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ABSTRACT

In radar applications, the bandwidth of a transmitted pulse
determines the range resolution and the ability to disclose
densely spaced targets. The processing of radar signals is of-
ten carried out through matched filtering (MF) which aims
to maximize the signal to noise ratio. This work presents
an alternative processing scheme for oversampled radar sig-
nals based on small-sized neural networks. The networks are
trained with an objective to return MF outcomes correspond-
ing to a higher bandwidth pulse. The article demonstrates
how such a neural network design can be constructed and
compares against traditional processing and detection.

Index Terms— Matched filter, pulse compression, mis-
matched filter, neural networks, LFM, CFAR

1. INTRODUCTION

Transmission and reception of signals is a basic fundamental
process of any active radar system. The shape and form of
the pulses subsequently plays a key role in determining the
overall system performance of a radar setup. Particularly, the
bandwidth of the applied waveform is an important parameter
in pulse compression as this regulates the range resolution and
ability to distinguish between densely spaced targets [1]. .

A popular class of radar waveform often employed in
radars are linear frequency modulated (LFM) pulses who
have been studied extensively over the years [1]. LFM pulses
sweep a desired bandwidth and provide high range resolution
decoupled with the duration of the pulse. The incoming re-
flections may be processed through matched filtering (MF)
which is an optimal solution with respect to signal to noise
ratio (SNR). There is thus no advantage in trying to repli-
cate MF with neural networks (NN), however, alternatives
to MF, often denoted as mismatched filtering or least-square
estimation methods, are known techniques and can be used
to e.g. control the sidelobe levels at the expense of other
properties [2, 3, 4, 5]. A NN can conceivably be implemented
to perform mismatched filtering given specific optimization
requirements. Although machine learning has been in much
focus over the years there has been limited research on this
topic as most of emphasis has been on target detection and
classification where underlying radar processing has already
been carried out [6, 7, 8].

In a related work [9] it is shown that the resolution of in-
coming LFM radar signals can be enhanced using machine
learning methods. The proposed method, however, relied on
processing of signals bin by bin with significant computa-
tional complexity. This work can be seen complementing the
previous paper as processing of the full signal is now pro-
posed carried out in a single step which corresponds directly
to a frequency domain type of approach. To evaluate the out-
comes, the paper presents simulation results including con-
stant false alarm rate (CFAR) [10] target detection tests il-
lustrating an improvement with the incorporation of a trained
neural network.

2. SYSTEM MODEL

A standard radar model is assumed where an LFM pulse is
transmitted at regular intervals. The pulse is defined as

p(t) = exp (j2π((f0 −
∆f

2
)t+

∆f

2T
t2)), (1)

where f0 is the carrier frequency and ∆f is the bandwidth.
The pulse starts at t = 0 and terminates at t = T . The receiv-
ing signal containing N target reflections may thus be char-
acterized as

s(t) =
N∑
l=1

ρnp(t−∆n)ej2πνlt + z(t) (2)

where ∆n corresponds to the delay of reflector l, ρn are
complex-valued reflection coefficients, νl corresponds to fre-
quency shift due to target velocity and z(t) is white Gaussian
noise. The radar is set to cover a certain range up to rmax
and the incoming data is collected with R number of samples
after emission of each pulse. In vector notation, the discrete
sampled pulse p(t) is assumed to consist of L samples and is
denoted by p ∈ CL while the sampled signal (2) is indicated
by s ∈ CR. For simplicity, but without loss of generality, in
the following the aspects behind downsampling and baseband
conversion are ignored. The sampling rate of the radar system
is given by fs and is set to satisfy fs > 2∆f. As typical for
many modern systems, the sampling rate may be significantly
higher as oversampling is often employed.

In the main processing step, a MF operation is assumed
carried out on the receiving data using the conjugated and
time-reversed discrete version of the emit pulse, p∗. This
pulse may optionally be tapered with a windowing function
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to control the sidelobes [11, 12] and is denoted by p∗
w, result-

ing in the outcome y = s ∗ p∗
w = r(s) ∈ CR, where ∗

is the convolution operator. This is a standard technique for
pulse compression and normally carried out in frequency do-
main for computational reasons. This procedure can also be
expressed through the use of the operator function r : s → y
which takes as the input sampled signal and returns the output
assuming the matched filter is given. The range resolution of
this system is determined by the bandwidth of the emit signal,
∆R = c

2∆f where c is the speed of propagation. In order to
improve the resolution, a higher bandwidth pulse is normally
required. To model an identical system but with greater band-
width, a different version of the radar setup can be formed
where the employed pulse is replaced by

p̂(t) = exp (j2π((f0 −
∆f̂

2
)t+

∆f̂

2T
t2)), (3)

where ∆f̂ > ∆f ; however, where the sampling rate of the
system still satisfies fs > 2∆f̂ . The equivalent MF output
can be specified as ŷ = ŝ ∗ p̂∗

w = r̂(ŝ) ∈ CR. This can be
instituted as a complex function r̂ : ŝ → ŷ where p̂∗

w is the
discrete conjugated and time-reversed higher bandwidth pulse
with an optionally applied apodization function. As long as
the radar transmits standard bandwidth pulses p, yet with a
larger receiver sampling rate, the receiver output processing
can suppositionally be altered to simulate the use of a high
resolution pulse. This can be treated as a mismatched filter-
ing technique where the aim is not to directly maximize the
SNR rather to replicate the output towards a modified super-
resolution filter response.

Taking account of the notes above, one can propose to
construct a new function rNN : s → ẏ which takes the
sampled input data based on the low bandwidth pulse p and
attempts to yield an output ẏ, ẏ ≈ ŷ, approximating the
greater bandwidth pulse, the closeness to be defined more
precisely later. The function rNN (s) can likely most con-
veniently be designed and estimated through the means of
neural networks. To establish it, one can start from the as-
sumption that a set of M input and output training signals
across both pulses are available, i.e.

s1, s2, ..., sM ⇔ y1,y2, ...,yM (4)

and
ŝ1, ŝ2, ..., ŝM ⇔ ŷ1, ŷ2, ..., ŷM . (5)

Each signal realization of R complex entries containing a
number of targets arbitrary placed in range with random re-
flection values and random Doppler shifts. The frequency
shift selected arbitrary from a uniform distribution con-
strained between νl ∈ [−Dmax, Dmax]. The targets pa-
rameters are otherwise identical across sl and ŝl for a given
l, 1 ≤ l ≤ M . Training under smaller values of Dmax is
likely to make the network less tolerant to larger frequency
shifts, however, the network may process better abilities to

handle targets on the smaller Doppler range space it has been
trained for. For the training process one can further presume
that the noise floor level is more or less constant and random
target placement is likely to ensure that the networks adopts
linearity of the MF process. To formally construct the link

s1, s2, ..., sM ⇒ ẏ1, ẏ2, ..., ẏM (6)

through rNN (s) a machine learning training process can be
initiated to minimize the mean square error over the available
data set: rNN (s) = arg minṙNN

∑M
l=1 ||ṙNN (sl)− ŷl||2.

2.1. Neural network structure

The input s and output ŷ data of the neural network is
complex valued and needs to be treated accordingly. We
propose to use modified versions of fully connected feed-
forwarding neural networks as discussed in [13]. Particularly,
the construction 1) splits complex data in real and imaginary
parts 2) adopts maximum absolute normalization. The input
to the first layer of the neural network will thus be s̃l =
1
α [<(sl) =(sl)] ∈ R2R where α = max

(
|<(sl)|, |=(sl)|

)
,

i.e. the maximum absolute value of either the real or imagi-
nary elements of sl. The output from the network will consist
of 2R real entries who are combined together to form com-
plex values and scaled up by factor α. This can be completed
outside the network. Experimenting with various sizes indi-
cates that even networks with one hidden layer and the same
number of nodes as input samples can yield very acceptable
performance for MF outcomes, as will be shown.

3. SIMULATED EXAMPLES

This section demonstrates the laid out principles on some con-
crete examples and provides detailed simulation results. The
examples are founded upon a baseband modeled radar, f0 = 0
with a sampling rate of fs = 25kHz. The radar is set to cover
a simulated range of R = 300 bins where the pulse p has a
bandwidth of ∆f = 8kHz over a duration of L = 26 range
bins. From reflections based on p the objective will be to re-
construct MF output resembling either one of two higher reso-
lution waveforms. The two high resolution pulses are defined
as T1 and T2. The T1 pulse, ∆f̂ = 10kHz, approximates a
modest waveform bandwidth increase of 2kHz while T2 adds
a total of 4kHz leading to ∆f̂ = 12kHz. All pulses have oth-
erwise identical norm. For reference, figure 1 displays the
real and imaginary parts of the three pulses.
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Fig. 1: Real and imaginary parts of simulated waveforms.
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To construct a training database a set of signals were gen-
erated with randomly selected, either two or three targets,
with random reflection values and random Doppler with up
to 10% (800Hz) shift in the frequency in either direction. The
range position of the targets was determined randomly and
the noise floor was set at −25dB. M = 100000 such signals
were generated under p and p̂. The MF pulses on receiv-
ing ends were assumed tapered with the Chebyshev window
with 100dB sidelobe attenuation. The set was put to use to
train two fully connected neural networks with 600 real input
and output values and 600 nodes and only one single hidden
layer with tanh as the node activation function. The full data
set was used for training using the scaled conjugate algorithm
over 100000 epochs. The application of tanh in the nodes
should be able to provide a dynamic range of about 40dB de-
pending on numerical precision [13]. As an alternative, the
signal may be split in parts for processing or [9] may be con-
sulted.
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Fig. 2: Magnitude: MF and NN processing (T1).
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Fig. 3: Phase: MF and NN processing (T1).
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Fig. 4: Magnitude: MF and NN processing (T2).
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Fig. 5: Phase: MF and NN processing (T2).

3.1. Single pulse characterization

Figure 2 presents a typical example of a training signal with
the blue curve showing the magnitude outcome of MF with
p while the red line demonstrates the transmission and MF
reception with p̂ (T1). The targets after MF are located at
range bins 125, 225 and 240 and are marked with a cross at
top. The leftmost target is Doppler shifted −800Hz while the
rightmost is shifted 800Hz. No Doppler shift is imposed on

Pulse Peak power (dB) Peak sidelobe (dB) 3dB width (bins)
p 0.1535 -18.70 5.52

p̂ (T1) 0.0327 -19.91 4.52
NN (T1) on p -0.7026 -19.15 4.54

p̂ (T2) -0.0140 -20.74 3.74
NN (T2) on p -1.2459 -23.32 3.89

Table 1: Numerical comparative figures

the middle target. This exact signal was not used for training
and the black dotted curve demonstrates the output from the
trained neural network for T1. Visually, the outcome from the
neural network closely matches the red higher bandwidth MF
with very identical narrower mainlobes while the sidelobes
roughly follow the structure of the original p waveform. The
major downside can be related to lower SNR gains with a
small loss of about 0.5dB for the first two targets compared to
the high bandwidth waveform. The third target does not expe-
rience any noticeable SNR reduction. The ability to separate
the two right targets is clearly enhanced by the neural network
even though it is not up to the same level if p̂ had been applied
for transmission. In any case, an exact replication can not be
expected. For coherent processing it is essential that the phase
of the processed signal is preserved; this is displayed in fig-
ure 3 and the phases all converge towards the same values at
target locations.

Figures 4 and 5 display identical results but for the T2
pulse. The network is now supposed to yield a higher resolu-
tion outcome close to the sampling limit. The ability to sep-
arate the targets is now better though there is more dynamic
range variation in the neural network processed signal with
several instances of deep nulls compared to figure 2. A mod-
erate bandwidth expansion through neural networks is less
likely to introduce such artifacts, however, in both instances
the original sampling rate is sufficient to avoid aliasing. Ta-
ble 1, assuming a single target with unit reflection energy and
noise level of−25dB, provides exact numerical results for the
peak gain value, peak first sidelobe and the half-power width
in range bins using spline interpolation. The sidelobes from
the networks are not symmetric and the largest value to the
left or right is provided. The networks not only return a nar-
row mainlobe but the first sidelobe is also slightly lower; the
overall processing loss is thus minor.
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Fig. 6: Magnitude: MF and NN processing (T1).

To supplement previous plots, figures 6 and 7 demon-
strate the outcomes when 30 zero Doppler targets are posi-
tioned randomly in range with varying distance and random
reflecitivity values. Note that the networks were only ever
trained on scenarios with no more 3 targets at once but have
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Fig. 7: Magnitude: MF and NN processing (T2).
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Fig. 8: Delay-Doppler diagram from NN (T1).

managed to generalize themselves to yield very comparable
outcomes as standard MF and the NN magnitudes exhibit
high degree of alignment towards T1 and T2. On average, the
peak target SNR loss between the real high bandwidth pulse
and the neural network result amounts to 0.5186dB for targets
in figure 6. The mean difference increases to 0.9426dB for
targets in figure 7 as bandwidth extrapolation readjusts SNR
levels leading to a greater trade-off.
3.2. Delay-Doppler characterization

Radar pulses are often characterized using the ambiguity
function to evaluate their performance as the targets exhibit
shift in Doppler and range. Processing the signals through
neural networks can alter the original properties and, as al-
ready discussed, the training should be carried out over a
defined target Doppler interval to make certain the network
learns these attributes. Figure 8 shows the resulting delay-
Doppler figure when the neural network is applied on signals
consisting of low bandwidth waveform p. The mainlobe
is narrow as if the T1 pulse had been applied with slightly
lower peak values while the sidelobe spread features similar
behavior as of the original waveform. Overall, the result is
a managed compromise and the properties of the LFM pulse
with regard to delay and Doppler are sustained.

Figure 9 shows the analogous results for the T2 pulse. The
neural network processing retains the delay and Doppler hall-
marks with a narrow mainlobe, however, the sidelobes now
display a marked different structure with one single dominat-
ing sidelobe which increases with Doppler.
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Fig. 9: Delay-Doppler diagram from NN (T2).

3.3. Detection characterization

The figures shown have demonstrated some important aspects
of trained neural networks, however, to assess any advan-
tages for radar target detection exhaustive simulations needs

to be performed. For this, cell averaging (CA) - CFAR de-
tection tests were done on low and both high bandwidth sig-
nals, T1 and T2, alongside low bandwidth signals processed
via trained neural networks. The simulation scenario was set
to be similar to figure 4 with 10 targets positioned randomly
across range bins with reflections values set accordingly to
a given SNR. Due to arbitrary placement many targets end
up being close to each other and a narrow mainlobe is desir-
able to improve detectional capabilities. For each SNR level
100000 simulations were carried out to determine the prob-
ability of detection (Pd) and the false alarm rate (Pfa). The
CA-CFAR parameters were set as 4 guard cells and 6 averag-
ing cells on each side of cell under test (CUT) and a detection
threshold of 13dB. The results are provided in figure 10 for
T1 pulse and figure 11 for T2. The neural network Pd returns
(black dotted curves) are very similar to if the larger wide-
band pulses had been transmitted and processed (red line).
The Pfa is also retained at the same level in all cases. One can
conclude that even though the networks may introduce SNR
losses, this is compensated by the narrower mainlobes as the
detection capability improves well with application of trained
neural networks for the MF process.

4. CONCLUSION

Radar systems commonly oversample incoming data and a
neural network based approach was presented to factor this in
substituting for the standard matched filtering process. The
networks were trained with an aim to provide an output ap-
proximating the utilization of a larger bandwidth pulse. This
provides a new alternative approach to the construction of
mismatched filters using machine learning techniques. It was
shown that small fully connected feed-forwarding neural net-
works can be trained to return high resolution outputs with
marginal reduction in processing gain. In radar detectional
scenarios this can result in better detection capability.
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Fig. 10: Probability of detection and false alarm rate (T1)
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Fig. 11: Probability of detection and false alarm rate (T2)
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