
FFI-RAPPORT

23/01288

A NavLab 4 Configuration Framework (CF)
to Automatically Verify and Inspect
Configurations (INI-files)

Stein Kristiansen

FFI-RAPPORT 23/01288 1

Norwegian Defence Research Establishment (FFI) 21 September.2023

A NavLab 4 Configuration Framework (CF)
to Automatically Verify and Inspect

Configurations (INI-files)

Stein Kristiansen

2 FFI-RAPPORT 23/01288

Keywords
NavLab
Programvareutvikling
MATLAB
Navigasjon

FFI-report
23/01288

Project number
1684

Electronic ISBN
978-82-464-3492-6

Approvers
Martin Syre Wiig, Research Manager
Håkon Storli Andersen, Director of Research

The document is electronically approved and therefore has no handwritten signature.

Copyright
© Norwegian Defence Research Establishment (FFI). The publication may be freely cited
where the source is acknowledged.

FFI-RAPPORT 23/01288 3

Summary

NavLab 4 is a highly configurable simulation and post-processing tool for navigation. While this
configurability is a key strength, its complexity can make it difficult even for advanced users to
create functional and complete configurations (INI files) that make NavLab behave as the user
intends.

We present a Configuration Framework (CF) to simplify this task via

• an Application Programming Interface (API) and data structures that allow developers to
specify the properties, requirements and parameters of the configurations affecting their
code and to make this information available everywhere in NavLab via a central register

• a graphical user interface that presents this information to the user in an intuitive way

• mechanisms that use the above-mentioned information to automatically verify the
completeness of the user-provided configurations

The verification of configurations that affect a piece of code is performed proactively (before the
code is run) whenever the user executes the code. If any required configuration elements are
missing, the CF can prevent the execution of the code to avoid potentially irrecoverable errors.
In such cases, the CF informs the user of the missing elements via the above-mentioned
graphical user interface so that the user can easily identify and add the missing configuration
elements.

The task described in the first bullet point is referred to as adding CF support to configured
code. In addition to developing the CF itself, we have provided CF support to the code that
implements all core activities a user can perform in NavLab, including preprocessing,
simulation, estimation, calibration of the Doppler Velocity Log (DVL) and summarizing and
exporting analysis results. As a result, the facilities in the two last bullet points above are made
available for nearly all existing NavLab functionality. The CF API and data structures are
designed to be sufficiently flexible, generic, and intuitive to facilitate adding CF support to future
extensions of NavLab 4.

4 FFI-RAPPORT 23/01288

Sammendrag

NavLab 4 er et svært konfigurerbart simulerings- og postprosesseringsverktøy for navigasjon.
Det at verktøyet er så konfigurerbart, er en av dets styrker, men konfigureringen er også
tilstrekkelig komplisert til at det kan være utfordrende selv for erfarne brukere å lage
konfigurasjoner (INI-filer) som gjør at NavLab oppfører seg som ønsket og forventet.

Vi har utviklet et konfigurasjonsrammeverk (CF) som forenkler konfigurasjonen av NavLab via

• et programvaregrensesnitt (API) og datastrukturer som gjør utviklere i stand til å
spesifisere egenskaper, krav og parametere til konfigurasjonene som påvirker koden
deres, og til å gjøre denne informasjonen tilgjengelig overalt i NavLab via et sentralt
register

• et grafisk brukergrensesnitt som presenterer denne informasjonen til brukeren på en
intuitiv måte

• mekanismer som bruker den overnevnte informasjonen til automatisk å verifisere at
konfigurasjonene brukeren har oppgitt, er fullstendige

Den automatiske verifikasjonen av konfigurasjoner som påvirker en gitt kodebit, gjøres proaktivt
(før kodebiten kjøres) når brukeren ber om å kjøre denne koden. Hvis det mangler obligatoriske
konfigurasjonselementer, kan rammeverket hindre kjøringen og presentere intuitiv informasjon
som gjør at brukeren enkelt og raskt kan identifisere og legge til de manglende elementene.
Dermed unngår brukeren feil under kjøringen som er forårsaket av manglende
konfigurasjonselementer, og som kan kreve at NavLab må starte på nytt.

Aktiviteten beskrevet i første kulepunkt kalles å gi CF-støtte til konfigurert programvare. I tillegg
til å utvikle selve CF-rammeverket har vi gitt CF-støtte til alle kjernefunksjonene i NavLab,
inkludert preprosessering, simulering, estimering, kalibrering av Doppler Velocity Log (DVL) og
oppsummering og eksportering av analyseresultater. Dermed er fasilitetene beskrevet i de to
nederste kulepunktene gjort tilgjengelig for det meste man kan gjøre i NavLab. CF-API-et og
datastrukturene er utformet for å være fleksible, generiske og intuitive nok til at CF-støtte enkelt
kan gis til fremtidige utvidelser av NavLab 4.

FFI-RAPPORT 23/01288 5

Contents

Summary 3

Sammendrag 4

1 Introduction 9

2 Method 14

3 Configuration in NavLab 4 15
3.1 Configuration Activities 15
3.2 Configured Objects 17
3.3 Required INI files 19
3.4 Configuration Dependencies 22

4 Goals and Requirements 23
4.1 Goals 23
4.2 Requirements 24

4.2.1 Requirement 1: Proactive Verification 25
4.2.2 Requirement 2: Structured Representation of Configurations 26
4.2.3 Requirement 3: Support for Multiple Parameter Instances 26
4.2.4 Requirements 4: Support for many COs per INI file 26
4.2.5 Requirement 5: Support for many INI files per CO 26
4.2.6 Requirement 6: Separation of Concerns 26

5 The CF API: Central Concepts, Data Structure and Functions 27
5.1 Configurations and Configuration Structures 27
5.2 The Scope of a Configuration 27

5.2.1 Configuration Scope 28
5.2.2 Discussion of alternatives 30
5.2.3 Selected Alternative 31

5.3 Verification Levels 31
5.4 Configuration Versions 34
5.5 The CF Data Structure 35

5.5.1 cConfigurationRegistry 36
5.5.2 cConfiguration and cConfigurationParameter 37

6 FFI-RAPPORT 23/01288

6 Applying the CF 39
6.1 The Two Configuration Stages 39
6.2 Stage 1 40

6.2.1 Step 1.1: Create and register the configuration(s) in the global
configuration registry 44

6.2.2 Step 1.2: Specify the name of the INI file 45
6.2.3 Step 1.3: Pass the configuration to the superclass 45
6.2.4 Step 1.4: Add configuration parameters relating to this class 45
6.2.5 Step 1.5: Call the loadParameters function of all ICOs 46

6.3 Stage 2 46
6.4 Front-End Integration 48

6.4.1 summaryGUI.mlapp 49
6.4.2 Invoking Proactive Verification upon CA Execution 51
6.4.3 Inspection of Configurations upon User Request 52

7 Summary and Possible Future Work 54
7.1 Possible Future Work 54

Appendix 56

A Overview of Configured Code Supported by the CF 56

References 59

FFI-RAPPORT 23/01288 7

Preface
I would like to thank Kenneth Gade and Einar Berglund for providing valuable feedback and
suggestions for this work during several meetings, and for reading through and commenting on
this report and the corresponding source code. I would also like to thank Kjetil Ånonsen and
Ove Kent Hagen for their valuable feedback and suggestions during these meetings.

Oslo, 31.05.2023
Stein Kristiansen

8 FFI-RAPPORT 23/01288

FFI-RAPPORT 23/01288 9

1 Introduction

NavLab 4 is a generic simulation and post-processing tool for navigation, written in MATLAB
(Gade, 2004) (Gade, 2003). It is a highly versatile tool that can be used for a wide variety of
navigation tasks, and is based on a solid theoretical foundation to ensure statistical optimality
throughout the entire system. NavLab provides facilities for preprocessing of real
measurements, simulation of sensors and vehicle movements, calculation of statistically optimal
real-time estimates of navigation quantities, improving these estimates via smoothing, and
graphically visualizing and exporting data and results. NavLab can be used both with real-world
and simulated data, or with a combination of the two. A wide range of sensors for aided inertial
navigation systems (AINS) are supported, both for simulation and estimation, including
accelerometers, gyroscopes and sensors that measure position, velocity and orientation.

In this document, the term activity refers to the execution of a discrete software module in
NavLab. This includes the execution of one of the central processing modules, called Preproc,
Simulator and Estimator. The term run refers to the sequence of activities executed to process a
given real-world data set (called raw data), and prospectively to augment this data set via
simulation. Which activities are available for any given run, and the behavior of each activity, is
determined by the run configuration. This configuration exists in the form of user-provided INI
files. All activities in NavLab 4 are highly configurable via a large number of both required and
optional configuration parameters. Consequently, a large number of INI files are required for
any given run, including multiple INI files per simulation, preprocessing or estimation sensor
and one or more per activity. Some INI files include a relatively large number of parameters.

Currently, there exists no facility in NavLab to provide the user with a structured, complete and
intuitive overview of the large configuration space. As a result, even advanced NavLab users
have experienced difficulty remembering which parameters are available, how these affect their
run, which are mandatory and which are optional, whether they have default values and if so
what these values are. This has led to users unintentionally leaving out required configuration
parameters, often resulting in difficult-to-understand or irrecoverable errors. While such
scenarios may help the user to identify the lack of mandatory parameters “the hard way”,
missing parameters with default values may go unnoticed. While default values are useful to
reduce the time needed to provide functioning configurations, the fact that they allow a run to
proceed without errors may leave the user unaware of their effect on the run. Had the user
known about these effects, (s)he may have decided to use different parameter values. Both
problems above are exacerbated by the lack of a general system to detect incomplete
configurations and inform the user about the missing configuration elements before an activity
is executed.

To address these issues, this work provides an extension of NavLab 4 called the Configuration
Framework (CF). The overall goal of the CF is to make it easier and less time consuming to
create NavLab configurations by increasing the awareness of which and how configuration
parameters affect NavLab runs, and to prevent the occurrences of potentially time consuming

 10 FFI-RAPPORT 23/01288

runtime errors caused by incomplete configurations. To achieve this, the CF provides the
following two facilities:

1. A graphical user interface (GUI) that allows the user to inspect the different run
configurations. This GUI shows a structured overview of all configuration parameters in
each INI file, including their properties, requirements, descriptions and dependencies,
and whether they are currently provided by the user.

2. Mechanisms that automatically and proactively verifies the INI files for completeness
before executing the NavLab activity that is affected by them. This prevents the
execution of activities upon incomplete configurations, and thereby avoids many
runtime errors. Upon failure of verification, the above-mentioned GUI is shown with an
intuitive overview of the missing configuration elements.

Currently, NavLab does not include data structures to describe configuration parameters and
their properties and dependencies. Both facilities above rely on such a structured representation,
and the data structure must be populated by the developers of configurable NavLab code.
NavLab has an object oriented implementation, and only a subset of all objects used during an
activity is configured with INI files. These objects are called Configured Objects (CO). The CF
provides the NavLab developer with

1. generic data structures to store the important aspects of configurations,

2. an Application Programming Interface (API) to store information about configurations
in this data structure, and to support automatic verification of configurations, and

3. step-by-step instructions on how to apply the CF to any given CO.

The developer-provided information includes which INI files and parameters are available,
which parameters are mandatory, what their default values are (if any), and which dependencies
exist between them.

As part of this work, the CF has been applied to all COs that are currently maintained by The
Norwegian Defence Research Establishment (FFI). Thus, in this version of NavLab the benefits
of the CF are already available for all NavLab activities. In addition, we provide minimal,
executable template classes illustrating how a developer can apply the CF in future extensions
of NavLab. The CF, its application to COs, and the template classes are available in an
extension of the NavLab 4 version described in (Kristiansen, 2022).

This document is structured as follows. Section 2 shortly summarizes the methods applied in
this work, which includes code analysis, requirements analysis, design, implementation and
application of the CF. Sections 3, 4, 5 and 6 present the results from each of these steps. Section
3 gives an overview of the configured NavLab code, including its overall structure and how its
code is configured. This forms the foundation for the goals and requirements of the CF, which

FFI-RAPPORT 23/01288 11

are described in Section 4. Section 5 presents the design of the CF API, beginning with key
concepts and discussion of design alternatives, and then the functions and data structures
comprising the CF API. Section 6 explains how to use the API to add CF support to COs, to
enable user inspection and proactive verification of configurations. CF support is already added
to all COs maintained by FFI, and a complete list of these are found in Table A.1 in the
Appendix. Finally, Section 7 summarizes the work and discusses possible future work.

A series of concepts and terms are introduced in this document. Each of these are explained the
first time they are mentioned in the text. The central concepts and terms are summarized in
Table 1.1, and the constituents of, and inter-relationships between the central concepts are
illustrated in Figure 1.1.

Figure 1.1 Central NavLab concepts and their relationships.

Term / Concept Definition and description

Configuration

In Figure 1.1:

The set of parameters in an INI file that controls the behavior of a piece
of executed NavLab code. When preceded by the word “Run” or
“Activity”, it refers to the configuration of an activity or a run as a
whole. When not preceded by any of these words, or by the word “CO”,
it refers to the configuration of a single CO. “Activity”, “Run” and
“CO” are defined below.

Configuration
Framework (CF)

The extension to NavLab 4 described in this document providing
support for user inspection and automatic, proactive verification of
configurations.

 12 FFI-RAPPORT 23/01288

Configuration
structure

The data structure to represent a configuration in the CF. This includes
information about which INI files it requires, the names and properties
of its configuration parameters, and its dependencies on other
configuration parameters.

Processing module

In Figure 1.1:

A discrete piece of the NavLab software that either produces simulated
data or processes simulated or real-world data. The three central data
processing modules are Preproc, Simulator, and Estimator. Depending
on the context, a processing module may unambiguously be referred to
as a module.

Activity The execution of any code implementing a discrete functionality in
NavLab. The all code expected to execute to completion as the result of
a discrete user request via the GUI is regarded as belonging to the same
activity. This includes (but is not restricted to) the execution of
processing modules.

Raw data

In Figure 1.1:

Data set consisting of measurements from the real world that is used as
input to the Preproc module. This data set typically consist of a
continuous time series of IMU measurements with corresponding
measurements from aiding sensors.

Run

In Figure 1.1:

A sequence of NavLab activities to process a raw data set in NavLab
and/or produce simulated data. Different runs can be used to
process/produce the same data set in different ways according to their
configuration. The configuration of a run is stored in the form of INI
files in a folder called a run folder. The current run folder can be
selected in the NavLab GUI.

Mission A collection of run folders, the corresponding raw data and any other
files used by multiple runs, including configuration files such as
navlab.ini. The folder in which this is collected is called a Mission
folder.

Estimator input

In Figure 1.1:

Data produced by the software modules Preproc or Simulator that is
used as input to the Estimator module.

Results Data produced by the Estimator module that can be save to file either
via the menu items “Save session” and “Save session as …”, or by
exporting the data using the Export module.

FFI-RAPPORT 23/01288 13

In Figure 1.1:

Configuration
Activity (CA)

A NavLab activity that performs configuration of COs (defined below)
during the initial stages of its execution. This includes loading
configurations from INI files into memory, verifying these and applying
it to COs.

Configured object
(CO)

An object used as part of a CA that is configured according to the
contents of an INI file (i.e., according to a configuration). Such objects
contain three types of code: (1) code that loads and verifies its
configuration, (2) code that applies the loaded and verified
configuration to the CO, and (3) the code that executes part of an
activity. CF support can be provided to a CO by implementing the static
loadParameters function in its class, making its configuration user-
inspectable and automatically verifiable.

Indirectly
configured object
(ICO)

CO that are configured indirectly during the configuration of another
CO. An ICO is also a CO, i.e., the term CO refers to COs and ICOs
collectively. The statement “the CO a of ICO b” and “the ICO b of CO
a” is used to mean that ICO b was configured indirectly during the
configuration of CO a.

CO and ICO
classes
(abbreviated
classname (I)CO)

The classes from which COs and ICOs are instantiated, respectively.

Template class Minimal, executable template classes illustrating how a developer can
apply the CF to COs. Their code constitutes a starting point for the
loadParameters function that can be copied and pasted into COs.

Figure 1.2 Central terms and concepts used throughout this document.

 14 FFI-RAPPORT 23/01288

2 Method

As with most software solutions, the CF is designed according to a set of requirements. To
understand which requirements need to be satisfied, it is first necessary to understand how
configuration is currently performed in NavLab, which in turn requires an understanding of the
overall structure of NavLab. The work towards the completion of the design, implementation
and application of the CF was carried out through the following four steps:

1. Code analysis: The NavLab code was first carefully investigated with two goals in
mind: (1) understanding the overall structure of NavLab and identifying the separate
activities making up the processing pipeline, and (2) identifying patterns in the
configuration code that are common throughout NavLab, as well as deviations from
these patterns that need to be accounted for by the CF. The investigation was performed
by studying the code, executing and stepping through the code with a debugger, and
multiple discussions with the NavLab users and developers at the FFI. The output of
this step is mainly documented in Section 3 and Figure 3.1, is used as the input to Step 2
below.

2. Requirements analysis: Based on the findings in Step 1, a set of requirements were
developed. Fundamentally, the CF had to be able to represent all existing configuration
parameters in NavLab while at the same time addressing central shortcomings of the
way NavLab was configured. The requirements were developed during presentations
and subsequent discussions with the key NavLab developers and users at FFI. The
results from this step is mainly documented in Section 4, and is used as input to Step 3
below.

3. Design and implementation: After the initial set of requirements was formulated, an
initial design was proposed, presented and discussed to/with fellow NavLab users and
developers. The outcome of the discussions was used to refine both the requirements
and the design, and Steps 2 and 3 was repeated iteratively. To unveil issues with the
design, parts of it was implemented, and applied to COs, between the iterations. The
process was iterated until the design and implementation converged into a satisfying
solution. This step is documented in Sections 5 and 6. The output of this step was used
as input to Step 4 below, and is reflected in the extension of the NavLab code.

4. Application of the CF: The CF was applied to all COs during and after the CF design
and implementation. Remaining issues with the CF during was identified and corrected
during this period. The output of Step 4 is mainly documented in Section 6 and in Table
A.1, and reflected in the extension of the NavLab code.

FFI-RAPPORT 23/01288 15

3 Configuration in NavLab 4

Before we can develop the goals, requirements and design of the CF, it is first necessary to
understand how configuration is performed in NavLab 4. This is achieved by understanding
which activities can be performed in NavLab (explained in Section 3.1), the common
approaches and mechanisms utilized to configure objects based on INI files (explained in
Section 3.2), the INI files required for each activity (explained in Section 3.3), and which (types
of) dependencies exist between the configurations (explained in Section 3.4). In these
explanations, the term configuration refers to parameters in an INI file used to configure a given
piece of NavLab 4 code.

Figure 3.1 Structure of NavLab 4. The GUI shown is the top part of the main GUI window in
NavLab 4. The blue and green boxes and arrows represent separate CAs and the
INI files they use for configuration, respectively.

3.1 Configuration Activities

Figure 3.1 gives an overview of how NavLab 4 is structured. The figure refers to the concepts
mission, run and Configuration Activity (CA). To understand the NavLab structure, we must
first clearly define these concepts and the ones they depend on. See also Table 1.1 for a
summary of the definition of all concepts central to this document.

A run is a sequence of NavLab activities to process a raw data set in NavLab and/or to produce
related simulated data. The configuration of a run is stored in INI files in a folder called a run
folder which is selected in the NavLab GUI. A mission is a collection of run folders, the
corresponding raw data and any other files used by multiple runs, including configuration files

16 FFI-RAPPORT 23/01288

such as navlab.ini. The folder in which this is collected is called a Mission folder. A NavLab
Activity (or simply Activity) is the execution of any code implementing a discrete functionality
in NavLab. An activity encompasses all code that is expected to execute to completion as the
result of a discrete user request via the GUI. Such code can include, but is not restricted to,
processing modules such as the simulator, preprocessor, estimator, etc. The subset of NavLab
activity that reads, verifies and applies configurations as the initial part of their execution are
called Configuration Activities (CAs). Under this definition, estimation, smoothing, re-
smoothing and plotting are activities, but not CAs. The activity to loads the data used by these
activities (called 4-LOAD) is a CA.

The arrows in Figure 3.1 show which INI files are read by which CA, and the order in which
they are read. All INI files accessed by a CA are pointed at by arrows with the same color as the
CA. For instance, CA 1-SMR only uses the two INI files navlab.ini and estimator.ini while CA
0-RUN only accesses navlab.ini.

Notice from Figure 3.1 that a subset of the INI files read by one CA may also be read other
CAs. For instance, although estimator.ini is primarily used by CA 4-LOAD (Load data) to
configure the estimator and smoother, it is required already during CA 1-SMR (select mission
and run), and CA 5-SUM (create summary report)1. We also see that several activities access
navlab.ini: CA 0-RUN (run NavLab)2 and CA 1-SMR3.

The different CAs in the figure are the following:

CA 0-RUN: Run NavLab. This CA is executed by issuing the command “navlab” in
MATLAB. It creates of the main GUI window and initializes central NavLab data
structures, including a globally accessible cNavLab object and CF registry (described in
Section 5.5.1).

CA 1-RMS: Select a mission and run. This activity is executed either when selecting a
new mission, upon which the mission’s default run will automatically be selected, or when
selecting a run within the same mission.

CA 2-SIM: Performing a simulation. This is executed by pressing the button labelled
“Simulator”.

CA 3-PREP: Preprocessing data. This is executed by pressing the button labelled
“Preproc”.

1 To determine for which bias values to generate warnings and errors in the summary report.
2 To configure the cNavlab object created during the startup code. NavLab operation requires the existence of a
cNavLab object. During the startup code, such an object is created, then its function lookForNavLabIni is invoked.
This function configures the newly created cNavLab object using any navlab.ini it can find by first searching the
folder containing the executed navlab.m/exe and then the folders in the MATLAB path.
3 Whenever the cNavLab object is re-configured according to the navlab.ini in a newly selected mission or run.

FFI-RAPPORT 23/01288 17

CA 4-LOAD: Loading data. Data for the estimator is either created via simulation and/or
as a result of preprocessing real data. This data is loaded into memory by pressing the
button labelled “Load”.

CA 5-SUM: Create summary report. This CA is executed by pressing the button labelled
“Summary” in the plot menu, which is shown when pressing the button “Plot General” in
the main window.

CA 6-CAL: DVL calibration. This CA is executed via the GUI shown with the menu item
“DVL Calibration …” under the “Tools” menu.

CA 7-EXP: Exporting data. This CA is executed by pressing the button labelled “Export”.

Only a subset of the CAs are typically executed for any given run, and some CAs require that
others have been previously executed. For instance, CA 4-LOAD (load data) is normally
executed after CA 2-SIM (simulate) and/or CA 3-PREP (preprocess). It is not the concern of the
CF to detect and prevent errors caused by an incorrect order of execution, as this is already
prevented by GUI mechanisms that (de)activate the appropriate GUI components.

Typically, the CAs are executed in the order listed above. The exceptions are CA 5-SUM and 6-
CAL, which may be executed in arbitrary order. Furthermore, CA 5-SUM relies on the prior
execution of the estimation activity (which is not a CA, as explained above). Whether CA 2-
SIM and/or CA 3-PREP are executed depends on whether the run involves simulations and/or
preprocessing of real-world data.

3.2 Configured Objects

Since the implementation of NavLab 4 is object oriented, the different CAs listed above involve
the execution of code in many different objects. Only subset of these, called Configured Objects
(COs), are configured according to parameters in INI files. Typically, COs are configured
immediately after instantiation using one or more of its member functions. These functions
generally perform two overall tasks:

Task 1: Load and verify the contents of the INI file used for configuration. The contents
of INI files is read using the function getAllParam. Searching for the use of this
function helped understand where and how INI files are used in NavLab. Figure 3.1 was
partly the result of this process. Exactly how configurations are verified varies among
the COs, but typically include conditional statements that identify missing parameters.
Upon the lack of mandatory parameters, error messages may be displayed to the user, or
exceptions may be thrown and handled by a function further up in the call stack. This
exception handling does not guarantee graceful error recovery, especially if the CO was
configured at a late stage in its CA. Optional missing parameters may be given a default
value or may simply not be used.

 18 FFI-RAPPORT 23/01288

Task 2: Apply the verified configuration to a CO. In general, arbitrary actions may be
taken based on the parameter values, but often the values are simply stored in object
properties and accessed by subsequently executed code that is affected by their values.

If the verification in Task 1 is passed, the remainder of the CA is executed after both Task 1 and
2 completes, which may include the configuration of other COs.

The INI files loaded in Task 1 contain syntactically correct MATLAB assignment statements
that specify which values are given to which parameters. getAllParam function obtains all lines
with such statements and passes these to the MATLAB eval function. The resulting values are
stored in a MATLAB struct with field names equaling the parameters’ names. The values can be
numerical or logical, strings, function handles or cell arrays.

Figure 3.2 The relationship between COs, ICOs, and their classes.

NavLab makes extensive use of class inheritance. Thus, the functions that configure a single CO
is commonly distributed across several (super/sub)classes. Figure 3.2 illustrates the relationship
between classes (in blue) and their COs, using as an example the CA 2-SIM (simulate). The
classes include the simulator class cSimulator, and those modelling the simulated sensors
(inheriting from cSimSensor).

Once a configuration parameter controls the code in a given class, it naturally becomes the
responsibility of that class to handle that parameter via Task 1 and 2 above (called separation of
concerns). However, a CO not only contains code and variables defined in the class it was
instantiated from, but also from all classes further up in the class hierarchy. For instance, a CO
instantiated from the cSimAccm class (called cSimAccm CO for brevity) contains code and
variables from both the cSimAccm and cSimSensor classes. For this reason, different COs
sharing the same superclass each obtain their own, separate copy of the configuration
parameters in said superclass (e.g., cSimSensor) and the value may differ among these copies.
An example is the h parameter of cSimSensor that determines the length of the simulated
duration between subsequent sensor measurements: all simulated sensors obtain a copy of this

FFI-RAPPORT 23/01288 19

parameter, typically with differing values. In summary: sensors such as cSimAccm CO are not
only affected by the configuration parameters in their own class (cSimAccm), but also by those
in their superclass (cSimSensor).

It is commonly the case that the configuration of one CO is invoked indirectly via the
configuration of another CO. COs of the first kind are called Indirectly Configured COs (ICOs).
Typically the list of ICOs to configure is provided as a configuration parameter for another CO.
For instance, cSimulator CO invokes the configuration of all cSimSensor ICOs listed in its
configuration parameter esSensorName. This is shown in Figure 3.2. As another example: the
cKalmanFilter CO invokes the configuration of all cSensor and cKfMeas ICOs listed in its
esSensorName and esKfMeasParamFile parameters. A similar situation occurs in CA 3-PREP
(preprocess). These situations are seen in Figure 3.1 as a set of parallel arrows pointing to each
ICO’s INI file.

Note that an ICO is also a CO. Therefore, the term CO can be used to refer to COs and ICOs
collectively. From here on, we use the statements “the CO a of ICO b” and “the ICO b of CO a”
to mean that ICO b was configured indirectly as part of the configuration of CO a.

Table A.1 lists all COs and ICOs used in the CAs in NavLab.

3.3 Required INI files

The configuration of the COs in any given CA is based on a series of INI files. There are several
pre-defined types of INI files, each of which can contain a specific set of configuration
parameters. Some types of INI files have pre-defined names, while others are user-defined but
follow certain naming schemes. The different types of INI files that exist in NavLab, their
names or naming scheme, their contents, and their usages are as follows:

navlab.ini: If a file with this name exists in the same folder as the NavLab executable
(i.e., navlab.m or navlab.exe), or in the MATLAB path, it is read upon starting NavLab
(CA 0-RUN) to configure the initial cNavLab object. This configuration is however
updated upon the selection of a mission or run is selected (via CA 1-SMR) with its own
navlab.ini. Its parameters specify the locations of the data and INI files used in the
selected mission or run. It may also specify functions to execute upon central runtime
events, i.e., when starting NavLab, right after selecting the mission or run, and before
estimation starts and after it completes. It differs from the other INI files in that the
keywords “<RUN>” and “<MISSION>” can be used to refer to path of the currently
selected mission and run.

simulator.ini: Used in CA 2-SIM (simulate), and its location is given by the parameter
sSimulatorIniLocation in navlab.ini. It specifies the values of parameters that determine
the behavior of simulation, such as the start and stop times, the time step duration, and
the random number generator to use. It also contains the list of INI files of the sensors to

20 FFI-RAPPORT 23/01288

simulate4 (described in the item immediately below), each of which are modelled by
ICO of cSimulator. Note that the description of the simulated trajectory is not specified
in simulator.ini, but instead in the MATLAB file trajrate.m. Since this is not an INI file,
but is instead executed alongside the remaining NavLab code, it is not and need not be
handled by the CF.

[simulated sensor name]_sim.ini: Used in CA 2-SIM (simulate), and are located in the
same folder as simulator.ini. Each file specifies the parameter values for the simulation
of one of the sensors listed in simulator.ini. These include parameters of the random
processes used to model errors in the sensor measurements. Depending on the sensor,
these errors have up to three contributions: (1) a white measurement noise, (2) a bias
error, and (3) a scale factor error. The INI files contain values for the standard deviation
(SD) of these three types of errors. The two latter types are typically modelled using
gauss-markov processes, and therefore in addition have parameters specifying their time
constant. Additional parameters include those for a sensor’s sampling frequency, the
name of the class simulating it, the dimensionality and names of its measurements, the
format of the file storing its measurements, and any other parameters specific to the
particular sensor type.

preproc.ini: Used during CA 3-PREP (preprocess). Its location is given by the
parameter sPreprocIniLocation in navlab.ini. Its parameters describe overall aspects of
how the preprocessing of sensor data should occur, including how to determine the start
and stop times of preprocessing, the lever arm reference point, and the list of sensors
from which there is data to preprocess. The latter list contains the names of the sensors’
INI files (described in the subsequent list item).

[preprocessed sensor name]_pre.ini: Used during CA 3-PREP (preprocess)5. Their
locations are given by the parameter sSensorPreIniLocation in navlab.ini. In addition to
specifying the name of a sensor’s preprocessing class, the parameters in this file
determine how its data should be preprocessed. These include, among others,
parameters related to outlier detection, sensor misalignment, constant errors, lever arms,
how to read sensor data from binary files, formatting during plotting, sensor quality and
functions used to transform measurement time stamps.

estimator.ini: Used during CA 4-LOAD (load data), CA 0-RUN (start NavLab) and
CA 5-SUM (create summary report), and its location is specified by the parameter
sEstimatorIniLocation in navlab.ini. Its parameters describe how estimation, i.e.,
Kalman filtering, smoothing and re-smoothing, should be performed. This includes
parameters specifying the initial values for the covariance matrix, state vector, estimated
position, orientation and velocity. Other parameters determine whether a spherical or
elliptic earth model should be used, whether or not exact (via the matrix exponential) or

4 Certain sensors can also be specified via logical values, i.e., a sensor of this type is simulated if [sensor]_available
is set to 1, where [sensor] is the sensor type.
5 DVL_pre.ini is also used in CA 6-CAL (DVL calibration).

FFI-RAPPORT 23/01288 21

approximate discretization of the system model should be used in the prediction step,
whether or not the real (typically simulated) trajectory should be used for linearization,
the desired start and stop times for estimation and the number of Kalman filter time
steps between each re-set of the navigation equations. Two central parameters are those
that specify the list of sensors used for estimation and the list of measurements used in
the Kalman filter. The sensors and measurements are specified in terms of strings used
to determine the name of their INI files (described in the next list item).

[estimated sensor name]_est.ini: Used during CA 4-LOAD (load data), and their
locations are given by the parameter sSensorEstIniLocation in navlab.ini. Each file
specifies the parameter values used by the Kalman filter to model errors in the
measurements of a given sensor. Since both the simulator and the estimator model these
errors as gauss-markov processes, many of the parameters in [simulator sensor
name]_sim.ini are also found in the corresponding [estimated sensor name]_est.ini. This
includes parameters that characterize up to three contributions of the overall
measurements error, i.e., (1) a white measurement noise, (2) a bias error, and (3) a scale
factor error. The INI files contain values for the standard deviation (SD) of these three
types of errors. The two latter types of errors are typically modelled using gauss-markov
processes, and therefore have an additional parameter quantifying their time constant.
Additional parameters specify the name of the sensor class used for estimation, which
other sensors the sensor depends on, the mathematical names of its measurements, how
the measurements should look in plots, and any other parameters specific to the
particular sensor type.

cov_matrix.ini: Used during CA 4-LOAD. Its parameters specify the initial covariance
of the errors in position, velocity and orientation that is estimated by the kalman filter.
The quantities are calculated using the navigation equations, and are therefore only used
in the class cNavEq. Each error is specified as values in the x , y and z directions, and
all nine parameters are mandatory.

kf_meas_[measurement name].ini: This file is used during CA 4-LOAD (load data),
and their locations are given by the parameter sSensorEstIniLocation in navlab.ini. Each
run must have one such INI file for each sensor that produces measurements for the
measurement update stage in the Kalman filter. Their parameters specify the name of
the class representing the measurement, which sensors are used to produce the
measurement, and a function used for in-filter outlier removal (called a gain function).

export.ini: This file is used during CA 7-EXP (export data), and its location is specified
by the parameter sRunFolder in navlab.ini. It contains parameters describing how data
should be exported when this is requested. This includes parameters to determine the
destination folder and format of the exported data and whether or not results from real-
time estimation and smoothing should be exported,

Table A.1 in the appendix provides an overview of all INI files required in each activity, and the
COs and ICOs that use them.

 22 FFI-RAPPORT 23/01288

3.4 Configuration Dependencies

In NavLab 4, the location of INI files can only be determined via the parameter values in
different INI files; Section 3.3 lists several examples of INI files whose locations specified in
navlab.ini. Dependencies can also exist between two individual configuration parameters, e.g.,
the default value of one parameter may be determined by the value of a parameter in a different
configuration. For instance, the default value of the time step length of a simulated sensor (h in
[simulated sensor name]_sim.ini) is set to the time step length of the simulator itself (h in
simulator.ini). Dependencies between (parameters in) different configurations are called inter-
configuration dependencies. All such dependencies are listed in Table A.1.

Dependencies may also exist between parameters in the same configuration (intra-configuration
dependencies). Examples of this are found in the configurations for sensor classes inheriting
from cSimSensor. Here, the names of some parameters can only be determined using the value
of other parameters in the same INI file. For instance, the sub string Df in the parameter name
init_Df_acc_bias_x in IMU_sim.ini is given by the parameter sBiasMathName in that same file.

Configurations and configuration parameters that depend on other configurations and/or
configuration parameters are referred to as dependent configurations and dependent
configuration parameters, respectively.

FFI-RAPPORT 23/01288 23

4 Goals and Requirements

Section 3 unveils three main shortcomings in the way NavLab is configured today. First, there
exists no available API and data structures to allow a developer to represent configurations in a
common structure in terms of their parameters, parameter properties and dependencies (called a
configuration structure). Such a configuration structure would specify, among other things,
which parameters are available, which are mandatory, and which (if any) default values they
have. Second, there is no intuitive way for a user to inspect a configuration structure and the
current values of its parameters from user-provided INI files. This would make it possible to
easily obtain an overview of available and mandatory parameters for any given CA and the
default values that affect their run. Third, there exists no generic mechanism that can leverage
information in configuration structures to automatically verify the completeness of user-
provided configurations, i.e., whether they satisfy the minimal requirements for error-free CA
execution.

Prior to the CF, custom verification code had to be implemented by the CO developer, and was
carried out in different ways in different CO classes. This was typically done using conditional
statements on parameter values after being loaded into memory using the getAllParam function.
The exact manner in which this was done, and the degree to which the user was informed about
missing configuration elements, varied among the CO classes. Furthermore, graceful recovery
of errors caused by missing configuration elements was impossible if previously executed CA
code affected the program state irreversibly.

4.1 Goals

The above shortcomings in NavLab 4 can be addressed by: a framework with data structures
that accurately represent the structure of NavLab configurations, a GUI that allows the user to
inspect existing configurations, and code to proactively verify the completeness of a user-
provided configuration to avoid errors during the execution of CAs. The work documented here
contributes with a configuration framework (the CF) aiming to address the above shortcomings.
It is designed to meet the following three goals:

Goal 1: Provide a framework that can be used for all COs in NavLab with data
structures that accurately capture the structure of configurations, i.e., in which
developers can properly store and describe their configurations in a uniform way.

Goal 2: Provide a front-end that presents the configuration structure from Goal 1 in an
intuitive way to the NavLab 4 user, including a list of required and available
configuration parameters and their properties, making it easy fix or improve
configurations.

Goal 3: Provide mechanisms that leverages information in the configuration structures
from Goal 1 to automatically identify incomplete configurations that may result in

24 FFI-RAPPORT 23/01288

irrecoverable malfunctioning of a CA. If the configuration is incomplete, the CF should
prevent the user from executing said activity and instead present intuitive information
about the actions needed to fix the issue. The front-end from Goal 2 can be re-used for
this purpose.

Note that that the CF targets configurations specified in INI files. It is not, for instance, designed
to prevent errors due to missing data or the incorrect order of CA execution. Neither does it
currently provide means by which to facilitate the creation of INI files, although the front-end in
Goal 2 could easily be extended for this purpose. The latter is described as part of future work in
Section 7.

4.2 Requirements
This section explains the requirements the CF must satisfy to meet the three goals above. We
first list the requirements, then detail each requirement in separate subsections. In addition to the
requirements below, the design should strive to make the CF sufficiently structured to facilitate
efficiency, and sufficiently flexible to account for exceptional, yet important use-cases.

The requirements the CF should meet are the following:

Requirement 1: Enable proactive configuration verification and inspection, i.e.,
before executing the CA using the configuration. Proactive verification first requires
NavLab to be divided into a set of discrete CAs, each of which may or may not be
executed in any given run, and each of which as a whole are subjected to proactive
verification before execution. At this point, i.e., before the CA itself is executed, the
COs used during the CA are yet to be created. Thus, proactive inspection and
verification of configurations must be designed to work in the absence of the COs using
these configurations.

Requirement 2: Structured representation of configurations, to facilitate automatic
configuration verification and intuitive presentation to the user. This includes the ability
to represent configuration dependencies and important properties of configuration
parameters.

Requirement 3: Adherence to object orientation. As described in 3.2, one
consequence of object orientation is that multiple COs may have their own copied o the
same configuration parameter, potentially with differing values. This occurs both due to
inheritance and because several COs may be instantiated from the same CO class. The
CF must therefore allow different COs to have different values of the same
configuration parameter.

Requirement 4: Support for many COs per INI file. Several configurations may use
data from the same INI file, and each configuration might need only a subset of all
parameters in that INI file.

FFI-RAPPORT 23/01288 25

Requirement 5: Support for many INI files per CO. A CO may need parameters from
more than one INI file.

Requirement 6: Separation of concerns. Configuration parameters controlling the code
in a given CO should be handled (loaded, verified and applied) by functions in the class
of said CO. The CF should also avoid dependencies between COs, e.g., in the form of
replicated code.

4.2.1 Requirement 1: Proactive Verification
Upon the presence of an incomplete configuration, part of the NavLab activity using that
configuration may execute successfully for some time before the missing configuration causes
an error. In the absence of the CF, such an error may result in an informative message to the
user, or manifest as a less user-friendly programming exception, depending on the particular
error handling code in the affected CO. And whether or not NavLab can gracefully recover from
the error depends not only on the error handling code in the affected CO, but also on the effects
of executing all code prior to the that of the CO where the error occurred. The reason for the
latter is that the NavLab state may have been modified irreversibly by this prior code under the
expectation that the activity would run to completion.

Modifying all NavLab code to account for the possibility that some late code may fail is
obviously not feasible. To this problem, the CF instead needs to identify any missing parts of a
configuration that cause errors proactively, i.e., before the activity is executed (called proactive
verification). Such verification is invoked immediately after the user requests the execution of a
CA, and proceeds to the actual execution of said CA only after the configurations of all COs
used by CA are verified. By identifying missing configurations before the activity is executed,
the user can be prevented from executing an activity that would otherwise result in an
irrecoverable error.

As mentioned above, proactive verification first requires the division of NavLab execution into
the activities that are subjected to proactive verification, called configured activities (CAs). We
must therefore first determine the rules by which to divide code execution into separate
activities. Based on our previous discussions we define all code execution resulting from a
single, discrete user request via the GUI as belonging to the same activity6. Only a subset of all
possible activities may be included in any given NavLab run, and only those configurations
utilized by these activities should be required by the used and verified.

The COs used during an activity are typically created at an early stage of its execution, and are
configured shortly after. Since verification now occurs before the activity is executed, these
COs are normally not available at the time of verification. Thus, inspection and verification
must be performed without access to CO instances.

6 Furthermore, code-modules that implement clearly separated functionalities can be regarded as belonging to
separate activities.

26 FFI-RAPPORT 23/01288

4.2.2 Requirement 2: Structured Representation of Configurations
Automatic configuration verification involves investigating whether a user-provided INI file
meets all the requirements defined in the configuration structure. For this task to be tractable, it
is necessary to represent the specification in a well-structured form, i.e., with a data structure
that specifies the parameters making up a configuration, their names and properties and the
dependencies between parameters and configurations. It should be specified whether a
parameter is mandatory or optional, and whether or not a parameter has a default value, and if
so, what the default value is. In general, it is necessary to design a data structure that properly
captures all aspects that are common among NavLab configurations, and with sufficient
flexibility to allow for important exceptions.

4.2.3 Requirement 3: Support for Multiple Parameter Instances
Since the design and implementation of NavLab 4 is object oriented, nearly all code is
implemented in classes organized in a class hierarchy. If several COs are instantiated from the
same class, each CO may need its own copy of the configuration parameters for the class. If
different COs are instances of classes with a common set of super- and subclasses, they each
need one copy of the subset of the configuration parameters belonging to those super- and
subclasses. The data model used in the CF must therefore allow different COs to have different
values for the same parameters.

4.2.4 Requirements 4: Support for many COs per INI file
As seen in Figure 3.1, several CAs may need one and the same INI file. This should therefore
be supported by the CF. Only a subset of the parameters may be required by a given CA,
depending on which COs are used in that CA.

4.2.5 Requirement 5: Support for many INI files per CO

A CO may be configured using several INI files. This is currently the case with cNavEq COs,
and should therefore be supported by the CF.

4.2.6 Requirement 6: Separation of Concerns

The CF should not introduce dependencies between m files and classes, e.g., in the form of
replicated code. Upon changes in the code, such dependencies may necessitate making the same
modification in several places, which implies unnecessary work, reduces code readability, and
increases the risk of errors caused by inconsistent code.

FFI-RAPPORT 23/01288 27

5 The CF API: Central Concepts, Data Structure
and Functions

This section defines concepts that are central to the CF, and needed to design its data structures
and functions. We first determine what we mean by a configuration and configuration structure
(Section 5.1). Then, we discuss what should be included in the scope of a configuration (Section
5.2). Section 5.3 then explains a central concept in the CF, namely the verification level.
Another CF concept, the configuration version, is described in Section 5.4. Finally, in Section
5.5, we present the CF data structures designed to represent and verify configurations.

5.1 Configurations and Configuration Structures

NavLab must be extended to allow a developer to specify the data structure of configurations,
called a configuration structure, in such a way that the requirements in Section 4.2 are satisfied.
It is important to understand the distinction between a configuration and a configuration
structure. A configuration structure is a data structure that represents the build-up of a
configuration, i.e., how its constituents are structured and inter-related. This includes
configuration parameters and their properties and requirements (default values, whether they are
mandatory, etc.), the name and location of an INI file, and any dependencies the configuration
has on other configurations. Note that a configuration structure does not itself include the values
of its parameters, it only describes the structure of the configurations that do contain these
values. The values themselves are stored thus stored in a configuration and are obtained from
the INI file specified in their configuration structure. A configuration structure is provided by
the NavLab developer, a configuration is provided by the NavLab user. As a result, different
NavLab runs often use the same configuration structures, but different configurations.

5.2 The Scope of a Configuration

Before we can represent configurations in the CF, and verify these, it is necessary to clearly
determine the scope of a configuration. This requires establishing the criteria by which to
determine what should and should not be included as part of a configuration and the code
affected by it.

During the CF design, the scope of a configuration was eventually determined to be: all
parameter values controlling the code in parts of, or all of, one single CO. A configuration thus
encompasses a subset of the parameters given in an INI file, and can never affect more than one
CO. Note that one INI file may nevertheless contain parameter values belonging to several
configurations, in which case the INI files contain parameters values affecting several COs.
Furthermore, a CO may use several configurations, and thus several INI files.

 28 FFI-RAPPORT 23/01288

The reasoning behind the above choice of scope is not obvious. This section therefore describes
comparisons of a series of possible configuration scopes, the degree to which they satisfy the
requirements identified in Section 4.2, and why we chose the alternative we did.

During the presentation of the alternatives below, the loadParameters function is mentioned
repeatedly. This function is explained in detail in Section 6. For now, it suffices to know that
the code in loadParameters it executed before each CA to (1) create configuration
structures denoting the requirements of the configurations used in the CA, and (2)
proactively verifying the user-provided configurations (INI files) according to these
structures. Verified configurations are stored in a global registry accessible from anywhere in
the NavLab code.

5.2.1 Configuration Scope

 Requirement

 1 2 3 4 5 6

Alternative A

Alternative B

Alternative C

Alternative D

Alternative E

Figure 5.1 Overview of which requirements (columns) are satisfied by which configuration
scope.

We only want proactive verification of those configurations that are actually used during the
NavLab activities performed by the user. Before we can create data structures to describe such
configurations, we must determine what a configuration regards, i.e., its scope. The scope of a
configuration must be determined in order to determine which parameters belong to a
configuration and which code is affected by a given configuration. We identify six possible
scopes, and discuss the degree to which each one meets the requirements in Section 4. This is
summarized in Table 5.1. The scope we finally chose for the CF, Alternative E, is based on
these discussions. Before we present the discussions, we describe each alternative as follows:

Alternative A: One configuration regards a complete CA. In this case, one
loadParameters function is created per CA to load and verify the configuration of the
entire CA. With this scope, a configuration contains configuration parameters from
multiple INI files that affect all COs in the CA. For instance, the configuration for CA

FFI-RAPPORT 23/01288 29

2-SIM would contain all parameters affecting cSimulator, cTrajSim and all classes
inheriting from cSimSensor.

Alternative B: One configuration regards a complete INI file. In this case, one
loadParamaters function is created per INI file to load and verify one configuration
with all parameters that can be stored in the file. For instance, since estimation
gyroscopes and accelerometers use the same INI file, a single configuration would
contain parameters affecting both sensors. Furthermore, one configuration would
include all parameters belonging to estimator.ini which is used by several CAs,
including CA 0-RUN (start NavLab), CA 1-SMR (selecting a run or mission), CA 4-
LOAD (load sensor data) and CA 5-SUM (create summary report).

Alternative C: One configuration regards a single class. In this case, one
loadParameters function is created per class used in a CO, and this function loads and
verifies the configuration affecting all code in that class. The loadParameters function
is thus not concerned with parameters its sub- and superclasses. For instance, one
configuration structure would be created for the cSimSensor class and a separate one for
the cSimPosm class, even if a cSimPosm COs inherit code from the superclass
cSimSensor. The same would be true for many other NavLab classes, such as those
inheriting from cKfMeas and cSensor.

Alternative D: One configuration regards a complete CO, and contains (a subset
of) the parameters in one INI file that affect the entire CO. Note that a CO may
contain code and variables from many different CO classes. As opposed to in
Alternative C, only a single configuration is loaded and verified per CO, even if it has
code from several super/subclasses. In addition, different COs may have variables and
code from the same class, either because they are separate instances from the same class
or because they share a superclass. In this case, one configuration is loaded per CO even
if they (partly) contain parameters the same class but with potentially differing values.

To adhere to the principle of separation-of-concerns, one loadParameters function is
still created per class, but each one loads and verifies only that part of the configuration
affecting the code in its own class. As such, the loadParameters functions in all
super/subclasses work together to construct the same configuration structure, which
eventually describes all parameters affecting the code in one complete CO. For instance,
only one configuration would describe all code used to model a sensor. Even if a cPosm
CO has code and variables from several different classes, including cPosm and cSensor,
only one configuration structure is constructed with all parameters affecting its
behavior.

Alternative E: One configuration regards only parts of a CO, and contains (a
subset of) the parameters in one INI file that affect only those parts of the CO. This
approach resembles Alternative D, but enables a CO to use parameters from multiple
INI files. As in Alternative D, the loadParameters functions in all super/subclasses
contribute to the same configuration structure for a given CO. However, in Alternative

 30 FFI-RAPPORT 23/01288

E, a CO may be associated with multiple configuration structures. For instance, one
configuration structure would include only those parameters in estimator.ini affecting
the cSummarySensor CO (configured in CA 5-SUM), while a separate one includes
those affecting the cKalmanFilter CO (configured in CA 4-LOAD).

5.2.2 Discussion of alternatives

Alternative A does not meet Requirement 6 (separation of concerns). Since a configuration
affect code in COs, their developer should maintain their configuration structured. In
Alternative A, the loadParameters function introduces dependencies between a CA and the COs
it uses. In case any of the classes of the COs are modified such that its configuration structure
changes, Alternative A requires the modifications to be performed in a completely different
location than in the modified CO classes themselves. This can especially be problematic if
different developers maintain CO classes for the same CA, as they must then modify the same
loadParameters function. Furthermore, it introduces redundancy (and thus dependencies)
among different loadParameters functions: if a CO class used in multiple CAs is modified, all
the corresponding loadParameters functions must also be updated. As a result, Alternative A
introduces an increased risk of code inconsistency, and difficulty determining which
configuration structure describes which CO classes.

Alternative B does no satisfy Requirement 4 (support for several COs per INI file). Several COs
may use the same INI file and not all COs may need all parameters in an INI file. And since
only a subset of COs are used in any given CA, not all parameters in an INI file may be needed
in any given run. The loadParameters function in Alternative B would not be able to determine
which parameters are required for a given run or CA, since it does not have any information
about which COs are used. As a result, it would need to include all parameters in the INI file in
proactive verification. It is however not reasonable to require the user to provide all parameters
in an INI file if the run/CA only needs a subset of those parameters. For instance, CA 5-SUM
(create summary report) only requires some of the parameters in estimator.ini, and CA 6-CAL
(calibrate DVL) only requires some of the parameters in DVL_pre.ini. Furthermore, Alternative
B does not satisfy Requirement 6 for the same reasons as Alternative A.

Alternative C does not satisfy Requirement 3 (support for multiple parameter instances). A CO
depends on configuration parameters affecting the code in all of its super/subclasses. If two
differently configured COs are instantiated from the same class, they need their own, separate
copies of the same configuration parameters, which is not possible if only one configuration is
created per class. Similarly, if two CO classes share the same superclass, two COs instantiated
from this same CO class may need different values for the parameters they share via the
common superclass, which is not possible in Alternative C. For instance, in NavLab the classes
modelling sensors for simulation and estimation inherit parameters from a common superclasses
for which they may have differing values.

Alternative D does not satisfy Requirement 5 (support for several INI files per CO). This is
currently required by cNavEq COs and may be required by COs of other classes in the future.

FFI-RAPPORT 23/01288 31

In Alternative E, all requirements are satisfied by the fact that configurations are represented as
separate objects, one of more of which are created and linked with a CO via its loadParameters
functions. Importantly, it supports the case where CO classes share a common superclass, which
is often the case in NavLab 4 (e.g., with sensor classes). Furthermore, it provisions for the
possibility of having several configurations per CO.

5.2.3 Selected Alternative

Since Alternative E is the only one satisfying all requirements, we define the scope of a
configuration according to that in Alternative E, and design our CF data structure accordingly.
This approach requires configurations to be modelled as separate entities, such that the
loadParameters functions for one CO can handle several configurations, each of which creates a
configuration containing a subset of the parameters in an INI file. Configurations are
represented as objects of the class cConfiguration (described below).

During execution of a CA, at least one cConfiguration object is created per CO. This is done via
the loadParameters function of the corresponding CO class, which also verifies and registers
the cConfiguration objects under unique names in the central configuration registry. For certain
classes, only one CO is instantiated at any point in time. In these cases, the name of the CO
class can be used as the unique name for the configuration. Currently, this is the case for
cNavLab, cPreproc, cSimulator, cKalmanFilter, cSummarySensor, cDvlCalibration,
cExportParam and configureExport_app. For sensor classes, several COs may be instantiated
per class. For instance, in runs involving several positioning sensors, several cPosm COs are
used at the same time. In these cases, a unique name for each sensor’s configuration is formed
by concatenating its class name with the unique sensor name given in preproc.ini, simulator.ini
or estimator.ini.

A single loadParameters function is implemented per CO class, but only the one used to
instantiate a CO (typically a leaf class) needs to be invoked. The invoked loadParameters
function creates a cConfiguration object that is subsequently passed to all loadParameters
functions above it in the class hierarchy (explained in detail in Section 6). The loadParameters
function in each of these classes use the CF API to add to the cConfiguration object their own
set of parameters, which simultaneously loads and verifies the corresponding parameter values
in the user-provided INI file(s).

5.3 Verification Levels

To meet Goal 2 and 3 in Section 4.1 we must be able to verify configurations and present
intuitive information to the user in case a configuration fails verification. This section explains
what we mean by a configuration failing a verification.

The verification of configurations in the CF is mainly concerned with determining how
complete user configurations are. It does this by identifying which elements of a configuration
is provided and which are missing, considering how severe the consequences of missing

 32 FFI-RAPPORT 23/01288

elements are, and determining whether the configurations satisfy the minimal requirements to
execute a CA without errors.

There are many types of issues that may cause the incomplete configurations, some of which
have more serious consequences than others. In the CF, the severity of a configuration issue is
measured in terms of the verification level at which the configuration fails – the lower the
verification level, the more severe the issue. The CF ranks these issues according to the
following seven verification levels (Verification Level 1 regards exceptional errors, and is
therefore explained below the list):

Verification Level 2: Unmet configuration dependencies. A configuration fails at
Verification Level 2 if it depends on other configurations or configuration parameters
that are not provided by the user. This is commonly the case when the user omitted the
parameter specifying location or name of INI file required by another configuration. In
this case, there is no way of determining the location of the INI file containing the
configuration, and therefore no way to verify or even load of the affected configuration.

Verification Level 3: Missing INI file. If the configuration passes Verification Level
2, it is typically possible to find the location and name of the INI file containing the
configuration. It may nevertheless be the case that the INI file does not exist, in which
case the configuration fails at Verification Level 3.

Verification Level 4: Missing required configuration parameter. If the
configuration passes Verification Level 3, the user has provided the required INI file. If
the user omits a required configuration parameter from this configuration, the
configuration and the missing configuration parameters fail at Verification Level 4. By
default, a configuration that passes Verification Level 4 is considered as having passed
proactive verification (this is however configurable via the preventTaskUpon parameter,
as explained below).

Verification Level 5: Missing optional configuration parameter. If all
configurations used in a CA passes Verification Level 4, the user should be able to run
the CA without errors (given, of course, that the configuration structure properly
specifies all required parameters). The user may still have omitted optional parameters
with default values. This may have been done intentionally or unintentionally, and a
user normally wants to know about the latter. Configurations that lack user-provided
values for optional parameters with default values are considered to fail at Verification
Level 5, as are the omitted configuration parameters. The user can obtain this
information at any time by using the CF to inspect all configurations in a CA. This
provides the user with intuitive information about the verification level at which all
configurations and parameters used in the CA fails, allowing the user to quickly locate
any missing configuration parameters.

FFI-RAPPORT 23/01288 33

Verification Level 6: Missing optional configuration parameter without a default
value. This means the same as Verification Level 5, but for parameters without a
default value. This is arguably a less serious issue than failing at Verification Level 5,
since the absence of a default value indicates that the parameter may not be used if not
given a value by the user.

Verification Level 7: No issues. If a configuration passes Verification Level 6, the CF
has not identified any issues with the configuration. Internally in the CF
implementation, this is indicated by a configuration “failing” at Verification Level 7,
even if the configuration passed every stage of the verification process. Verification
Level 7 is included mainly to reduce code complexity.

It is generally the responsibility of the CF to verify the completeness of configurations based
solely on its configuration structure. Therefore, the developer normally do not need to manually
implement any custom verification code, but instead only needs to specify the configuration
structure in the loadParamters function. However, certain omissions of required configuration
elements may be too difficult to detect and/or too uncommon to justify allocating specific
verification code in the CF to detect them. Such omissions may nevertheless yield errors with
sufficiently severe consequences to justify the prevention of CA execution upon their detection.
For instance, when the INI files for sensors do not state the sensor’s class name, their
loadParameters function cannot even be executed, which prevents the identification of any
configuration issues. This is because the loadParameters function must be static and as such can
only be invoked using the class name. In the CF, such errors are called exceptional errors, and
although they cannot be detected by the generic verification code in the CF, the developer may
wish to implement custom error handling code in the loadParameters function that can. Upon
an exceptional error, such code can register in the CF data structure that the configuration failed
at Verification Level 1, along with information about the error and how to resolve it. This
results in the prevention of CA execution and the presentation of the provide information about
the error to the user via the CF GUI.

The parameter preventTaskUpon in navlab.ini specifies the verification level a configuration
needs to pass for it to be considered as verified. If any configuration used in a CA fails at a
verification level lower than or equal to this value, the CA is prevented from execution to avoid
execution errors. By default, this value is set to 4, i.e., a CA is prevented from execution if any
required configuration parameters are missing. To enforce stricter rules on the user-provided
configurations, the value of preventTaskUpon can be increased to, e.g., force the user to provide
values for all optional parameters.

Whenever a CA is prevented from executing, a GUI is presented to the user with intuitive
information about the verification level at which the configurations in the CA fails, with
additional information about how to fix the issue. The same GUI can be opened upon request at
any time via the user inspection facility of the CF (explained in detail in Section 6.4), providing
the user with information about all configurations used in a CA.

 34 FFI-RAPPORT 23/01288

5.4 Configuration Versions

Up to four different versions of a given configuration can exist at the same time, i.e., those with
the states unverified, failed, verified, and applied. This section explains the meaning and
importance of these states.

An unverified version of a configuration is one that exists only as configuration parameters in
an INI file. That is, they have not yet been loaded or subjected to verification by a
loadParameters function. A configuration that is instantiated as a cConfiguration object in a
loadParameters function, and subsequently subjected to verification by the CF, either obtains
the status as a failed or verified depending on the outcome of the verification. All such
configurations are stored in the configurations list in the configuration registry, and the lowest
verification level at which they fail is stored in the configuration’s failLevel property. As
explained in Section 5.3, all configurations that fail at a level higher than that stored in the
preventTaskUpon parameter are considered as having passed verification, and as such obtain
the corresponding status. Conversely, those that fail at a level below or equal to that indicated in
preventTaskUpon obtains the state failed. An applied configuration is one that is not only
verified by the CF, but that has also been successfully used to configure its CO. Thus, the
applied configuration is one that is actually in use at a given point in time (explained in detail in
Section 6.3).

It is important to distinguish between the different versions of the configurations when handling
the dependencies between them. In most situations, it is most appropriate for a dependent
configuration to obtain the required parameters from an applied configuration, simply because
this is the one currently in effect. However, in certain situations, one only has access to the
verified (thus, not yet applied) version of the required configuration. This is the case when the
configuration of an ICO depends on parameters in the configuration of its CO. In this case, the
loadParameters function of the ICO was invoked as part of the execution of the loadParameters
function of its CO. This scenario is perhaps most easily understood via an example: The default
value of the h parameter for simulated sensors is set to the h parameter of the simulator.
Therefore, the former h parameter depends on the latter one. Since sensor classes (which inherit
from cSimSensor) are ICO classes, their loadParameters functions are invoked by the
loadParameters function of their CO class, which is cSimulator. Thus, the verification of the
sensors’ configuration occurs immediately after the verification of the simulator’s configuration,
and therefore invariably occurs before the simulator’s configuration is applied. Importantly, if
the user omits or changes the value of the h parameter in simulator.ini, he/she would expect this
to be reflected in the default value of the sensors’ h parameter at the time its loadParameters
function is called. For this to be the case, the sensors’ configurations need to use (depend on)
the verified version of the simulators configuration, and not the applied one.

FFI-RAPPORT 23/01288 35

5.5 The CF Data Structure

Figure 5.2 Class diagram for the data structure used to represent configurations in the CF.

To facilitate intuitive user inspection and automatic proactive verification, a structured
representation of the configuration parameters in NavLab is required. Such a data structure must
be sufficiently generic and flexible to meet all the requirements of both current and future
NavLab configurations, while at the same time be sufficiently rigid to facilitate uniform,
functional and recognizable representations of configurations throughout NavLab. The latter is
important to enable automatic verification of the completeness of the configurations, for the
developer to quickly understand which information to store about their configurations, and for
the user to easily interpret the information when inspecting a configuration.

This section describes the data structure used by the CF to store information about
configurations in NavLab 4. Since the NavLab 4 implementation is object oriented, we
represent each entity as a MATLAB class. The design of the classes included in the data
structure is based on the analysis of the goals, requirements and the chosen definition of a
configuration scope.

We have decided to include three classes in this data structure. To adhere to the chosen
definition of a configuration scope (Alternative E), a separate class is needed to represent
configuration structures, called cConfiguration7. Configuration parameters are represented as
objects of the class cConfigurationParameter, and stored in a struct in the cConfiguration object
to which they belong. Finally, the configurations must be accessible by all code in NavLab 4,

7 In the naming convention in NavLab 4 class names begin with the character c.

 36 FFI-RAPPORT 23/01288

including the COs that depend on them. We therefore store handles to all created
cConfiguration objects in a globally accessible cConfigurationRegistry object.

All three classes inherit from the MATLAB handle type. Object of these classes are accessible
via their handles, which function in a similar way as pointers in other object-oriented
programming languages. These are described as follows: “Handle classes define objects that
reference the object. Copying an object creates another reference to the same object.” (The
MathWorks, Inc, 1994-2022). By inheriting the handle class, we enable direct manipulation of
the configuration registry, configurations and configuration parameters via their handles. This
way, modifications can be made to the same object from anywhere in the NavLab code as long
as handles to this same object is used.

Figure 5.1 presents an overview of the three classes in the CF data structure, and their most
important properties and functions. The names of the properties and functions are shown to the
left in each class, while the types of the properties and that of values returned by functions are
given in italic font to the right. The arguments to the functions are also given in terms of their
types in italic font. Only the central properties and functions are shown to avoid clutter. Most
helper functions and properties used only internally by a class are also excluded from the figure
to avoid clutter. The details of the CF implementation is obtainable by inspection of the code.

The functions presented in Figure 5.1 constitute the most important part of the CF API used by
the NavLab developer. These are used to implement the loadParameters function as described
in Section 6.2 which makes possible the inspection and proactive verification of configurations.
The most central of these are the create function in cConfigurationRegistry and the setIniFile
and addParameter functions in cConfiguration, which work together to (1) specify the
configuration structure, (2) load the configuration into memory, and (3) verify the configuration.

5.5.1 cConfigurationRegistry

Figure 5.1 shows two class relations and their cardinalities (number of object instances allowed
on each side of the relation). The first relation shows that an object of type
cConfigurationRegistry can be related to zero or more objects of type cConfiguration. This
captures the fact that any number of configurations may be stored in the registry, and zero exist
before any is added. This relation is realized by storing handles to the cConfiguration objects in
a MATLAB data structure called configurations of type Map. Variables of the Map type
maintain a map between pairs of objects of any type. In this case, it maps the name of a
configuration, given as a character array, to a handle to its cConfiguration object. By making
this map directly readable by other objects (public), and the cConfigurationRegistry object
globally accessible, all configurations are made available anywhere in NavLab 4 via their
unique name in the map.

New, empty configurations are created and added to the configurations map using the create
function in cConfigurationRegistry, providing as arguments the name of the configuration and a
character array specifying its dependencies. A configuration may depend on either applied or

FFI-RAPPORT 23/01288 37

verified versions of one or more other configurations and/or on specific configuration
parameters. Said character array contains one token per dependency formatted as follows:
“configuration name[.parameter][:applied or verified]”. The first part is required. It specifies
the name of the configuration the new configuration depends on, or the configuration containing
parameters that it depends on. The two subsequent parts in square brackets are optional. If the
dependency regards a configuration parameter, the name of the parameter is given after a period
sign. Otherwise, the dependency is assumed to regard the configuration as a whole. The final
part may specify whether the configuration depends on the applied or verified version of the
configuration (or parameter). If an INI file is modified and verified (e.g., via configuration
inspection, as explained in Section 6.4.3), but the corresponding configuration is not yet applied,
both verified and applied versions of the same configuration exists at the same time. In this
scenario, the applied version holds the parameter values currently in use by its CO, while the
verified one holds the modified values stored in its INI file. In case the specification of
configuration version is omitted from the dependency list, the applied version is assumed.

Unless all dependencies in the dependency list is satisfied, the create function sets the failLevel
property of the newly created configuration to 2, indicating that the configuration fails at
Verification Level 2 (unmet dependencies). To avoid this, all configurations or configuration
parameters in the dependency marked as verified must in fact exist as verified, and that all those
listed as applied must exist as applied. A handle to the newly created cConfiguration object is
finally returned from the create function. Its setIniFile and addParameter functions are
thereafter used to specify the name of its INI file and to add its parameters.

Configurations are placed in the configuration list in cConfigurationRegistry upon being
subjected to verification, regardless of whether they pass verification or not. Configurations that
have not yet been subjected to verification are therefore recognized as such by their absence
from this list. Whether a configuration have passed verification is determined by examining the
value of its failLevel property – if this exceeds the value of the preventTaskUpon parameter in
navlab.ini, the configuration have passed verification.

It is the responsibility of the developer to store a configuration in the appliedConfigurations
map after the configuration is in fact applied. This is achieved by the developer by calling the
function registerInApplied (further explained in Section 6.3). Whether or not a configuration is
applied can thereby be determined by whether or not it is stored in the appliedConfigurations
map.

Further explanation of the use of the create and registerInApplied functions is provided in
Sections 6.2.1 and 6.3, respectively.

5.5.2 cConfiguration and cConfigurationParameter

The second relation in Figure 5.1 shows that cConfiguration object can be related to zero or
more cConfigurationParameter objects. This captures the fact that a configuration can consist
of an arbitrary number of configuration parameters, and it has zero parameters before any is
added. This is realized via a MATLAB struct called tParameters where the value and name of

 38 FFI-RAPPORT 23/01288

each field is a handle to a cConfigurationParameter object and the name of the parameter,
respectively.

A cConfigurationParameter object has three additional properties: sName (a character array),
sFileName (a character array), and failLevel (an integer). These hold the name of the
configuration, the name of the INI file with its parameter values, and the lowest verification
level at which the configuration parameter fails, respectively.

The functions setIniFile sets the name of the INI file used by the configuration. If the file exists,
it reads contents of this file into a cIniFile object and stores this in the pIniFile property. If it
does not exist, the failLevel property is set to 3 to indicate that the configuration fails at
Verification Level 3 (missing INI file).

The values for the verification levels are stored in named constants8 in the cConfiguration class
where the names indicate the meaning of the verification level. These constants are excluded
from Figure 5.1 to avoid clutter. This class also has a corresponding cell array with descriptions
of each verification level, called esFailLevelDescriptions.

The function addParameter is used to add a configuration parameter to the configuration, and
simultaneously performs configuration verification. The “…” in Figure 5.1 abbreviates
arguments for the parameter’s name (type: character array), whether it is mandatory (type:
logical), whether it has a default value (type: logical), what this default value is (any type), and a
description of the parameter (type: character array). The function creates a
cConfigurationParameter object with the corresponding property values, and passes a handle to
it to the function verifyAndAssign.

In verifyAndAssign, the value property of the newly created cConfigurationParameter object is
assigned the value of its configuration parameter, provided that the INI file exists and was
loaded in the setIniFile function, and that the value was provided in the INI file. The isPresent
property is set to true or false according to whether or not it was present in the INI file. If not,
and the parameter was marked as mandatory, the failLevel of the cConfigurationParameter
object and its cConfiguration object is set to 4 to indicate a missing mandatory parameter. If the
parameter was not provided, and was optional, its value is set to the provided default value if
any, and the failLevel is set to 5 or 6 depending on whether or not a default value exists. The
hasValue function in cConfigurationParameter returns true if it’s parameter’s value is provided
by the user (i.e., isPresent is true) or it has a default value (i.e., hasDefault is true). This
function is used, e.g., to determine if dependencies on the parameter are met. If a configuration
depends on a parameter, the hasValue function of the parameter determines if the dependency is
met. Finally, the getParameter function in cConfiguration takes the name of a configuration
parameter as a function argument, and returns a handle to the corresponding
cConfigurationParameter object (or an empty array if it does not exist).

8 Named constants are explained in (The MathWorks, Inc, 1994-2022).

FFI-RAPPORT 23/01288 39

6 Applying the CF

This section explains how to add CF support to a CO, i.e., how to make the configurations used
by a CO user-inspectable and amenable to proactive verification.

First, Section 6.1 explains how the process of configuring a CO is divided into two stages. Each
stage is explained in detail in the two subsequent subsections. Section 6.2 explains Stage 1,
which is implemented by the loadParameters function, and Section 6.3 explains Stage 2 where
the configuration that was loaded and verified in Stage 1 is applied to configure a CO. Section
6.4 explains how to add support to the front-end code. This allows configurations to be
inspected by the user via the CF GUI, and is required to invoke proactive verification upon the
execution of its CA.

The steps explained in this section are applied to all NavLab code maintained by FFI. This
comprises all COs the eight CAs shown in Figure 3.1. In addition, the CF has been applied to
four template classes provided for demonstration purposes. These template classes are intended
to help developers add CF support in extensions of NavLab.

6.1 The Two Configuration Stages

Figure 6.1 The skeleton of a CO class showing the functions needed to support it by the CF.

Figure 6.1 illustrates the skeleton of a CO class in terms of the functions required to add CF
support to the CO. The overall configuration process is divided into two stages, mirroring the
two tasks performed during configuration prior to the introduction of the CF (described in
Section 3.2). In Stage 1, a configuration is loaded into memory and subjected to verification.

 40 FFI-RAPPORT 23/01288

Simultaneously, the corresponding configuration structure is specified. In Stage 2, a verified
configuration is used to configure its CO, and Stage 2 is executed only if proactive verification
in Stage 1 is passed.

Stage 1 is entirely handled by the loadParameters function, the implementation of which is
structured according to the five steps described in Section 6.2. By following these five steps, the
developer makes sure the loadParameters function does what is required to specify the
configuration structure and load and verify the user-provided configuration. This function is
invoked by the front-end code (described in Section 6.4) whenever the user wishes to inspect the
configurations and to perform proactive verification upon CA execution.

The primary focus in this document is on Stage 1, since this is the most important to meet the
goals in Section 4.1. The CF is nevertheless also useful in Stage 2 (configuring a CO), and its
final step (calling the registerInApplied function) is required to inform the CF that the
configuration is in fact successfully applied. This enables to distinguish between verified and
applied versions of a configuration (explained in Section 5.4). The details of how Stage 2 is
implemented are determined by how the CO is configured, which may vary greatly among
different classes. Prior to the CF, Stage 2 was also sometimes distributed across multiple
functions. Its overall implementation nevertheless typically mirrors that in Stage 1, with the
obvious distinction that the purpose in Stage 2 is to apply a configuration, while in Stage 1 the
purpose was to load and verify it.

6.2 Stage 1

Stage 1 is implemented by implementing the loadParameters function. This function defines
one or more configuration structures, and loads and verifies the corresponding configurations.

The loadParameters function must be implemented as a static function in order to support
proactive verification. This is because the function needs to be executable before any COs are
instantiated. The loadParameters function normally takes only one function argument named
configuration. Additional arguments should be avoided whenever possible, as additional
arguments may make it impossible to call the function from anywhere in the NavLab code. The
reason is that such additional arguments may require information that is available only at certain
locations in the NavLab code. In some cases, additional parameters are nevertheless required,
examples of which will be given in this section.

FFI-RAPPORT 23/01288 41

Figure 6.2 How loadParameters is invoked between COs and ICOs, and between sub and
superclasses.

As discussed in Sections 3.2 and 5, a CO’s configuration holds parameters from the class used
to instantiate it in addition to those from all classes above it in the class hierarchy. To adhere to
the principle of separation-of-concerns, any of these classes should only handle the
configuration parameters that affect the code in that same class. That is, each one implements its
own loadParameters function. To verify the complete configuration of a CO, it is therefore
necessary that all loadParameters functions in all super/subclasses contributing to the overall
configuration structure to be executed. A given configuration nevertheless regards only a single
CO (according to the chosen alternative E described in Section 5.2), which means that all these
executions should “collaborate” to create a single cConfiguration object.

The process to load and verify the configuration of a CO is illustrated in Figure 6.2. For
instance, to the left of the figure we see that Class1 is a subclass of class Superclass. Both of
these are used to create an instance of Class1 CO. We also see that Class1 is an ICO class, since
its loadParameters function is invoked by another CO class, namely Class0.

The process to load and verify the configuration of a CO is initiated by executing the
loadParameters function in the class used to instantiate a CO, which is typically a leaf class. In
the example in Figure 6.2, the loadParameters function in Class1 is invoked first from the
loadParameters function in Class0. Class1 creates a cConfiguration object using
cConfigurationRegistry/create9, which also verifies whether the configuration passes
Verification Levels 2 and 3 and registers it in the configuration registry. Directly afterwards, it
passes this to the loadParameters function of its superclass, here called Superclass. Superclass
then adds its own configuration parameters to the received cConfiguration object. Each
parameter is added using cConfiguration/addParameter, which both adds and verifies the
parameter, i.e., determines whether the parameter and its configuration passes Verification

9 We use this MATLAB syntax to refer to member functions in classes, i.e., the term A/b refers to the member
function b in class A.

 42 FFI-RAPPORT 23/01288

Levels 4, 5 and 6. If Superclass had its own superclass, it would pass a handle to the same
cConfiguration object upwards in the class hierarchy before adding and verifying any of its own
configuration parameters. In this way, the newly created cConfiguration object initially
propagates upwards in the class hierarchy until reaching its root before any configuration
parameters are added and verified.

Afterwards, the cConfiguration object propagates back down in the class hierarchy via return
statements in the loadParameters functions, during which the loadParameters function of each
class adds and verifies the configuration parameters affecting the code in that same class. For
instance, after populating the object with its own parameters, Superclass returns the object to
Class1, which in turn populates it with its own configuration parameters. Therefore, at the end
of the journey through the class hierarchy, the complete configuration for the CO is both loaded
and verified, and exists in the form of a cConfiguration object in the global configuration
registry. The final step of the loadParameters function in Class1 is to invoke the
loadParameters functions of all its ICO classes (if any; in this example only Class 0 has ICO
classes).

The above implementation can be divided into five discrete steps, each of which are described
in the subsections below. The descriptions are accompanied with the example code in figure
Figure 6.3, taken from the template class cSubClass provided with the CF. To properly
demonstrate how everything above is done in practice, the template classes include a subclass
(named cSubClass), its superclass (cSuperClass), and two ICO classes (cIndirect1 and
cIndirect2) the configuration of which is invoked from cSubClass/loadParameters. According
to the explanation above, configuration verification begins by executing the loadParameters
function in cSubClass. Since the implementations of the loadParameters functions in the other
classes follow the same five-step structure, we only list the code in cSubClass for brevity. The
functions used in the code snippets and the list below are explained in Section 5.5.

FFI-RAPPORT 23/01288 43

1 methods (Static = true)
2
3 function esCreatedConfigurations = loadParameters(pConfiguration)
4
5 % STEP 1.1:
6 if(nargin < 1)
7 pRegistry = setgetAppInstance().pConfigurationRegistry;
8 pConfiguration = pRegistry.create(mfilename('class'), {});
9 esCreatedConfigurations = {mfilename('class')};
10
11 % STEP 1.2:
12 pIniFile = [fileparts(mfilename('fullpath')) '\' mfilename '.ini'];
13 pConfiguration.setIniFile(pIniFile);
14 else
15 esCreatedConfigurations = {};
16 end
17
18 % STEP 1.3:
19 loadParameters@cSuperclass(pConfiguration);
20
21 % STEP 1.4:
22 pConfiguration.addParameter('optionalWithDefault', false, true, 42, ...
23 'Optional parameter with default value 42.');
24 pConfiguration.addParameter('optionalWithoutDefault', false, false, 0, ...
25 'Optional parameter without a default value.');
26 pParam3DefaultValue = pConfiguration.getParameter('superclass_param1');
27
28 if(pParam3DefaultValue.hasValue())
29 pConfiguration.addParameter('dependent', ...
30 false, true, param3DefaultValue.value, ...
31 'Optional, parameter with default value from superclass.');
32 else
33 pConfiguration.addParameter('dependent', true, false, 0, ...
34 ['NOTE: mandatory only because missing default value ' ...
35 'obtained from superclass parameter "required"']);
36 end
37
38 pConfiguration.addParameter('ICOClasses', true, false, 0, ...
39 'List of classes of indirectly configured objects (ICOs).');
40 pConfiguration.addParameter('relativeICOIniFileLocation', true, false, 0, ...
41 ['The folder of the INI files used by the ICOs, relative ' ...
42 'to the folder of the INI file for cSubclass.']);
43
44 % STEP 1.5:
45 pICOParam = pConfiguration.getParameter('ICOClasses');
46 if(isa(pICOParam, 'cConfigurationParameter') && ...
47 pICOParam.hasValue())
48 ICOArray = pICOParam.value;
49 for i=1:numel(ICOArray)
50 ICOClass = ICOArray{i};
51 loadParametersFunction = ...
52 str2func(strcat(ICOClass, '.loadParameters'));
53 esNewConfig = loadParametersFunction();
54
55 esCreatedConfigurations = {esCreatedConfigurations{:} esNewConfig{:}};
56 end
57 end
58 end % loadParameters
59 end % methods (Static = true)

Figure 6.3 Template codfor the loadParameters function in cSubClass.0

44 FFI-RAPPORT 23/01288

The five steps needed to implement a loadParameters function are explained in the following
subsection. The line numbers mentioned are those in Figure 6.3, which shows the
loadParameters function of the template class cSubClass.

6.2.1 Step 1.1: Create and register the configuration(s) in the global configuration
registry

Step 1.1 is primarily achieved via the function cConfigurationRegistry/create (Line 8) which
means that the configuration registry must first be obtained from the app object (line 7). An
explanation of the app object is found in (Kristiansen, 2022). Since cSubclass COs only depend
on a single INI file, only one configuration is needed. Therefore, the name of the configuration
(the first argument of create) is set to the name of the class as obtainable via the mclass
function. As explained in Section 5, this ensures that the configuration is given a unique name
whenever only one object is ever instantiated from the class (which is the case for many of the
classes in NavLab).

The dependencies of the configuration must be specified as the second argument to the create
function. As revealed in Line 8, cSubclass COs does not have any dependencies. Configurations
for the template classes cIndirect1 and cIndirect2 do however have such a dependency, i.e., on
the parameter relativeICOIniFileVerified in cSubclass. This is reflected by the arguments used
to create their configurations. Below is the corresponding statement in
cIndirect1/loadParameters:

pConfiguration = registry.create(mfilename(‘class’), ...
{’cSubclass:verified’, ...
‘cSubclass.relativeICOIniFileLocation:verified’});

cIndirect1 and cIndirect2 are ICO classes, and their loadParameters functions are invoked from
their CO class cSubclass. The second function argument shows that the ICO configurations
require that the cSubclass configuration has been loaded and verified. Note that since the
loadParameters functions of these ICOs are executed from cSubclass/loadParamters, which is
executed proactively before any cSubclass COs are instantiated, the dependent configurations
could not yet have been applied. Hence, the keyword “verified” is used in the dependency list
above. As discussed in Section 5.4, the same situation occurs in CAs 2-SIM, 3-PREP and 4-
LOAD.

Since the loadParameters function of a CO class invokes the loadParameters function of all its
ICO classes, several configurations may be created as the result of a single execution of a
loadParameters function. loadParameters is normally invoked by front-end code, which
requires that a list of all such created configurations are returned from loadParameters. The
reason is that information about these configurations may need to be displayed to the user. This
is either because the user explicitly requested to inspect the configurations or because proactive
verification failed (both of which could be why loadParameters was called in the first place),
and the GUI that presents such information needs to know which configurations to present

FFI-RAPPORT 23/01288 45

information about. Therefore, the name of the configuration created in Step 1.1 must be added
to the return value esCreatedConfigurations, as shown in Line 9.

6.2.2 Step 1.2: Specify the name of the INI file

Step 1.2 is performed in Lines 12 and 13. First, the name of the INI file is determined. In this
case, both the path to the file and the filename is pre-determined. This is however not the case in
the loadParameters function in cIndirect1 and cIndirect2, the location of which is determined
by the parameter relativeIniFileLocation in configuration cSubclass. This explains the
dependencies mentioned in Step 1.1 that configurations cIndirect1 and cIndirect2 have on
cSubclass.

Once the path and name of the INI file is determined, it is assigned to the newly created
configuration (Line 13) using cConfiguration/setIniFile. If the INI file exists, it is loaded;
elsewise cConfiuration/setIniFile sets the failLevel property of the configuration to 3 (missing
INI file).

6.2.3 Step 1.3: Pass the configuration to the superclass

In Line 19, the newly created configuration is passed to the loadParameters function of its
superclass for it to add its parameters. Only after the superclass has added its parameters, the
parameters of cSubclass is added in Step 1.4. It is typically a good idea to let superclasses add
their configuration parameters before subclasses add their own. This is because the properties of
the parameters in a subclass, such as their default values, may depend on the values of
parameters in the superclass. An example of this is given in Step 1.4 below.

In cSuperclass/loadParameters, all steps except Step 1.4 can be omitted, as it does not need to
create a new configuration (it uses the one received from cSubclass), and it does not have its
own ICO classes (only cSubclass does).

6.2.4 Step 1.4: Add configuration parameters relating to this class

In Lines 22 to 42, cSubclass adds its own configuration parameters to the newly created
configuration with cConfiguration/addParameter. The parameters titled dependent and
ICOClasses are particularly noteworthy, the latter of which is discussed under Step 1.5 below.
The first, named dependent, obtains its default value from the parameter superclass_param1
which is added in cSuperclass/loadParameters. Thus, if a value for superclass_param1 is not
provided by the user, the dependent is marked as required. This dependency shares similarities
with that in CA 2-SIM between the cSimulator configuration and cSimSensor configurations.
The h parameter of cSimulator configuration is used as a default value for the h parameter of the
cSimSensor configuration. In case the value for the h parameter is not given in the cSimulator
configuration, that for cSimSensor configurations are marked as required. A key difference is
however that in CA 2-SIM, the dependent and required parameters belong to different
configurations, while in the case with cSubclass and cSuperclass the parameters belong to the
same configuration. Since the latter is an intra configuration dependency, it is not listed in the

46 FFI-RAPPORT 23/01288

second argument to the create function in Step 1.1, which only contains inter-configuration
dependencies.

In the presence of intra-configuration dependencies the loadParameters function may not
always be able to specify in a configuration structure all the parameters that belong to a
configuration. This is for instance the case with the intra-configuration dependencies found in
NavLab described in Section 3.4. Here, the names of some parameters of simulated sensors are
determined by the values of other parameters in the same configurations. Thus, the names of the
former parameters cannot be determined in the absence of the latter ones. Since all
configuration parameters need names, loadParameters cannot add the former parameters to the
configuration structure. In such cases, it is important that loadParameters does not “give up”
and return, but rather continues adding all the parameters it can the configuration structure. This
is because this configuration structure contains the information displayed to the user inspecting
the configuration, and the user should be provided with as much information about the
configuration as possible. Importantly, the user should be informed about the missing
parameters that are required to meet the above-mentioned intra-configuration dependency.

6.2.5 Step 1.5: Call the loadParameters function of all ICOs

Lines 45 to 57 implements Step 1.5 of the loadParameters function. This step iterates the list of
ICO classes specified by the ICOClasses parameter. Each class name in the list is used to
construct a handle to the corresponding ICO class’ loadParameters function, which is thereafter
executed. As mentioned under Step 1.1, the names of all created configurations must be
included in the list returned from loadParameters. This includes the names of configurations
created by ICOs, which are added to the list in Line 55.

Lists similar to ICOClasses are found in CA 2-SIM, 3-PREP and 4-LOAD, where the simulator,
preprocessor and estimator need such lists specifying the sensors to use. Instead of class names,
these lists hold the names of the sensors’ INI files, which in turn contain the name of the sensor
classes. Thus, in these cases the class names of the sensor ICOs must be read from the INI files
before their loadParameters functions can be invoked.

6.3 Stage 2

In Stage 2 a configuration is applied to a CO. At the time Stage 2 begins, we can assume that the
configuration(s) of a CO is loaded and has passed verification in Stage 1. Given that
loadParameters have correctly specified the structure of the configuration(s), including the
locations and names of its INI files, its dependencies and its mandatory parameters, we can
assume that a working configuration is available in the global configuration registry at the time
Stage 2 begins.

Stage 2 can and should be implemented to meet the unique requirements imposed by the
specific CO. For this reason, and because the CF is primarily concerned with the user inspection
and verification of configurations, the CF does not (and should not) impose any strict

FFI-RAPPORT 23/01288 47

restrictions for how to implement Stage 2 (although it strongly encourages the implementation
of Step 2.5 described below). The descriptions in this section will therefore be much briefer than
those of Stage 1 above.

In NavLab, the different CO classes apply configurations to their COs in a very similar manner.
These activities can generally be divided into the five steps 2.1 to 2.5. Prior to the introduction
of the CF, some NavLab classes performed some of their configuration verification in Stage 2
code. This section describes how this code can be modified to avoid repeating the configuration
verification that, after the introduction of the CF, was already performed in Stage 1. Actually
implementing these modifications is left for future work (described in Section 7).

In Step 2.1, the cConfiguration object created in Step 1.1 is used to configure a CO. This object
is obtained from the global configuration repository using cConfigurationRegistry/getVerified.
Note that getApplied function should not be used at this point, since the primary task of Stage 2
is namely to apply a recently verified version of the configuration to a CO. Only at the end of
Stage 2 (in Step 2.5), when the configuration has been successfully applied, will the previously
verified version be promoted to an applied version. In the example in the cSubClass template
class, Step 2.1 is carried out with the following statements:

registry = setgetAppInstance().pConfigurationRegistry;

configuration = registry.getVerified(mfilename(‘class’));

In Step 2.2, the obtained configuration is first be passed to functions in the superclass to apply
the verified configuration there. By passing the configuration upwards in the hierarchy before
applying the configuration locally, the configuration is applied in all superclasses in the same
order as they were verified in Stage 1. This way, this process closely mirrors that illustrated in
Figure 6.2. In the cSubClass template class, Step 2.2 is carried out with the following statement:

configureObject@cSuperclass(configuration);

In Step 2.3, the configuration is applied locally to the current class using the parameters stored
in the obtained cConfiguration object. Since the configuration has passed the verification in
Stage 1, we can safely assume that all mandatory parameters are available, all parameter
dependencies are met, and that missing optional parameters are given their default values if they
have one. Optional parameters without default values must though be given special attention as
they may be missing. The cSubClass template class has parameters of all these types, and
implements Step 2.3 with the following statements:

o.optionalWithDefault = configuration.getParameter(‘optionalWithDefault’).value;
o.dependent = configuration.getParameter(‘dependent’).value;
o.ICOClasses = configuration.getParameter(‘ICOClasses’).value;
o.relativeICOIniFileLocation = configuration.getParameter(‘relativeICOIniFileLocation’).value;
if(configuration.getParameter(‘optionalWithoutDefault’).hasValue())
 o.optionalWithoutDefault = ...
 configuration.getParameter(‘optionalWithoutDefault’).value;
end

48 FFI-RAPPORT 23/01288

In Step 2.4, the configured CO calls the functions in all its ICOs that apply their configurations,
each of which performs the five steps in Stage 2 outlined here. In the cSubClass template class,
the list of its ICO classes is stored in the configuration parameter ICOClasses which by virtue of
being marked as mandatory is ensured to have a value. Stage 2.4 is implemented using the
following statements in cSubClass:

for i=1:numel(o.ICOClasses)
% The ICOs are listed in terms of their class names.
ICOClass = o.ICOClasses{i};

% Since Stage 2 functions are not static, we can only call
% these after instantiating the ICOs (which is anyway
% required for further execution of the activity).
ICOConstructor = str2func(strcat(ICOClass));
ICOInstance = ICOConstructor();
ICOInstance.configureObject()

end

After completion of Step 2.4, the cConfiguration object used to configure the CO are to be
considered as applied, which is important to signal to other COs depending on this CO. This is
done in Step 2.5 using the function cConfigurationRegistry/registerInApplied:

registry.registerInApplied(mfilename(‘class’));

6.4 Front-End Integration

Correct implementation of the loadParameters function is a prerequisite to enable the inspection
and verification of configurations via the CF framework. However, access to these facilities
requires mechanisms connecting the GUI to the loadParameters functions such that (1) the user
can choose to inspect all configurations used in a given CA from the GUI, and (2) all
configurations used in a CA is proactively verified upon the execution of said CA. These
mechanisms are put in place with minor additions to the front-end code, and the use of the
summaryGUI.mlapp provided as part of the CF.

FFI-RAPPORT 23/01288 49

6.4.1 summaryGUI.mlapp

Figure 6.4 Screenshot of summaryGUI.mlapp.

summaryGUI.mlapp is an AppDesigner app with a GUI specifically designed for the purpose of
providing an immediate and intuitive overview of a set of configurations – typically all
configurations used in a CA. A screenshot of this GUI is shown in Figure 6.4. The GUI is
opened by invoking the constructor of the summaryGUI class with two function arguments: a
cell array specifying the names of the configurations to inspect, and a character array which is
displayed in the title bar at the top of the GUI window.

This GUI is primarily designed to be displayed in two circumstances: (1) when the user wishes
to inspect the configurations used in a given CA, and (2) whenever a CA is prevented from
executing because one or more of its configurations failed proactive verification. In the latter
situation, the GUI is displayed to allow the user to quickly identify the missing configuration
elements. The names of the configurations given in the first constructor argument are those
given to the configurations when they were created with cConfigurationRegisty/create
(explained in Section 6.2.1). The second argument to the summaryGUI constructor is used to
inform the user of the circumstance under which the SummaryGUI app was opened.

50 FFI-RAPPORT 23/01288

Figure 6.5 The contents of the drop-down lost for CA 2-SIM, showing configurations with
issues of varying types.

As can be seen in Figure 6.4, the GUI consists of six overall elements: a drop-down menu at the
top, three text fields and a button titled “Edit/Create INI file” in the middle, and a table at the
bottom. The drop-down menu at the top has one entry per configuration in the list passed as an
argument to the summaryGUI constructor. The text fields and table display information about
the currently selected configuration in the drop-down menu. As can be seen in Figure 6.5, each
entry in the drop-down menu states the name of the configuration and a textual description of
the lowest verification level at which it fails (verification levels are explained in Section 5.3).
This verification level at which a configuration fails, and the textual description of this
verification level, is obtained from the failLevel and esFailLevelDescritions properties of the
cConfiguration class. The three text fields show the INI file used for the configuration, the
dependencies of the configuration (as specified when the configuration was created), and a
note/description of the configuration (stored in the note property of the cConfiguration class).

As mentioned above, the GUI is shown either upon explicit user request, or upon one or many
configurations failing proactive verification when the user attempts to execute a CA. As seen in
Figure 6.5, in these cases the user can quickly identify which configurations fail at which
verification levels by simply opening the drop-down menu. Once the configuration is opened,
the user can inspect the information in the remaining GUI elements to identify the issues, and
press the button labelled “Edit/Create INI file” to edit the corresponding INI file, or create it if it
is missing. In the case the configuration has exceptional issues (i.e., fails at Verification Level
1), has unmet dependencies and/or or lacks information about the location of the INI file (i.e.,
fails at Verification Level 2), or misses the specified INI file (i.e., fails at Verification Level 3),
information about this is presented in the respective text boxes.

Any issues with individual configuration parameters are easily identifiable in the table at the
bottom. Each row in the table contains information about one of the configuration parameters of
the currently chosen configuration. The table has seven columns titled Name, Issues,
Description, Value, Mandatory and Default value and contain the name of the parameter, a
textual description of its lowest failed verification level, a description of the parameter (stored in
the sNote property of cConfigurationParameter class), whether the parameter is mandatory or
not, and what, if any, its default value is. The rows are sorted first in decreasing order of failed
verification level, such that the parameters with most severe issues are presented at the top of
the list, and thereafter alphabetically according the parameter name. The background colors
reflect the severity of any issues with the configuration parameters. Missing and required
parameters are shown with a red background color, to clearly signal to the user which

FFI-RAPPORT 23/01288 51

parameters must be added to ensure a working configuration. Missing parameters with a default
value are shown in yellow. This is because the user should be made aware of which parameters
affect the behavior of the CA, even if the CA runs without errors. The user may simply have
forgotten to include, or was not aware of the presence of such configuration parameters. By
clearly highlighting these parameters with a yellow background color, and placing them towards
the top of the table, the user is immediately made aware of the parameters and their default
values. Missing parameters without default values are shown with a grey background color,
suggesting that their omission typically means they have no or little impact on the code.
Parameters with no issues, or issues considered to be of low severity, are shown with a green
background color.

Once issues are identified, the user can press the button labelled “Edit/Create INI file” to fix
them. At the current time of writing, the GUI will not update automatically after modifying the
INI file. Thus, to evaluate the effect of the modified INI file, the user needs to close the
summaryGUI window and re-open it. The GUI will be re-opened whenever explicitly requested
by the user or upon failing proactive verification.

6.4.2 Invoking Proactive Verification upon CA Execution

Proactive verification of configurations should occur before the execution of the CA affected by
the configurations. A CA is executed upon a GUI request, typically by pressing one of the
buttons shown in Figure 3.1. Interaction with any such GUI component invokes its callback
function, and such functions constitute the starting point of CAs in NavLab. Therefore, the code
to invoke proactive verification must be placed at the beginning of the callback function of the
corresponding CA. This is achieved by executing the loadParameters functions of all CO
classes used in the CA, except for ICO classes whose loadParameters functions are executed
indirectly via that of their CO class. In case the verification fails, this code should prevent the
CA from executing and invoke the summaryGUI application to inform the user about issues.
The user can then fix these issues before re-attempting to execute the CA.

For instance, to achieve the above for CA 2-SIM (performing a simulation) the following code
must be added to the beginning of the callback navlab/pbSimulator_Callback for the button
labelled “Simulator”:

esConfigurations = cSimulator.loadParameters();
if(app.pConfigurationRegistry.getMinFailLevel(esConfigurations) <= ...

app.pNavLab.preventTaskUpon)
pSummaryApp = summaryGUI(esConfigurations, ...

[’Defect configuration(s) for simulation - aborting task. ‘...
‘Try again after fixing the configuration(s).’]);

return;
end
% Below this point is code that executes CA 2-SIM

52 FFI-RAPPORT 23/01288

In the first line, the static function cSimulator/loadParameters is invoked, which results in the
verification of the configurations used by the simulator. cSimulator also invokes the
loadParameters function of all its ICO classes, i.e., that of the trajectory simulator (cTrajSim)
and those of all simulated sensors (inheriting from cSimSensor). Therefore, the configurations of
all COs involved in CA 2-SIM is proactively verified as a result of the single statement in the
first line in the code above. As described in Section 6.2.1, the names of all configurations
subjected to verification as a result of a loadParameters call is contained in the returned list.
Note that this list is not known before executing loadParameters, as the COs used in a CA may
vary depending on the contents of INI files. This list is passed to
cConfigurationRegistry/getMinFailLevel to determine whether or not all configurations have
passed proactive verification. All configurations have passed verification if the lowest level at
which any configuration fails exceeds that specified by the preventTaskUpon parameter in
navlab.ini. If verification fails, the list of configuration names is passed as an argument to the
constructor of summaryGUI to inform the user of the critical issues with the configurations, and
to let her/him fix the issues before re-attempting CA execution. One example of this is shown in
Figure 6.4. Here, the configuration for the cSimulator CO fails since the user omitted the
required parameter “h” from simulator.ini.

6.4.3 Inspection of Configurations upon User Request

The user may wish to inspect the configurations used in a CA to get an overview of all available
configuration parameters, their properties, and their current values as specified in INI files or via
default values. summaryGUI.mlapp is designed to provide such an overview, not only upon
failed proactive verification, but also at any time the user explicitly wishes to inspect the
configurations.

The ability to inspect configuration used in a CA can easily be added via (1) a GUI element to
request the inspection, and (2) a few lines of code in its callback. The code in the callback will
be almost identical to that in Section 6.4.2. First, it must obtain the names of all configurations
affecting the CA by invoking the loadParameters functions of the CO classes implementing the
CA. This list is then passed to the constructor of the summaryGUI class for user inspection.

Figure 6.6 The entry added to the context menu of the simulator button to let the user inspect
the configurations used in CA 2-SIM (perform a simulation).

In our application of the CF, the context menu was chosen as the type of GUI element allowing
the user to request the configuration inspection. One such context menu was added to all GUI
elements used to execute a CA. For instance, for CA 2-SIM (performing a simulation), a context

FFI-RAPPORT 23/01288 53

menu was added to the button labelled “Simulator”, as shown in Figure Figure 6.6. The callback
function of this menu item is as follows:

esConfigurations = cSimulator.loadParameters();
if(~isempty(esConfigurations))
 pSummaryApp = summaryGUI(esConfigurations, ...

‘Inspecting all configurations used during simulation.’);
end

We see that the code is identical to that in Section 6.4.2 with one exception. In the code in
Section 6.4.2 it was necessary to determine whether or not proactive verification was passed, to
determine whether or not to proceed to execute the CA. This is not necessary when the user only
wants to inspect the configurations used in a CA. An additional minor difference is in the text
passed as a second argument to the summaryGUI constructor to inform about the reason
summaryGUI is shown.

 54 FFI-RAPPORT 23/01288

7 Summary and Possible Future Work

This document presents the NavLab 4 configuration framework (CF), including its
requirements, goals, design, implementation and usage.

NavLab 4 draws much if its strength from being highly configurable. This has however also
resulted in the configuration of NavLab to become quite complex, requiring the user to handle a
large number of parameters and various dependencies between them. Prior to the CF, there was
no way to obtain a structured and intuitive overview of available parameters, making NavLab
configuration a difficult task even for advanced users.

The CF is designed to reduce the difficulty of creating well-functioning and complete
configurations in NavLab. This is achieved by via three core facilities. First, it makes the
NavLab configuration easier for the user via a GUI providing structured information about
available configuration parameters. This includes information such as parameters’ names,
descriptions, default values, whether they are mandatory, their dependencies on other
parameters, which NavLab objects they configure, and which INI file they belong to. Second,
the CF enables automatic and proactive verification of user provided configurations. Whenever
the user requests the execution of a NavLab activity, such as simulation, preprocessing or
estimation, all configurations affecting that activity is first subjected to verification. If
verification fails due to incomplete configurations, the activity is prevented from executing to
avoid potentially non-recoverable errors and error messages that may be difficult to understand.
Instead, the CF provides the user with intuitive information about which elements are missing
and the possibility to add these via a button that opens the relevant INI file. Third, developers
are provided with the concepts, API and instructions necessary to provide CF support for their
code. Using the CF API, the developer can specify the structure and requirements of their
configurations in a global CF configuration registry. This makes their configurations easily
understandable by the user, via the above-mentioned GUI, and amenable to proactive
verification so as to prevent configuration errors.

CF support has been added to all eight NavLab 4 activities maintained by FFI, including
simulation, preprocessing, estimation, DVL calibration and summarizing and exporting analysis
results. Therefore, the above mentioned CF facilities are already available to the user in the
extended version of NavLab 4. The CF is also designed to make it easy to add CF support to
future extensions of NavLab 4.

7.1 Possible Future Work

There are several possible directions for future work. Steps 2.1 to 2.4 in Stage 2 described in
Section 6.3 has not yet been implemented for the eight FFI-maintained activities. Therefore,
there is still remaining code from prior to the introduction of the CF that performs verification
tasks that are now redundant. Since the CF provides a more generic and structured alternative

FFI-RAPPORT 23/01288 55

for many of these tasks, we propose as part of future work to re-write such code according to the
instructions in Section 6.3.

Currently, the automatic verification detects only missing configuration elements. We propose
to extend the CF with the capability to verify the values of configuration parameters. This can
be realized at different levels of sophistication. As a starting point one could simply test whether
user-provided values fall within an acceptable range/domain as specified by the developer.

The current CF GUI provides the user with structured information about configurations and a
button to open the respective INI files to make adjustments. A possible future extension is to
allow the user to modify configurations directly in the CF GUI.

The CF data structure contains information about dependencies between configuration
parameters both within and between configurations. The verification mechanisms currently only
detects unmet dependencies between configurations. The ability to detect unmet intra-
configuration dependencies are left for future work.

Finally, automating the work required by the developer to implement Stage 1 would save time
and decrease the probability of programming errors. This would require automatic extraction of
information about configuration parameters from MatLab code. Exploring different ways in
which this could be achieved, either partly of completely, is proposed as part of future work.

 56 FFI-RAPPORT 23/01288

Appendix

A Overview of Configured Code Supported by the
CF

Table A.1 presents an overview of all CO classes and INI files that may be used as part of the
execution of each CA in NavLab. Whether any given CO class is used depends on the
configuration of the particular run. The loadParameters function is implemented for all COs
listed in this table as part of the application of the CF. Classes that are superclasses of other
classes in the table are marked with «(superclass)».

Configuration
Activity (CA) CO classes

Configuration
invoked by
(if ICO) INI files used

Depends on
configurations

CA 0-RUN: Run
NavLab

cNavLab navlab.ini None

CA 1-SMR:
Select mission
and/or run

cNavLab navlab.ini None

CA 2-SIM:
Simulate

cSimulator

ICO classes:
cSimAtrm
cSimAccm
cSimBVelm
cSimCmps
cSimDepthm
cSimEVelm
cSimEnvironment
cSimGyrom
cSimImu
cSimPosm
cSimSimPosmEllipticError
cSimRange
cSimSensor (superclass)
cSimSoundSpeed1D

cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator

simulator.ini

User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined

cNavLab

cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator
cSimulator

FFI-RAPPORT 23/01288 57

cSimVelm
cTrajSim

cSimulator
cSimulator

User defined
simulator.ini

cSimulator
cNavlab

CA 3-PREP:
Preprocess

cPreproc

ICO classes:
cPreAcc
cPreAttitude
cPreDepth
cPreGeneric
cPreGps
cPreGyro
cPreHeading
cPreImu
cPreImuWithCounter
cPreLocalHipap
cPrePos
cPreUnPressure
cPreUsbl
cPreVelocity
cPreZupt
cPreAposClockAhead
cPreAttitudeWriteHeading
cPreWriteInitialNavigationValues

cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc
cPreproc

preproc.ini

User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined

cNavlab

CA 4-LOAD:
Load data

cKalmanFilter

ICO classes:
cAtrm
cAttitude
cBiasedSensor (superclass)
cCmps
cDepthm
cDvl
cImu
cKfAtrM
cKfAttitudeM
cKfDepthM
cKfDvlWaterTrackM
cKfHeadM
cKfMeas
cKfPosM
cKfRange
cKfVelM (superclass)

cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter

estimator.ini

User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined

cNavLab

 58 FFI-RAPPORT 23/01288

cKfVelRelWaterM
cKfZuptM
cNavEq

cPosm
cRange
cSeaCurrent
cSensor (superclass)
cStateCorrelation
cTraditionalSensor (superclass)
cTvIntervalSensor (superclass)
cZupt
cSensorWithMeasurement (superclass)
cSensorWithOutlier (superclass)

cKalmanFilter
cKalmanFilter
cKalmanFilter

cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter
cKalmanFilter

User defined
User defined
User defined
cov_matrix.ini
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined
User defined

CA 5-SUM:
Create summary
report

cSummarySensor (superclass) estimator.ini cNavLab

CA 6-CAL:
Calibrate DVL

cDvlCalibration DVL_pre.ini cNavLab
cPreVelocity
cDvl

CA 7-EXP:
Export data

cExportParam
configureExport_App

 export.ini
export.ini

cNavLab
cExportParam

Table A.1 An overview of the activities in NavLab, the COs, ICOs, and INI files they may use,
and which configurations depend on which others.

FFI-RAPPORT 23/01288 59

References

Gade, K. (2003). NavLab - Overview and User Guide November 2003 (FFI-Rapport
2003/02128). Forsvarets Forskningsinstitutt (FFI).

Gade, K. (2004, November). NavLab, a Generic Simulation and Post-processing tool for
Navigation. European Journal of Navigation.

Kristiansen, S. (2022). NavLab 4: Migrating to App Designer (FFI-notat 22/01154). Forsvarets
Forskningsinstitutt (FFI).

The MathWorks, Inc. (1994-2022). Define Class Properties with Constant Values. Retrieved
from MathWorks: https://se.mathworks.com/help/matlab/matlab_oop/properties-with-
constant-values.html

The MathWorks, Inc. (1994-2022). Handle Classes. Retrieved from Mathworks:
https://se.mathworks.com/help/matlab/handle-classes.html

About FFI
The Norwegian Defence Research Establishment (FFI) was founded 11th of April 1946. It is
organised as an administrative agency subordinate to the Ministry of Defence.

FFI’s mission
FFI is the prime institution responsible for defence related research in Norway. Its principal
mission is to carry out research and development to meet the requirements of the Armed
Forces. FFI has the role of chief adviser to the political and military leadership. In particular,
the institute shall focus on aspects of the development in science and technology that can
influence our security policy or defence planning.

FFI’s vision
FFI turns knowledge and ideas into an efficient defence.

FFI’s characteristics
Creative, daring, broad-minded and responsible.

Forsvarets forskningsinstitutt (FFI)
Postboks 25
2027 Kjeller

Besøksadresse:
Kjeller: Instituttveien 20, Kjeller
Horten: Nedre vei 16, Karljohansvern, Horten

Telefon: 91 50 30 03
E-post: post@ffi.no
ffi.no

Norwegian Defence Research Establishment (FFI)
PO box 25
NO-2027 Kjeller
NORWAY

Visitor address:
Kjeller: Instituttveien 20, Kjeller
Horten: Nedre vei 16, Karljohansvern, Horten

Telephone: +47 91 50 30 03
E-mail: post@ffi.no
ffi.no/en

	Summary
	Sammendrag
	Contents
	1 Introduction
	2 Method
	3 Configuration in NavLab 4
	3.1 Configuration Activities
	3.2 Configured Objects
	3.3 Required INI files
	3.4 Configuration Dependencies

	4 Goals and Requirements
	4.1 Goals
	4.2 Requirements
	4.2.1 Requirement 1: Proactive Verification
	4.2.2 Requirement 2: Structured Representation of Configurations
	4.2.3 Requirement 3: Support for Multiple Parameter Instances
	4.2.4 Requirements 4: Support for many COs per INI file
	4.2.5 Requirement 5: Support for many INI files per CO
	4.2.6 Requirement 6: Separation of Concerns

	5 The CF API: Central Concepts, Data Structure and Functions
	5.1 Configurations and Configuration Structures
	5.2 The Scope of a Configuration
	5.2.1 Configuration Scope
	5.2.2 Discussion of alternatives
	5.2.3 Selected Alternative

	5.3 Verification Levels
	5.4 Configuration Versions
	5.5 The CF Data Structure
	5.5.1 cConfigurationRegistry
	5.5.2 cConfiguration and cConfigurationParameter

	6 Applying the CF
	6.1 The Two Configuration Stages
	6.2 Stage 1
	6.2.1 Step 1.1: Create and register the configuration(s) in the global configuration registry
	6.2.2 Step 1.2: Specify the name of the INI file
	6.2.3 Step 1.3: Pass the configuration to the superclass
	6.2.4 Step 1.4: Add configuration parameters relating to this class
	6.2.5 Step 1.5: Call the loadParameters function of all ICOs

	6.3 Stage 2
	6.4 Front-End Integration
	6.4.1 summaryGUI.mlapp
	6.4.2 Invoking Proactive Verification upon CA Execution
	6.4.3 Inspection of Configurations upon User Request

	7 Summary and Possible Future Work
	7.1 Possible Future Work

	Appendix
	A Overview of Configured Code Supported by the CF

	References

