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A B S T R A C T

Detection of point scatterers in textured ultrasound images can be challenging. This paper investigates how
four multilook methods can improve the detection. We analyze many images with known point scatterer
locations and randomly textured backgrounds. The normalized matched filter (NMF) and multilook coherence
factor (MLCF) methods are normalized methods that do not require any texture correction prior to detection
analysis. They are especially propitious when optimal texture correction of the ultrasound images is difficult to
obtain. The results show significant improvement in detection performance when the MLCF method is weighted
with the prewhitened and texture corrected image. The method can be applied even when we do not have prior
knowledge about the optimal prewhitening limits. The multilook methods NMF and NMF weighted (NMFW)
are very favorable methods to apply on images where acoustic noise dominates the speckle background.
1. Introduction

Detection of point scatterers in medical ultrasound is essential in
several applications. Some example applications are detection of breast
microcalcifications [1–6], kidney stones [7,8], microbubbles [9,10],
and point tracking [11–13]. Peaks in the textured speckle background
can make it very challenging to detect point targets. This paper investi-
gates if four multilook methods have the potential to improve the point
detection of a textured, standard Delay-and-Sum (DAS) image. The
four multilook methods are introduced in [14], which studied uniform
speckle backgrounds. We now assess the point detection performance
of these methods on textured ultrasound images.

We can adjust the aperture weightings of the ultrasound array
to optimize the signal to noise ratio (SNR) versus the peak sidelobe
levels [15]. The results in [14] show how we can significantly improve
the detection probability and increase the effective spatial resolution
of the image if we apply an optimized whitening transform. Whiten-
ing has previously been used in ultrasound to improve detection of
edges [16,17] or point scatterers in uniform speckle backgrounds [14].
This work studies the point detection performance of prewhitening
combined with texture correction. To get measurable and statistically
significant results, we simulate several images of a point scatterer in
inhomogeneous speckle backgrounds using the Field II software [18–
20]. An inhomogeneous texture predominantly has the same tissue type
with some fluctuations about a mean value [21, ch. 9.2].

The methods in this paper are inspired by multilook techniques
from the radar field [22–25]. In a similar fashion, Masoom et al. detect
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simulated spherical targets in textured ultrasound images by combining
an algorithm from radio astronomy with constant false alarm rate
(CFAR) processing from the radar field in [26]. The multilook technique
is used on synthetic aperture radar (SAR) images and has the potential
to reduce speckle [27, ch. 3.3] [28, p.29]. The method splits the entire
frequency bandwidth of the original image into subsets. The subsets do
not have the same central frequencies. We can in this way get many
images or sublooks from one original image. The contribution from
some of the sublooks are more important in terms of point detection.
The normalized matched filter (NMF) multilook method maximizes point
detection by imposing higher weighting on these sublooks [22–25].
We presented three new multilook methods to improve point detection
in [14]. The multilook coherence factor (MLCF) [14] calculates the ratio
between the coherent and incoherent sum of the sublooks with equal
sublook weighting. It is a simpler method than the NMF method. The
NMF and MLCF are normalized methods and do not require texture
correction prior to detection analysis. The normalized matched filter
weighted (NMFW) and the multilook coherence factor weighted (MLCFW)
methods weight the NMF and MLCF methods with the prewhitened and
texture corrected DAS image.

The performance of the multilook methods is benchmarked against
texture corrected versions of the original and prewhitened DAS image.
The MLCF and MLCFW methods do not need prior knowledge of
the theoretical point signal response. By using suboptimal or wide
prewhitening limits, we test the methods when the optimal whitening
limits are unknown. We also evaluate the methods when a successful
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texture correction is difficult to obtain. Finally, we evaluate the mul-
tilook methods on images where acoustic noise dominates the speckle
background.

Section 2 briefly describes how to measure point detection perfor-
mance, and how to apply prewhitening and the multilook methods. We
discuss how to estimate and correct for texture in Section 3. Section 4
presents the setup for the simulation and detection study. Section 5
presents the detection results for the methods and Section 6 discusses
the observed performances on textured backgrounds.

2. Background

2.1. Point detection

We measure detection performance using the probability of false
alarm 𝑃FA and the probability of detection 𝑃D. We estimate 𝑃FA using
mages containing only speckle, and we estimate 𝑃D using images
ith a point scatterer present [29, ch. 3.3]. We have a simulated
nvironment with known location for the point scatterer and adopt
he detection strategy from [30]. We evaluate a search window around
he known point location, and pick the maximum value within it. The
oint’s SNR metric [14,30] is the point’s relative intensity compared
o the background and it greatly affects 𝑃D. We calculate the average
ntensity of the background around the point location using the speckle
mages without the point scatterer present.

A Receiver Operating Characteristics (ROC) curve displays detection
erformance by comparing 𝑃D to 𝑃FA for a given threshold 𝛾 [31, ch.
.4.2] [29, p. 74]. As in [14,30], this paper presents ROC curves for
FA values up to 0.1. ROC results can also be presented by tabulating
D for a chosen 𝑃FA value or the Area Under the Curve (AUC) [32,
. 315]. The accuracy of the ROC and AUC depend on the number of
ealizations [29, p. 37][30,33].

.2. The whitening transform and spatial frequency limits

Whitening or prewhitening is an operation performed on a signal
o make it more similar to white noise, and thus more suitable to
e analyzed by statistics-based methods [34, p. 399]. A whitening
ransform can be estimated using a secondary data set or by applying
n adaptive method. In this study we have simulated many realizations
f speckle background images. We estimate the smoothed average of
he spatial frequency spectrum used in the whitening transform from
he simulated realizations. For most of the scenarios in this study, we
stimated the average spectrum using the image speckle scenes without
exture or after texture correction. A texture corrected image is an
mage where the amplitude variation of the speckle is estimated and
orrected for, i.e., an image with almost uniform speckle background.
e then apply the inverse of the smoothed average to the Fourier

ransform of the image in question. We refer to the resulting image
s a whitened or prewhitened image in this study. The results in [14]
llustrate the significant improvement in point detection obtained with
n optimized whitening transformed image.

A system’s imaging capability is governed by the point spread func-
ion (PSF) and many parameters affect it [35,36]. The spatial frequency
pectrum is centered on 2𝑘0 = 4𝜋𝑓0∕𝑐 [37, ch. 3], where 𝑓0 is the
enter frequency and 𝑐 is the speed of sound. The aperture size limits
he lateral spatial frequency 𝑘𝑥 and the critical angle 𝛼 [14,36,38,39].
he images in this study are bandpass filtered using lower and upper
requency limits 𝑓𝐿 and 𝑓𝐻 , i.e., 𝑓𝐿 ≤ 𝑓 ≤ 𝑓𝐻 , and demodulated using
he estimated center spatial frequency 𝑘𝐷 (𝑘𝐷 ≈ 2𝑘0). As in [14], we

ensure uniform image resolution by applying an adaptive aperture set-
ting with a range-independent beamwidth. The 𝑓# is the ratio between
imaging depth and active aperture size [21, p. 381]. We used an 𝑓# of
1.75, and the reconstructed images are 20 mm wide with imaging depth
of 20 mm to 60 mm. We use the notation 𝜅𝑥 and 𝜅𝑧 for the normalized
spatial frequencies in the lateral and depth direction.
2

2.3. The multilook methods

The multilook technique is widely used on synthetic aperture radar
(SAR) images [27, ch. 3.3] [28, p. 29]. It splits the frequency bandwidth
of the original image into many subsets. The subsets have different cen-
tral frequencies and they can either be independent or partially over-
lapping [25]. We create a sublook by computing the inverse Fourier
transform of a subset. As in [14], we choose to apply 𝐿 indepen-
dent, non-overlapping, and uniformly spaced subsets to create sublooks
with equal image resolution. The multilook methods evaluate the 𝐿-
imensional sublook vector 𝒚 that corresponds to each image pixel. The
ormalized matched filter (NMF) [22,23,40] and the multilook coherence
actor (MLCF) [14] are calculated on prewhitened images and do not
equire any texture correction prior to detection analysis. For the case
f independent sublooks, NMF is [14]

MF(𝒚) = |𝒂H𝒚|2

(𝒚H𝒚)(𝒂H𝒂)
. (1)

NMF weights the sublooks according to the theoretical point signal
response 𝒂 for each pixel in each sublook. If we weight all sublooks
equally, the test in (1) changes to the ratio of the coherent and
incoherent sum of all sublooks, i.e., MLCF [14]:

MLCF(𝒚) = |𝟏H𝒚|2

(𝒚H𝒚)𝐿
=

|

∑𝐿
𝑛=1 𝑦(𝑛)|

2

𝐿
∑𝐿

𝑛=1 |𝑦(𝑛)|
2
. (2)

We also apply NMF and MLCF as a weighting schemes to the
prewhitened and texture corrected image, DASwhitened+TC. We refer
to these two methods as NMF weighted (NMFW) and MLCF weighted
(MLCFW) images.

NMFW(𝒚) = NMF(𝒚) ⋅ DASwhitened+TC. (3)

MLCFW(𝒚) = MLCF(𝒚) ⋅ DASwhitened+TC. (4)

. Textured scenes

.1. Creating textured backgrounds

Ultrasound images typically include varying echo intensities in
he tissue speckle. Living tissue is full of structure, movement, and
rganization on several length scales [21, ch. 9.1]. An inhomogeneous
exture has the same type of tissue with small fluctuations about a
ean value, while a region enclosing a group of regions with different

haracteristics is called heterogeneous [21, ch. 9.2]. An ultrasound image
an have edges caused by transitions between interfaces or lines caused
y anisotropic muscle fibers, making it more difficult to discern small
oint scatterers. An optimal point scatterer detector needs to handle
onuniform backgrounds.

As in [14], we simulate a huge number of images containing a single
oint scatterer at different positions and images containing uniform
peckle. By combining all the different point only images with every
peckle only image we produce a set of images of a point at different lo-
ations in speckle. By scaling the point only images we control the point
NR value in the final images. Combining the images is mathematically
quivalent to combining the raw channel data since DAS is a linear
rocess. We can also combine the DAS images with random texture
aps to simulate textured backgrounds. The point scatterer will retain

ts point SNR compared to the immediate surrounding background.
oint detection is particularly of interest within a tissue area, such as a
iver or a cyst. We choose to model the tissue backgrounds with random
exture fluctuations of a specific scale such that the size of the texture
s larger than that of a point scatterer but substantially smaller than the
mage scene.

We create a frequency spectrum with a steep Gaussian profile with
aximum value in the center. With a Gaussian texture profile, it is easy

o set a specific scale for the texture blobs as the shape is of the form
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Fig. 1. Example of a random texture map. We first create a frequency spectrum with a
Gaussian distribution and multiply this with a complex random frequency spectrum. An
example is shown to the upper left, and a cut through the spectrum at 𝜅𝑧 is shown to the
upper right. We form the amplitude texture map shown to the lower left by inverting
the created spectrum. To get the textured scene to the lower right, we multiply the
amplitude texture map with the original image. The final DAS image is normalized by
its maximum value and shown with a 30 dB dynamic range.

𝑒−(𝑘2𝑧+𝑘2𝑥)∕𝑠𝑡 , where 𝑠𝑡 sets the scale of the texture fluctuations. We mul-
tiply this Gaussian profile with a complex random frequency spectrum
and get the frequency spectrum shown in the upper subimages in Fig. 1.
Since we simulate the texture, we can measure the texture’s size using
the frequency spectrum. The −6 dB width 𝛥𝑘𝑥 in spatial frequency is
related to the −6 dB width in the image domain

𝛥𝑥texture = 2𝜋
𝛥𝑘𝑥

. (5)

Inversion back to the image domain creates the amplitude texture
map. Fig. 1, bottom left, shows an example texture map with texture
size is 4mm × 4mm, which we refer to as small texture size. We then
multiply the amplitude texture map with the original DAS image to get
the final textured image shown to the bottom right in Fig. 1. The left
subimage in Fig. 2 shows a scene with large texture size of 8mm× 9mm.

3.2. Texture estimation and correction

Texture correction finds slowly varying changes in the amplitude
of the textured image and removes them. This is a necessary step
for simple threshold detection to work. Another option is to have the
detector locally estimate the speckle level [29, ch. 9]. We find a texture
estimate by first applying background smoothing with a sufficiently
large window. The size of the texture must typically be estimated,
which is not always easy to do. Since this is not a study about texture
correction, we choose the texture scale estimated from the texture map
to get the best possible texture correction. We start with median filter-
ing and continue with a Gaussian smoothing kernel with filter size set
to the measured −6 dB texture size. We obtain a texture corrected image
by dividing the original image with the texture estimate. Fig. 2 shows
the texture estimate of an image and the resulting texture corrected
image.
3

Fig. 2. Texture correction of the DAS image (‘‘DAS TC’’) shown to the left. A texture
estimate as shown in the middle is found by applying background smoothing with a
large window. We obtain a texture corrected image as shown to the right by dividing
the original image with the texture estimate. The texture estimate is shown with a 15
dB dynamic range, while the other images have a 30 dB dynamic range. The images
are normalized by their maximum value to be comparable.

Fig. 3. ROC for texture corrected (TC) images using three window filter sizes compared
to original DAS with and without texture. 𝑃FA is shown up to 0.1. The red curve signifies
TC using the measured −6 dB texture size. The red curve lies directly beneath the purple
curve. The purple curve corresponds to 50% larger window size.

The optimal texture correction depends on the scale of the texture.
The ultrasound image can have varying texture, and we must use adap-
tive filtering in such instances. This is not included in this study since
we simplify the study to the same texture size in the whole image scene.
The window size for texture estimation must be sufficiently large to
avoid suppressing point scatterers but at the same time small enough to
capture small scale texture variations. It can be challenging to estimate
large texture variations of small scale. Fig. 3 compares the ROC results
using varying window sizes to the original DAS images without texture
and point SNR of 8.7 dB. Fig. 3 shows how texture degrades the ROC.
Texture correction can improve the detection performance but will
not entirely reach the same performance as non-textured backgrounds.
Using a too small window size reduces 𝑃D and creates a ROC curve only
slightly better than applying no texture correction.

4. Methods

We created raw channel data using the Field II software, and
performed the DAS beamforming using the Ultrasound Toolbox (USTB)
[41] in MATLAB (Mathworks, Natick, MA). The simulation setup is
a replica of the setup used in [14,30]. We used a linear array with
38.1mm aperture size, consisting of 128 elements with 𝜆 pitch. The
center frequency 𝑓0 was 5.1 MHz, the speed of sound was 1540 m∕s
and the transmitted pulse had a frequency bandwidth of 65% of 𝑓0.
Hamming apodization was applied on transmit.
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Fig. 4. Illustration of the detection analysis setup of this study on textured images.
We first apply a whitening transform to the original, textured DAS image while in the
spatial frequency (FFT) domain. We divide the frequency spectrum into subsets and
create sublooks. We apply the multilook methods NMF and MLCF on these sublooks.
To create the NMFW and MLCFW images, we multiply the multilook weights to the
prewhitened and texture corrected image. We assess the point detection performance
of the various methods.

As in [14,30], we simulated radio frequency channel data separately
for the point scatterer and the speckle background. We simulated the
speckle image using at least 20 scatterers per resolution cell, corre-
sponding to 91 000 point scatterers in total per speckle realization. To
obtain images with high, uniform spatial resolution, we used a synthetic
transmit aperture setup with constant 𝑓#. Such a setup transmits from
every consecutive element, receives on all elements, and synthesizes
focus at every pixel. We do not include frequency dependent atten-
uation in the simulations. We coherently combine the resulting point
and speckle images to obtain a final DAS image with a specific point
SNR value. Using focused, uniform amplitude speckle scenes ensures
the same point SNR value regardless of where in the scene the point
target is located.

Fig. 4 shows the detection analysis setup. We simulated 243 focused,
constant resolution, uniform amplitude speckle scenes and 117 single
point images that were coherently combined to form 28 431 speckle
scenes with a single point target. This defines our sample size for
𝑃D and 𝑃FA calculation in our detection performance study. Different
from [14], this study uses textured backgrounds that more closely
resembles a real-world situation. With uniform resolution, we can
simplify the prewhitening process by assuming the same wavenumber
coverage for all pixels. We calculated the point SNR value using the
point scatterer in the center of the untextured DAS image. We chose
a point SNR value signifying relatively weak point scatterers for the
detection studies. The point SNR is 8.7 dB for the original untextured
DAS image for all the scenarios under study except the dominant
additive acoustic noise scenario. In the latter case, the original intensity
of the point scatterer had to be increased to 9.5 dB for it not to be
buried by the noise. Each ROC curve represents 28 431 realizations of
one choice of point SNR value.

Before adding texture, we calculated correction maps from the aver-
age of all speckle backgrounds to ensure uniform average background
intensity. The texture in this study is of two different sizes; 4mm × 4mm
and 8mm × 9mm. We varied the texture amplitude to find an amplitude
fluctuation that distinctly reduces the point detection performance. The
distinct drop in ROC after multiplying the original image with the
amplitude texture map is shown in Fig. 3 by the black and blue curves.
The texture map in Fig. 1 shows the applied amplitude map that we
multiplied to the original image. We also varied the window size for
the texture estimation, as illustrated in Fig. 3.
4

The optimal whitening limits depend on the geometry, system setup,
and the SNR [14]. We also tested the multilook methods combined with
suboptimal or wide whitening limits. Prewhitening suppresses subsets
outside the whitening limits. We applied the following three whitening
limits:

• Optimized: angle 𝛼 with frequency limits {𝑓𝐿, 𝑓𝐻}
• Suboptimal: 𝛼 +10% with {−5% 𝑓𝐿, +5%𝑓𝐻}
• Wide: 𝛼 +30% with {−10% 𝑓𝐿, +10%𝑓𝐻}

Acoustic noise is a realistic scenario as the imaging depth increases.
As mentioned, a ROC study was also performed for dominant acous-
tic noise. To simulate the noise, we created channel data consisting
of white Gaussian noise and basebanded it before beamforming. We
then coherently combined the resulting noise image with the speckle
background image. We applied an adaptive prewhitening for the noisy
background scenario, where we estimated a smoothed average version
of each image’s spatial frequency spectrum and applied the optimal
whitening limits. We created the point scatterer look vectors for the
NMF method by simulating the actual response of a point scatterer
placed in each pixel and the pixel’s corresponding look vector [14].
We studied the following cases corresponding to realistic scenarios:

• Prewhitening before or after texture correction.
• Optimal prewhitening and texture correction. The optimal

prewhitening limits and the optimal window size for texture
estimation are both known.

• Varying texture size. How do the methods perform on small
versus large texture size? Using optimal prewhitening and texture
correction.

• Varying number of sublooks for the multilook methods. Using
optimal prewhitening and texture correction.

• Suboptimal/wide prewhitening. The whitening limits are approx-
imately known or estimated from the frequency spectrum of the
image. Using optimal texture correction.

• Suboptimal texture correction. The optimal window size for tex-
ture estimation is not known. Using optimal prewhitening.

• Dominant additive acoustic noise. Using optimal texture correc-
tion and adaptive prewhitening with optimal whitening limits.

MLCF and MLCFW are especially of interest in the case of suboptimal
prewhitening since they do not require any prior knowledge about the
optimal limits and the theoretical point signal response in each sublook.

In Section 5.2, we present an example image of the methods ap-
plied on an experimental image acquisition of a CIRS 054GS tissue-
mimicking phantom. The phantom is imaged with a Verasonics linear
probe (L7-4) with 5.2 MHz center frequency and 𝑓# = 1.7. We note
that we only include this example for illustrative purposes. The optimal
spatial frequency bandwidth limits are unknown in this example case.
The frequency bandwidth is estimated from the image’s frequency spec-
trum, and the angular whitening limit is based on the imaging setup’s
𝑓#. The more straightforward methods MLCF and MLCFW are com-
pelling to use in this scenario since they do not need prior knowledge
about the theoretical point signal response. The multilook methods
used 19 × 15 sublooks.

5. Results

5.1. Prewhitening before or after texture correction

Fig. 2 illustrates texture correction of the DAS image, termed ‘‘DAS
TC’’. Fig. 5 shows the results when the textured image is whitened prior
to texture correction. We refer to this as ‘‘Whitening + TC’’ in the result
figures.

Fig. 6 shows the difference in detection performance when whiten-
ing is applied before or after texture correction, termed ‘‘Whitening +
TC’’ and ‘‘TC + Whitening’’. The red curve shows the ROC results of
only applying texture correction to the DAS images, termed ‘‘DAS TC’’.
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Fig. 5. Texture correction on a whitened image (‘‘Whitening + TC’’). We obtain the
texture corrected image shown to the right by dividing the whitened image shown to
the left with the texture estimate shown in the middle. The texture estimate is shown
with a 15 dB dynamic range, while the other images have 30 dB dynamic range. The
images are normalized by their maximum value to be comparable.

Fig. 6. ROC for texture corrected (TC) images compared to original DAS with and
without texture. 𝑃FA is shown up to 0.1. ‘‘DAS TC’’ signifies applying texture correction
to the DAS image, whereas ‘‘Whitening + TC’’ signifies prewhitening and then texture
correction.

5.2. Example images

We present two example images to illustrate the multilook methods
on textured backgrounds. The first example is the textured ultrasound
image in Fig. 7 with several point scatterers simulated using Field II
software with the same setup as in the detection study. The optimal
prewhitening limits and the optimal window size for texture estimation
are both known in this example. Based on this image alone, it would
seem the multilook methods are better suited for point detection. For
example, at the −16.9 dB threshold, the MLCFW image has zero false
alarms and retains all true positives. In comparison, the whitened image
has zero false alarms at the −4.9 dB threshold. However, the methods
could be stretching the dynamic range [42] and not actually improving
the point detection. As discussed in [14], we must for this reason
measure the detection performance using many independent images or
realizations with known point scatterer locations.

The second example is an image of a tissue-mimicking phantom
imaged and shown in Figs. 8 and 9. The original image is highly
speckled and all four images are shown with a 21 dB dynamic range to
be visually comparable. In the original DAS image, the amplitude dif-
ference between the two point targets is slight. However, the whitening
process increases the intensity difference between the points to 5.6 dB.
5

We note that the optimal whitening filter was unknown and instead
estimated from the frequency spectrum of the image. The multilook
methods use the prewhitened image as input and the resulting figures
further increase the difference between the points. As an example, the
MLCF image has a 10 dB difference between the two point targets and
thereby indicate that the bottom point scatterer is more likely to be a
true point target. The MLCFW image has zero false alarms and retains
both point scatterers at the shown −21 dB threshold. Again, we cannot
ascertain which method is better suited for point detection from a few
image examples. A detailed detection study requires many images with
known point target locations and point SNR values.

5.3. Detection results on simulated images

The dashed black curve in Fig. 10 represents the texture corrected
(TC) DAS images, as illustrated in Fig. 2. Point SNR is 8.7 dB for
the original untextured DAS image for all the scenarios under study
except the dominant additive acoustic noise scenario. The solid black
curve shows the ROC curve for the prewhitened and textured corrected
images (‘‘Whitening + TC’’), as illustrated in Fig. 5. The colored ROC
curves represent the four multilook methods. Since low 𝑃FA values are
of interest, the ROC curves are shown for 𝑃FA values up to 0.1. Fig. 10
presents the results for the multilook methods using 13 × 13 sublooks
on images with large texture variations. This ROC study applied optimal
𝛼-prewhitening and optimal texture correction. Fig. 11 presents the
corresponding AUC results.

Fig. 12 presents the detection performance of MLCFW using varying
number of sublooks. Optimal prewhitening and optimal texture correc-
tion are applied in these cases. The optimal number of sublooks for
the multilook methods on large texture is around 19 × 15, while the
optimal on small texture is around 13 × 13 sublooks.

Fig. 13 presents the ROC results for the four multilook methods
using suboptimal texture correction. The number of sublooks is 13 × 13,
and the texture size is small. The window size used in texture correc-
tion is smaller than the actual texture size, and it therefore slightly
degrades the overall detection performance of ‘‘Whitening+TC’’. All
four multilook methods outperform prewhitening. Fig. 14 presents the
corresponding AUC results. The multilook methods NMFW and MLCFW
have the highest AUC values. Fig. 15 shows the 𝑃D values given 3% 𝑃FA
for the multilook methods when a suboptimal, slightly wider whitening
filter was used. Fig. 15 shows the 𝑃D values when a filter with very wide
whitening limits was used.

Fig. 17 presents the ROC results for the four multilook methods
on images where additive acoustic noise dominates the speckle back-
ground. We applied adaptive prewhitening of the images. Optimal
whitening limits and optimal window size for texture correction are
both known. All four multilook methods perform better than prewhiten-
ing, especially the multilook methods NMFW and NMF. The number
of sublooks is 19 × 15, and the texture size is large. The dotted,
black ROC curve represents the original noisy DAS images without
prewhitening and texture correction. The point SNR is 9.5 dB for the
original untextured images. Fig. 18 presents the corresponding AUC
results.

6. Discussion

Optimized prewhitening significantly improves the detection per-
formance when combined with texture correction. Prewhitening prior
to texture correction achieves a much higher detection performance
than applying texture correction first, as shown in Fig. 6. This is
because prewhitening improves spatial resolution, giving a larger scale
difference between point scatterers and texture. This again allows for
better texture correction without negatively affecting the point scat-
terer response. The AUC results for prewhitening are higher in the case
of large texture. An optimal texture estimate is easier to achieve with
slowly varying texture, such as in Fig. 5.
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Fig. 7. Ultrasound image with seven point scatterers in a textured background. The red circles in the original DAS image indicate the locations of the true point scatterers. The
multilook methods NMF, MLCF, NMFW, and MLCFW used 19 × 15 sublooks and 𝛼-prewhitening. To be visually comparable, the images are normalized by maximum and shown
with a 19 dB dynamic range.
Prewhitening uses a classical spectral estimator, which requires that
the input signal is stationary and ergodic [34, p. 399]. An amplitude
trend in the data as a function of depth can be compensated by applying
a time-varying gain or depth correction to remove the transmission loss
effects before entering the spectral domain and applying prewhitening.
6

When the spectrum shape changes with depth, the signal is strictly non-
stationary even after depth correction. A fixed prewhitening filter is
then suboptimum, and a depth-dependent prewhitening filter can be
applied. We expect the multilook methods to do better than prewhiten-
ing and texture correction in such cases. If the amplitude variations
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Fig. 8. Whitening filter limits for an ultrasound image of a tissue-mimicking phantom
where the optimal frequency limits are unknown and must be estimated from the
image’s frequency spectrum. The angular limit is based on the 𝑓#. The chosen area is
divided into subsets for the multilook methods.

Fig. 9. An ultrasound image of a tissue-mimicking phantom with point scatterers in a
highly speckled background. The original image is shown with the whitened and texture
corrected image and the multilook methods MLCF and MLCFW. The whitening limits
are estimated from the image’s frequency spectrum. The red circles indicate the true
point scatterers. To be visually comparable, the images are normalized by maximum
and shown with a 21 dB dynamic range.

in the ultrasound image are considerable, it may be beneficial first
to apply texture correction to achieve stationarity before applying
prewhitening.

By comparing the AUC results in Fig. 12, it is evident that both
prewhitening and the multilook methods perform better when the tex-
ture size is large. The results in Fig. 12 show how the multilook method
improves its detection performance when the number of sublooks
decreases. Table 1 summarizes the observed behavior of the multilook
methods using a varying number of sublooks when applied to different
image backgrounds. Fewer sublooks increases the calculation speed of
the multilook method. Textured scenes require sublooks with higher
image resolution than the uniform speckle backgrounds previously
studied in [14]. The numerator in (1) retains full image resolution
regardless of the number of sublooks. However, the denominator im-
proves its background estimate when the sublooks are many but have
high image resolution. Therefore, the optimal number of sublooks
depends on the texture size. A small texture size requires subsets with
larger bandwidth to be discernible in the resulting sublooks. The results
7

Fig. 10. ROC for the four multilook methods using 13 × 13 sublooks on images with
large texture variations. Optimal 𝛼-prewhitening and optimal texture correction are
applied.

Fig. 11. AUC for the four multilook methods using 13 × 13 sublooks on images with
large texture variations. Optimal 𝛼-prewhitening and optimal texture correction are
applied.

Fig. 12. AUC for the multilook method MLCFW using optimal ‘‘Whitening + TC’’ and
a varying number of sublooks on images with small and large texture variations.

Fig. 13. ROC for the multilook methods on DAS images with suboptimal texture
correction (TC). The texture size is small. The methods used 13 × 13 sublooks and
optimal whitening.
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Fig. 14. AUC for the multilook methods when using suboptimal texture correction
(TC). The texture size is small. The methods used 13 × 13 sublooks and optimal
𝛼-whitening.

Fig. 15. 𝑃D given 3% 𝑃FA for the multilook methods using 19 × 15 sublooks combined
with suboptimal prewhitening and optimal texture correction (TC).

Fig. 16. 𝑃D given 3% 𝑃FA for the multilook methods using 25 × 21 sublooks combined
with very wide whitening limits and optimal texture correction (TC).

Fig. 17. ROC for the multilook methods on DAS images with dominant acoustic noise
and optimal texture correction. The texture size is large. The methods are calculated
using 19 × 15 sublooks and adaptive prewhitening with optimal limits.

Fig. 18. AUC for the multilook methods on DAS images with dominant acoustic noise
and optimal texture correction. The texture size is large. The methods are calculated
using 19 × 15 sublooks and adaptive prewhitening with optimal limits.

for the multilook methods are better for slowly varying texture since
we then can use a higher number of sublooks, which improves the
denominator’s estimate.

The results in Figs. 10, 14, and 18 show significant improvement
in detection performance using the image weighted MCFW multilook
8

Table 1
Summary of number of sublooks.

Background Number of sublooks

9 × 9 13 × 13 19 × 15 45 × 25

Homogenous Poor Poor Moderate Best

Large texture Moderate Good Best Poor

Small texture Good Best Good Poor

method. The benefit of MLCFW is that it can be applied even when prior
knowledge about the theoretical point signal response and the optimal
prewhitening limits is unavailable. Even for the scenario of optimal
prewhitening and optimal texture correction in Fig. 10, the ROC curves
for the MLCF and MLCFW methods slightly outperform prewhitening at
low 𝑃FA values.

The ROC study on suboptimal prewhitening in [14] found a signifi-
cant improvement in detection performance for the multilook methods
using 45 × 25 sublooks. The NMFW method performs better than
MLCFW in the case of suboptimal whitening since it incorporates extra
knowledge about the correct point signal response per sublook and can
suppress more unwanted subsets at the edges of the spectrum. However,
the inclusion of texture in this study causes the optimal number of
sublooks to decrease. As a consequence, the multilook methods cannot
suppress as many unwanted edge subsets, and therefore they cannot
achieve the same amount of improvement as found in [14]. The results
on suboptimal prewhitening on textured image scenes show that NMFW
and MLCFW performs slightly better than prewhitening at low 𝑃FA
values, as illustrated by the 𝑃D values in Fig. 15. The difference is
however too small to give the multilook methods higher overall AUC
values. Prewhitening is a robust method even when applied suboptimal
limits. Fig. 16 illustrates a scenario when the whitening limits are
poorly estimated and chosen too wide. The NMFW method performs
much better than the other methods in this case. The number of
sublooks is 25 × 21 to give subsets of similar size as when using the
optimal prewhitening limits.

The image example in Fig. 7 makes it evident that the multilook
methods can increase the threshold difference between false alarms
and true positives. It is more challenging to visually extract the point
scatterers in the whitened image than the multilook weighted images.
Therefore, it can be preferable for an ultrasound operator to see the
multilook images when searching for point scatterers.

The improvements in detection performance for the multilook meth-
ods compared to prewhitening are especially large for image back-
grounds where optimal texture correction is difficult to obtain. This is
shown in Figs. 13 and 14. An ultrasound image can have a varying
texture scale, making it more challenging to obtain an optimal texture
estimate. The image weighting methods NMFW and MLCFW perform
best in Fig. 13 since the applied texture correction still provides some
improvement to the detection performance. However, the NMF and
MLCF methods show great potential when an optimal texture correction
is difficult to obtain, or a normalized method is wanted.

The improvements in detection performance for the multilook meth-
ods compared to prewhitening are significant when acoustic noise
dominates speckle, as illustrated in Figs. 17 and 18. Such a scenario is
realistic as the imaging depth increases. The NMFW and NMF methods
perform especially well in this scenario. They incorporate prior knowl-
edge about the theoretical point signal response in each sublook and
can weight the sublook accordingly.

Table 2 summarizes the observed benefits and setbacks of the
suggested methods in this study.

7. Conclusions

We have studied four multilook methods with the aim of im-
proving point detection in textured ultrasound images. The results
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Table 2
Summary of observed potential benefits and setbacks of the suggested methods.

Scenario Method

Prewhitening MLCF MLCFW NMF NMFW

Optimal whitening &
optimal TC

Large improvement in
detection performance.

Similar performance as
whitening.

Similar performance as
whitening. Slightly better
than whitening in the
case of large texture.

Setback compared to
whitening.

Similar performance as
whitening.

Suboptimal prewhitening
wo/texture

Some reduction in
detection performance,
but still a robust method.

Performs slightly better
than whitening.

Performs slightly better
than whitening.

Performs slightly better
than whitening.

Performs better than
whitening.

Suboptimal prewhitening
w/texture

Some reduction in
detection performance,
but still a robust method.

Similar performance as
whitening.

Performs slightly better
than whitening at low
𝑃FA values.

Some setback compared
to whitening.

Performs slightly better
than whitening at low
𝑃FA values.

Wide prewhitening
w/texture

Reduction in detection
performance.

Similar performance as
whitening.

Similar performance as
whitening.

Performs slightly better
than whitening at low
𝑃FA values.

Performs better than
whitening.

Suboptimal TC Much affected by
suboptimal TC.

Not affected by TC. Improvement due to
weighting with MLCF.

Not affected by TC. Improvement due to
weighting with NMF.

Poor TC Much affected by poor
TC.

Not affected by TC. Affected by poor TC. Not affected by TC. Affected by poor TC.

Dominant additive
acoustic noise

Improvement compared
to only TC, but method
enhances much of the
noise.

Method weights sublooks
using coherence.

Method weights sublooks
using coherence.

Method weights sublooks
according to theoretical
point signal response.

Method weights sublooks
according to theoretical
point signal response.

Computational
complexity

Low Medium Medium High High

Color coding: Poor Good Great
show significant improvement in detection performance using opti-
mized prewhitening on images where an optimal texture correction
is easily obtained. An improvement in detection performance is also
found for the image weighting multilook method MLCFW. When de-
tecting point targets in textured backgrounds, the multilook methods
require sublooks with higher image resolution than in uniform back-
grounds. In general, the methods perform best when using many
sublooks with high image resolution. The optimal number of sublooks
depend on the texture size. The methods in this study perform best on
the images with slowly varying texture. The NMF and MLCF methods
are normalized and perform better than prewhitening when an optimal
texture correction is difficult to obtain. The multilook methods perform
better than prewhitening when acoustic noise dominates the speckle
background.
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