡 = 5.002 𝜇s (d) 𝑡 = 5.007 𝜇s

(e) 𝑡 = 7.001 𝜇s (f) 𝑡 = 7.008 𝜇s

(g) 𝑡 = 17.5 𝜇s (h) 𝑡 = 17.01 𝜇s

(i) 𝑡 = 50 𝜇s (j) 𝑡 = 50.01 𝜇s

Figure 8.5 Comparing the crack development in the MMC ceramic as a function of time, for
quarter (left) and full (right) symmetry.
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8.3 Ceramic thickness

In Fig. 8.6 we consider a 𝑣 = 300 m/s projectile impacting a 9 mm, 13 mm, and 17 mm thick
MMC ceramic. In the three simulations we have not used any symmetry boundary conditions. As
is reasonable, when the thickness of the plate increases the numerical model predicts that the plate
can sustain more damage, which is particularly evident by the reduction of radial cracks.

(a) 𝑡 = 2.001 𝜇s (b) 𝑡 = 2.01 𝜇s (c) 𝑡 = 2.004 𝜇s

(d) 𝑡 = 5.002 𝜇s (e) 𝑡 = 5.007 𝜇s (f) 𝑡 = 5.002 𝜇s

(g) 𝑡 = 7.003 𝜇s (h) 𝑡 = 7.008 𝜇s (i) 𝑡 = 7.010 𝜇s

(j) 𝑡 = 17.0 𝜇s (k) 𝑡 = 17.01 𝜇s (l) 𝑡 = 17.01 𝜇s

(m) 𝑡 = 50.01 𝜇s (n) 𝑡 = 50.01 𝜇s (o) 𝑡 = 51 𝜇s

Figure 8.6 Comparing the crack development in the MMC ceramic as a function of time, for
a 9 mm (left), 13 mm (middle), and 17 mm (right) thick plate.
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8.4 Isotropy and mesh sensitivity

In Sec. 7 we introduced the two material models (JH2 and MMC) that we have employed in Impetus.
The following analysis applies to both material models, but we will provide examples using MMC
as it is seems to work better than JH2. In Fig. 8.7 we consider a geometry, where the ceramic plate
is divided into linear cubic hexagonal elements. Furthermore, the ceramic plate is partitioned into
cylindrical sub-regions where the mesh is refined. In all cases we observe the usual crack formation:
firstly the cone crack initiates, secondly the quasi-plastic zone, thirdly radial cracking, and finally
lateral cracking. The cone crack appears to be relatively mesh independent, in the sense that the
circular crack on the back of the ceramics plate does not significantly change radius. The resolution
of the lateral cracks inside the cone become better as the refinement increases. However, the radial
cracks appear to be mesh dependent. In a previous FFI publication [2] the same conclusion was
reached by comparing a Cartesian and Polar mesh. In short, the number of radial cracks and their
direction depends on the element size and the mesh symmetries.

To the best of our knowledge, the underlying physical reason for why this occurs and how
it potentially can be avoided was not reported at the time. The most likely mechanism is that
both the material models and mesh (if very fine) are isotropic. Consequently, the radial cracks
have no preferential direction and will form in seemingly arbitrary directions based on small
numerical differences (rounding errors, point of impact, mesh structure, etc.). To obtain a physically
meaningful mesh convergence, one possible solution is to introduce anisotropy in some form.

One physical way of introducing anisotropy is to introduce defects into the ceramic. Such a
solution has been suggested [36] with successful application [37] for the problem of blast loading
on glass windows. At the time of writing, the role defects play in crack formation in ceramics
under ballistic impact is relatively unexplored. The core idea is rather simple. The ceramic plate
is populated by initial damage and defects picked from a statistical distribution. Upon ballistic
loading, the cracks will tend to propagate toward the defects due to the reduced material strength.
An advantage by using defects to introduce anisotropy is that the simulation more closely resembles
a real ceramic plate, which has its own initial damage and defects due to the production process.

An objection to introducing defects might be that it will be impossible to obtain a one-to-one
correspondence between the defects in the simulated and real ceramic plate. This is of course true,
but the introduction of defects will on average mean that the strength of the simulated ceramic
will be reduced and may therefore also affect more global properties such as the cone formation.
Another option is to perform a Monte-Carlo simulation over many disorder configurations to obtain
a statistical distribution of an ”average” real ceramic plate.
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Figure 8.7 Crack formation as a function of increased mesh refinement. The MMC ceramic
is divided into different regions. The regions close to the point of impact has a
high degree of refinement.
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9 Conclusion and outlook
The goal of this report was to investigate the physics describing the processes which determine
whether or not a projectile will defeat a ceramic armor system. In practice there are two (natural) ways
to tackle the problem, either analytically starting from first principles, or numerically by utilizing
well-known and newly developed material models. Herein we have presented an investigation into
both approaches.

The first part of this report consists of a detailed literature study of the simplest phenomena
involved in ballistic impact phenomena. Due to the brittle nature of ceramics, we have primarily
focused on the quasistatic and dynamic Hertzian theory, which applies to elastic materials. We
have also gone beyond, and included non-linear plasticity effects inspired by Yoffe’s seminal work.
The analytical models, in their current form, effectively captures the observed experimental crack
patterns. In addition, the model predicts how the relevant cracks can be mitigated through specific
boundary conditions to create improved armor. We also discuss the advantages and limitations of
the model, the most prominent being that it is unable to capture the relevant shockwave dynamics.
Our review indicates that the analytical models may be suitable as building blocks in the future
development of either a new ceramic material model or a simplified ballistic loading history, which
may be included in relevant finite element codes such as Impetus, LS-Dyna or Abaqus.

In the report’s second part, we investigate commercial solutions to the ballistic impact problem.
All the finite element simulations have been performed in the program Impetus Afea. Conventionally,
the Johnson-Holmquist 2 (JH2) model is the go-to model when describing ceramics. Here, we
explicitly demonstrate that there exists a large range of parameter values in the open literature when
using the JH2 model to describe a single material. This may indicate that the JH2 model suffers
from parameter tuning, where each parameter set only fit one type of experiment. In other words,
there is little consensus (in the open literature) in how to utilize the JH2 model to correctly describe
an alumina ceramic system. With this in mind, the Impetus team has recently developed their own
ceramic model, which they have named the MMC model. Herein we have compared the MMC and
JH2 models, and used the MMC model to describe relevant experiments. In general, we find that
the MMC model outperforms the JH2 model significantly, with regard to describing the cracking
mechanisms of ceramics. Concretely, the MMC model is able to describe the cone, median, lateral,
and radial cracks accurately during both the loading and unloading phase. The cracking processes
are captured, even when varying physical parameters such as the projectile velocity and target
thickness. We have looked into the issues of symmetry boundary conditions, isotropy, and mesh
sensitivity. In general, there are dependencies in the minor cracks, while the cone crack is relatively
unaffected. At this early stage, the artificial numerical crack dependencies are unimportant for the
overall crack picture which we attempt to capture.

In the future we plan to continue the development of the ballistic impact problem through both
approaches presented herein. For the development of the in-house material model the most pressing
issue is to find a way to describe the relevant shock dynamics appropriately. In order to calibrate
the MMC model we need to perform several in-house experiments at different scales to ensure
that we find a more universal parameter set appropriate for alumina. We also aim to eventually be
able to describe the deformation of more realistic projectiles with metallic cores. In this case it is
necessary to perform impact experiments where the material properties of the target is well known,
and the projectile is treated as the unknown.
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A Analytical solutions for the Hertzian stress tensor
In this section we summarize various solutions for the induced stress fields occurring when a load is
applied to a semi-infinite half space. The half space is characterized by a Poisson ratio 𝜈, and that it
behaves elastically. By using the superposition principle the more complex indenter solutions can be
built from the fundamental solutions, the most important being the point contact. The most relevant
indenters for ballistic impact are the cylindrical (flat punch) indenter, the spherical indenter, and the
conical indenter. In all cases the stress tensor is decomposed into a cylindrical polar coordinate
system (𝑟, 𝜃, 𝑧). The z-coordinate points into the semi-infinite plane. A more detailed analysis can
be found in [12].

A.1 Fundamental solutions

In this section we introduce the analytical expression for the stress field induced in a semi-infinite
plane by the simplest types of surface loading. The strength of the loading is 𝑃.

A.1.1 Point contact

The stresses within a solid loaded by a point contact were first calculated by Boussinesq [16]. In
cylindrical polar coordinates the solution is

𝜎𝑟𝑟 =
𝑃

2𝜋

{
(1 − 2𝜈)

[
1
𝑟2 − 𝑧

𝑟2 (
𝑟2 + 𝑧2

)1/2

]
− 3𝑟2𝑧(

𝑟2 + 𝑧2
)5/2

}
𝜎𝜃 𝜃 =

𝑃

2𝜋
(1 − 2𝜈)

{
− 1
𝑟2 + 𝑧

𝑟2 (
𝑟2 + 𝑧2

)1/2 + 𝑧(
𝑟2 + 𝑧2

)3/2

}
𝜎𝑧𝑧 = −3𝑃

2𝜋
𝑧3(

𝑟2 + 𝑧2
)5/2

𝜏𝑟 𝑧 = −3𝑃
2𝜋

𝑟𝑧2(
𝑟2 + 𝑧2

)5/2

(A.1)

A.1.2 Line contact

The stress field induced in the material by a infinite line load was first derived analytically by
Flamant [38]. Due to the symmetry of the problem, the stress field always points radially from the
point of interest to the point of contact. In two-dimensional polar coordinates the induced stress
field is

𝜎𝑟𝑟 = −2𝑃
𝜋

cos 𝜃
𝑟

𝜎𝜃 𝜃 = 𝜏𝑟 𝜃 = 0.
(A.2)

The stress singularity at 𝑟 = 0 is in practice avoided by plastic yielding, which spreads the load over
a small finite area.
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A.2 Practical solutions for indenters

In this section we introduce the analytical expression for the stress field induced in a semi-infinite
plane by indenters of practical interest. The stresses are normalized with respect to the mean contact
pressure 𝑝0 = 𝑃/𝜋𝑎2.

A.2.1 Spherical indenter

The components of the Cauchy stress tensor for the Hertzian contact between a semi-infinite plane
and spherical indenter is

𝜎𝑟𝑟 (𝑟, 𝑧; 𝑎)
𝑝0

=
3
2

{
1 − 2𝜈

3
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𝑟

)2
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√
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]
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)3
𝑎2𝑢
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(A.3)

where

𝑢(𝑟, 𝑧; 𝑎) = 1
2

(
𝑟2 + 𝑧2 − 𝑎2 +

√︃(
𝑟2 + 𝑧2 − 𝑎2)2 + 4𝑎2𝑧2

)
. (A.4)

Finally, note that when evaluating the stress-tensor components at the surface it is often useful to
know the following limit (

𝑧
√
𝑢

)
𝑧=𝑢=0

=

√︃
1 − (𝑟/𝑎)2. (A.5)

A.2.2 Conical indenter

The stress field due to a conical indenter [39] is of interest because, i) it approximates the indenter
used in various hardness test, and ii) it can be used as a model for a sharp projectile. The stress field
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induced in the specimen can be expressed using cylindrical polar coordinates as
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(A.6)

We have here introduced the following auxiliary functions:
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𝐽0

1 + 𝑎
𝑟
(1 − 𝑅 sin 𝜙) − 𝑧

𝑎
𝐽1

1

]
,

𝐽0
1 =

1
2

ln


𝑅2 + 2𝑅

(
1 + 𝑧2/𝑎2)1/2 cos (𝜃 − 𝜙) + 1 + 𝑧2/𝑎2[
𝑧/𝑎 +

(
𝑟2/𝑎2 + 𝑧2/𝑎2)1/2

]2

 ,
𝐽1

1 =
𝑎

𝑟

[(
𝑟2

𝑎2 + 𝑧2

𝑎2

)1/2
− 𝑅 cos 𝜙

]
,

𝐽0
2 =

(
𝑟2

𝑎2 + 𝑧2

𝑎2

)−1/2
− cos 𝜙

𝑅
,

𝐽1
2 =

𝑎

𝑟

[ (
1 + 𝑧2/𝑎2)1/2

𝑅
cos (𝜃 − 𝜙) − 𝑧

𝑎

(
𝑟2

𝑎2 + 𝑧2

𝑎2

)−1/2]
,

tan 2𝜙 = 2
𝑧

𝑎

(
𝑟2

𝑎2 + 𝑧2

𝑎2 − 1
)−1

,

tan 𝜃 =
𝑎

𝑧
,

𝑅 =

[(
𝑟2

𝑎2 + 𝑧2

𝑎2 − 1
)2

+ 4
𝑧2

𝑎2

]1/2

.

A.2.3 Cylindrical (flat punch) indenter

The stress field due to a cylindrical flat punch indenter has been determined analytically several
authors [40, 41, 42]. Inside the specimen the stress distribution in cylindrical polar coordinates is

𝜎𝑟𝑟

𝑝0
= −1

2

{
𝐽0

1 − 𝑧/𝑎𝐽0
2 − (1 − 2𝜈) 𝑎

𝑟
𝐽1

0 + 𝑧
𝑟
𝐽1

1

}
,

𝜎𝜃 𝜃

𝑝0
= −1

2

{
2𝜈𝐽0

1 + (1 − 2𝜈) 𝑎
𝑟
𝐽1

0 − 𝑧

𝑟
𝐽1

1

}
,

𝜎𝑧𝑧

𝑝0
= −1

2

{
𝐽0

1 + 𝑧

𝑎
𝐽0

2

}
,

𝜏𝑟 𝑧

𝑝0
= −1

2
𝑧

𝑎
𝐽1

2 .

(A.7)
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Again, to lighten the notation it is necessary to define the following auxiliary functions:

𝐽1
0 =

𝑎

𝑟

(
1 − 𝑅1/2 sin

𝜙

2

)
,

𝐽0
1 = 𝑅−1/2 sin

𝜙

2
, 𝐽1

1 =

(
1 + 𝑧2

𝑎2

)1/2
𝑎

𝑟
𝑅−1/2 sin

(
𝜃 − 𝜙

2

)
,

𝐽0
2 =

(
1 + 𝑧2

𝑎2

)1/2
𝑅−3/2 sin

(
3𝜙
2

− 𝜃
)
, 𝐽1

2 =
𝑟

𝑎
𝑅−3/2 sin

3𝜙
2
,

tan 𝜙 = 2
𝑧

𝑎

(
𝑟2

𝑎2 + 𝑧2

𝑎2 − 1
)−1

, tan 𝜃 =
𝑎

𝑧
,

𝑅 =

[(
𝑟2

𝑎2 + 𝑧2

𝑎2 − 1
)2

+ 4
𝑧2

𝑎2

]1/2

.

A.3 Diagonalization of the Cauchy stress tensor

Due to the azimuthal symmetry, the Cauchy stress tensor in the substrate becomes particularly
simple in cylindrical coordinates

𝝈 =


𝜎𝑟𝑟 𝜏𝑟 𝑧 0
𝜏𝑟 𝑧 𝜎𝑧𝑧 0
0 0 𝜎𝜃 𝜃

 . (A.8)

The stress tensor is diagonalized by a rotation in the (𝑟, 𝑧)-plane of the form

𝝈′ = 𝑸𝑇𝝈𝑸, (A.9)

with the rotation matrix

𝑸 =


cos 𝜙∗ − sin 𝜙∗ 0
sin 𝜙∗ cos 𝜙∗ 0

0 0 1

 , (A.10)

and rotation angle
tan 2𝜙∗ =

2𝜏𝑟 𝑧
𝜎𝑟𝑟 − 𝜎𝑧𝑧

. (A.11)

The principal stresses (eigenvalues) and corresponding principal directions (eigenvectors) are

𝜎1 =
1
2

©­«(𝜎𝑟𝑟 + 𝜎𝑧𝑧) +

√︄[
1
2
(𝜎𝑟𝑟 − 𝜎𝑧𝑧)

]2
+ 𝜏2

𝑟 𝑧
ª®¬ , 𝑉1 = (cos 𝜙∗, sin 𝜙∗, 0) ,

𝜎2 = 𝜎𝜃 𝜃 , 𝑉2 = (0, 0, 1) ,

𝜎3 =
1
2

©­«(𝜎𝑟𝑟 + 𝜎𝑧𝑧) −

√︄[
1
2
(𝜎𝑟𝑟 − 𝜎𝑧𝑧)

]2
+ 𝜏2

𝑟 𝑧
ª®¬ , 𝑉3 = (− sin 𝜙∗, cos 𝜙∗, 0) .

(A.12)
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B Input files in Impetus

B.1 Characteristic JH2 simulation

• The simulation was run on the IMPETUS Afea Solver (version 7.0.280).
• Used CPU memory: 36635 MB.
• Used GPU memory: 32870 MB.
• Total run time 6h:57m:34s.

*UNIT_SYSTEM
SI
*PARAMETER
%R = 0.003175 #Projectile radius 3.175 mm
%H = 0.013 #Target thickness 13 mm
%L = 0.1016
*TIME
0.0001465
# Projectile
*COMPONENT_SPHERE #component-id 1, part-id 1
"Sphere"
1, 1, 4
0, 0, %R+0.1*%R, %R
*CHANGE_P-ORDER #Make sphere elements higher order
P, 1, 3
*SMOOTH_MESH #Make sphere mesh more smooth
P, 1, 45
*MAT_JC #Steel material, mid = 1, Using eos_gruneisen, damage property??
"Projectile steel material"
1,7800, 210e9, 0.3, , , 1
2.4824e9, 1.4985e9, 0.19, 0.027, 0.66, 293.15, 1760.15, 1
476.97501
*EOS_GRUNEISEN
1, 1.578, 1.60
*PART
"Sphere"
1,1
*INITIAL_VELOCITY
P,1,0,0,-300
# Target material 1
*MAT_JH_CERAMIC #Material id 3
"Alumina plate material"
3, 3860, 90.16e9
2.139, 0.31, 0, 0.6, 0.6, 1, 0.2e9
2.79e9, 1.46e9, 1, 0.0025, 0.5, 130.95e9, 0, 0
2
*COMPONENT_BOX
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"Target plate 1"
3, 3, 68, 68, 5
-%L/2, -%L/2, 0, %L/2, %L/2, -%H
*PART
"Target plate 1"
3, 3, , , , , 3
*GEOMETRY_PIPE
"Target refine"
1
0, 0, 2*%H, 0, 0, -2*%H, 10*%R
*REFINE
P, 3, 3, 1
*CHANGE_P-ORDER
"Target p-order"
P, 3, 3,1
*CONTACT
1
ALL, , ALL, , 0.03
*INITIAL_TEMPERATURE
ALL, , 100
*FUNCTION
100
293
*END

B.2 Characteristic MMC simulation

• The simulation was run on the IMPETUS Afea Solver (version 8.0.368).
• Used CPU memory: 7192 MB.
• Used GPU memory: 5911 MB.
• Total run time 0h:45m:8s.

*PARAMETER
tend = 1e-4 , "Termination time"
L = 101.6e-3, "Side length of plate"
T = 13.0e-3 , "Thickness of plate"
D = 6.35e-3 , "Diameter of impacting sphere"
vel = 300 , "Impact velocity"
dx = 1e-3 , "Element side length"
#
*TIME
%tend
*UNIT_SYSTEM
SI
#
# AISI E 52100
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#
*MAT_JC
"AISI E 52100"
1, 7800, 210e9, 0.3, 0, 1, 1
2.4824e9, 1.4985e9, 0.19, 0.027, 0.66, 293.15, 1760.15, 1
*PROP_THERMAL
1, 0, 476.97501, 0, 0.9, 293.15
*EOS_GRUNEISEN
1, 1.578, 1.60
#
# AL2O3 (based on SiC-calibration available as material object)
#
*PARAMETER
rho = 3860 #3200 , "Density"
G = 147.6e9 #198.3e9, "Shear modulus"
sig_c = 5.75e9 #3.87e9 , "Uniaxial compressive strength"
sig_x = 0.26e9 #6.32e9 , "Compressive strength at pressure x"
p_x = -0.26e9/3 #2.39e9 , "Pressure x"
sig_cap = 15.0e9 , "Cap on yield surface"
alpha = 0.6 , "Failed-to-intact material strength ratio"
epsp_fail = 0.0 , "Effective plastic strain at failure"
yield = 0.0 , "Type of yield surface (= 0.0 -> von Mises, = 1.0 -> Rankine)"
K = 234.6e9 #225.5e9, "Bulk modulus"
beta = 0.0 , "Parameter controlling the direction of plastic flow"
epsv_max = 0.0 , "Cap on volumetric strain of bulking"
c = 0.03 , "Strain rate parameter"
eps0 = 1.0e-2 , "Reference strain rate"
psi = 0.0 , "Parameter controlling the rate dependency on the hydrostatic tensile strength"
d = 1.0e3 , "Damping coefficient"
d_dec = 0.0 , "Damping decay coefficient"
*MAT_MMC
"AL2O3"
2, %rho, %G
%sig_c, %sig_x, %p_x, %sig_cap, %alpha, %epsp_fail, %yield
%K, %beta, %epsv_max, %c, %eps0, %psi, %d, %d_dec
#
*COMPONENT_SPHERE
"Projectile"
1, 1, 10, 10, 0, 90
0, %D/2, 0, %D/2
*CHANGE_P-ORDER
P, 1, 2
*SMOOTH_MESH
P, 1, 30, 1
*COMPONENT_BOX
"Target"
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2, 2, %L/(2*%dx), %T/%dx, %L/(2*%dx)
0, -%T, -%L/2, %L/2, 0, 0
*REFINE
P, 2, 3, 2
*GEOMETRY_PIPE
2, 0
0, -2*%T, 0, 0, %T, 0, 5*%D
#
*PART
1, 1, 0, 0, 0, 0, 3
2, 2, 0, 0, 0, 0, 3
*INITIAL_TEMPERATURE
ALL, 0, 0, 293.15
*INITIAL_VELOCITY
P, 1, 0, -%vel, 0
*CONTACT
1
ALL, 0, ALL, 0
*BC_SYMMETRY
ZX
*END
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