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Summary 

Concrete is an important material in building protective structures.  To calculate what happens 
to these structures when exposed to impact loads, we need to have a good understanding of 
the material behavior.  Empirical and theoretical models to estimate penetration depth include 
only compressive strength and density.  When performing a numerical simulation, a more 
detailed description is needed.  In this report, an overview over different material models for 
concrete is given.   

Concrete is an inhomogeneous material. It consists of mortar, aggregate and in many cases 
reinforcement.  In the literature, there exist several models approximating concrete behavior 
using continuum mechanics. To describe concrete materials, we need, in addition to the 
standard elastic description, a yield function and a way to describe the plastic behavior.  In 
addition, concrete has other properties in tension than in compression. 
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Sammendrag 

Betong er et viktig materiale ved bygging av militære anlegg.  Hva skjer når disse anleggene blir 
utsatt for angrep fra prosjektiler? For å beregne dette trengs det en god forståelse av hvordan 
betongen oppfører seg.  Empiriske og teoretiske modeller som estimerer penetrasjonsdybden til 
prosjektiler i betong bruker stort sett to parametere: trykkfasthet og tetthet.  Dersom en skal 
simulere penetrasjon i betong numerisk, trengs en mer detaljert beskrivelse av 
betongen.  Denne rapporten gir en oversikt over ulike betongmodeller. 

Betong er et inhomogent materiale. Det består at sement, tilslag og armering.  I litteraturen 
eksisterer det flere materialmodeller som beskriver betongen ved hjelp av kontinuumsmekanikk. 
I tillegg til elastiske parametere, trenger vi en flytekurve og en beskrivelse av hvordan betongen 
oppfører seg etter at flytegrensen er nådd.  I tillegg har betongen ulike egenskaper i trykk og 
strekk. 
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1 Introduction 

Concrete is an important material in building protective structures.  To calculate what happens 
to these structures when exposed to impact loads, we need to have a good understanding of the 
material behavior.  Empirical and theoretical models to estimate penetration depth, as discussed 
in Sjøl [1] and Teland and Sjøl [2], include only compressive strength and density.  When 
performing a numerical simulation, a more detailed description is needed. 

In this report, an overview over different material models for concrete is given.   

Concrete is an inhomogeneous material, consisting of mortar, aggregate and in many cases 
reinforcement.  In the literature, there exist several models approximating concrete behavior 
using continuum mechanics. To describe concrete materials, we need, in addition to the standard 
elastic description, a yield function and a way to describe the plastic behavior.  In addition, 
concrete has different properties in tension than in compression. 

2 Basic elasticity theory 

In this chapter, a brief description of the elastic parameters and the relationship between them 
are described. 

2.1 Stress tensor 

A tensor is a quantity that is independent of coordinate system. A relationship on tensor form is 
therefore valid in all coordinate systems, which is very convenient for expressing physical laws. 
The stress tensor is denoted as 

𝝈𝝈 =  �
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑥𝑥 𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑥𝑥𝑥𝑥 𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥

� (2.1) 

Note that the components of Equation (2.1) depend on the coordinate system used.  If we 
change the coordinate system, the stress tensor components will have other values, but these 
will be related to the old components in a way which makes sure that the stress tensor itself is 
coordinate independent. From the components we can derive a set of stresses which are 
independent of the coordinate system.  We call them principal stress, and denote them as 𝜎𝜎1, 𝜎𝜎2 
and 𝜎𝜎3. 
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2.1.1 Principal stress 

The principal stresses is defined as eigenvalues to the stress sensor, and is the solution of the 
characteristic equation 

𝜎𝜎3 + 𝐼𝐼1𝜎𝜎2 + 𝐼𝐼2𝜎𝜎 + 𝐼𝐼3 = 0 (2.2) 

where  I1, I2, I3 are the stress invariants  

𝐼𝐼1 = 𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3
𝐼𝐼2 = 𝜎𝜎1𝜎𝜎2 + 𝜎𝜎2𝜎𝜎3 + 𝜎𝜎3𝜎𝜎1

𝐼𝐼3 = 𝜎𝜎1𝜎𝜎2𝜎𝜎3
 (2.3) 

The characteristic equation has three real roots, σ1>σ2>σ3. 

 

2.1.2 Deviatoric stress tensor 

The deviatoric stress sij is defined as 

𝑠𝑠𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖 +
1
3
𝐼𝐼1 (2.4) 

And the deviatoric stress invariants are given by: 

𝐽𝐽1 = 0

𝐽𝐽2 =
1
3
𝐼𝐼12 − 𝐼𝐼2

𝐽𝐽3 =
2

27
𝐼𝐼13 −

1
3
𝐼𝐼1𝐼𝐼2 + 𝐼𝐼3

 (2.5) 

The solution of the characteristic equations can be found by using the trigonometric relationship 

cos3 𝜃𝜃 −
3
4

cos𝜃𝜃 −
1
4

cos 3𝜃𝜃 = 0 (2.6) 

If we define  

𝑠𝑠 = 𝜌𝜌 cos𝜃𝜃 (2.7) 

we get 

cos 3𝜃𝜃 −  
𝐽𝐽2
𝜌𝜌2

cos𝜃𝜃 −  
𝐽𝐽3
𝜌𝜌3

= 0  (2.8) 
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By comparing terms in Equation (2.6) and (2.8), we have [3] 
 

𝜌𝜌 =  
2
√3

 �𝐽𝐽2 cos 3𝜃𝜃 =  
4 𝐽𝐽3
𝜌𝜌3

=  
3 √3

2
 
𝐽𝐽3
𝐽𝐽2
3 2⁄  (2.9) 

 

 

2.1.3 Octahedral stress 

The octahedral stress plane is defines as a plane where the normal makes equal angels with each 
of the principal stresses.  The normal and shear stress on the octahedral plane can be written as 

𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 =  (𝜎𝜎1 +  𝜎𝜎2 +  𝜎𝜎3) 3⁄ 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 =  �
2
3

 𝐽𝐽2�
1 2⁄

 (2.10) 

 

2.1.4 Equivalent stress 

The equivalent stress 𝜎𝜎𝑒𝑒𝑒𝑒 is defined as 

𝜎𝜎𝑒𝑒𝑒𝑒 =  �3𝐽𝐽2 (2.11) 

 

2.2 Strain tensor 

The strain tensor is defined in a similar way as the stress tensor, and is denoted as 

𝜺𝜺 =  �
𝜀𝜀11 𝜀𝜀12 𝜀𝜀13
𝜀𝜀21 𝜀𝜀22 𝜀𝜀23
𝜀𝜀31 𝜀𝜀32 𝜀𝜀33

� (2.12) 
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2.3 Stress-strain relationship 

The relationship between stress and strain is found experimentally.  For metals, this relationship 
is linear, and is described by Hooke’s law.  For concrete, however, there is a nonlinear 
relationship, and the stress-strain relationship in more complicated even in the elastic region. 

2.3.1 Linear elastic models 

Linear elastic models is the simplest model, but are unfortunately too simple to describe 
concrete materials well.  Using Einstein’s summation convention, a generalized Hooke’s law 
can be written as 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 (2.13) 

For homogenous and isotropic materials, the equation simplifies to 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐸𝐸𝜀𝜀𝑖𝑖𝑖𝑖. 
 

2.3.2 Non-linear elastic models 

Non-linear elastic models are often written on differential form:  

d𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖d𝜀𝜀𝑖𝑖𝑖𝑖 (2.14) 

where 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is no longer a constant, but a function of the strain tensor. 

2.4 Haigh-Westegaard coordinates 

The yield limit is the combination of stresses, strains etc for which the material stops behaving 
elastically. In some cases it can be visualized as a surface in  principal stress space. A handsome 
way to visualize the yield stress, is to make a cross section through the hydrostatic axis, defined 
by I1 = 0.  This is called a pi-plane.  For pressure dependent yield curves, which is used for 
concrete, it is convenient to use cylindrical coordinates, called (ρ,s,ϴ), Haigh-Westegaard 
coordinates. The principal stress can be written in Haigh-Westegaard coordinates: 

�
𝜎𝜎1
𝜎𝜎2
𝜎𝜎3
� =

1
√3

�
𝜌𝜌
𝜌𝜌
𝜌𝜌
� + �2

3
𝑠𝑠 �

cos𝜃𝜃
cos�𝜃𝜃 − 2𝜋𝜋

3� �

cos�𝜃𝜃 + 2𝜋𝜋
3� �
� (2.15) 

where 
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𝜌𝜌 = 𝐼𝐼1
√3�

𝑠𝑠 = �2𝐽𝐽2

cos 3𝜃𝜃 =
3√3

2
𝐽𝐽3
𝐽𝐽2
1,5

 (2.16) 

Θ is also called the Lode angle.    

2.5 Yield criteria for homogenous  materials 

Here we list some popular yield criteria for homogenous materials.  The Mises criterion is 
defined as 

𝐹𝐹(𝐽𝐽2) = 𝐽𝐽2 − 𝑘𝑘2 (2.17) 

And the Tresca criterion (maximum shear stress) is given by 

𝐹𝐹(𝜎𝜎1,𝜎𝜎2,𝜎𝜎3) =
1
2

max{|𝜎𝜎1 − 𝜎𝜎2|, |𝜎𝜎2 − 𝜎𝜎3|, |𝜎𝜎3 − 𝜎𝜎1|} − 𝑘𝑘 (2.18) 

Tresca’s yield criterion can also be express using stress invariants, but this is too complicated to 
have any practical use.  In Haigh-Westegaard coordinates, the von Mises and Tresca criterion 
becomes: 

𝐹𝐹(𝑠𝑠) = 𝑠𝑠2 −
2
3
𝑌𝑌

𝐹𝐹(𝑠𝑠,𝜃𝜃) = √2𝑠𝑠 sin �𝜃𝜃 +
𝜋𝜋
3
� −

𝑌𝑌
2

 (2.19) 

where Y is the uniaxial yield stress. 

In the pi-plane, the von-Mises criterion is a circle, while Tresca’s criterion is a hexagon.  In 
Figure 2.1, the von Mises and Tresca’s yield criterion is showed in the pi-plane and principal 
stress space, respectively. 
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Figure 2.1 von Mises and Tresca yield criterium in the pi plane and principal stress space. 

3 Constitutive models for concrete 

The empirical and theoretical models studied in FFI-project 766 used only the compressive 
strength and density as material parameters.  This is sufficient to estimate the penetration depth 
fairly well.  However, if we are interested in more than the penetration depth, say the crack 
propagation, or the amount of spalling and scabbing, then a more advanced material model for 
concrete is needed. Several material models were studied in project 766.   

The stress-strain relationship is found from material testing.  There exist several methods of 
obtaining material parameters, both in the elastic and plastic region.  An overview of 
constitutive models for concrete can be found in Babu et al (2005) [4].  Some test methods for 
obtaining the material parameters, are discussed in Teland and Svinsås (2003) [5].  

4 Equation of state 

For a linear elastic material, the complete behaviour is given by Hooke’s law. If desired, we can 
transform Hooke’s law into equations relating the stress deviations to strain deviations and 
pressure to density (Equation of state - EOS), but there is no need to do so. However, this is 
very convenient for describing materials that have reached the yield limit. Often the plastic 
behaviour is governed by completely independent plastic equations (for strain deviations) and 
Equations of state (for compression). Concrete is such a material, where it is necessary to supply 
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an EOS to describe the behaviour after reaching the elastic limit.   
 
The simplest EOS is that the density remains constant (independent of pressure – a good 
approximation for water at low pressures). Such a material is said to be incompressible. 
However, concrete is not incompressible and requires a more complicated EOS. Some 
alternatives are described in this chapter. 

4.1 Porous EOS 

The porous EOS is defined as  

𝑃𝑃 = 𝐾𝐾𝐾𝐾 (4.1) 

Where 𝐾𝐾 = 1 −  𝜌𝜌0
𝜌𝜌

 is the volumetric strain. 

4.2 P-α EOS 

The P-α model assumes that the internal energies and matrix material are identical.  If the EOS 
for the matrix material can be written on the form 

𝑝𝑝 = 𝑓𝑓(𝑣𝑣, 𝑒𝑒) (4.2) 

where v is specific volume and e is internal energy, the EOS of the porous material can be 
written on the form 

𝑝𝑝 = 𝑓𝑓(𝑣𝑣 𝛼𝛼⁄ , 𝑒𝑒) (4.3) 

The P-α model is often used together with the RHT model. 

4.3 Murnaghan EOS 

The Murnaghan EOS is defined as  

𝑃𝑃 =
𝐾𝐾
𝛾𝛾 �
�
𝜌𝜌
𝜌𝜌0
�
𝛾𝛾
− 1� (4.4) 

where 𝐾𝐾 = 𝜌𝜌0𝐶𝐶02  is the bulk modulus of target material with C0 = bulk sound speed.  γ is 
related to the slope s of the linear Hugoniot relationship between the shock velocity and particle 
velocity [6]. 

𝛾𝛾 = 4𝑠𝑠 − 1 (4.5) 

Note that Murnsghan’s EOS is identical with the porous EOS for 𝛾𝛾 = −1. 
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5 Yield criteria for concrete 

Most materials exposed to small loads will have small and elastic deformations. At some point, 
called the yield limit, the deformations will become plastic and permanent.  The yield limit is a 
function of the stress tensor. By using the principal stresses or the stress invariants, the yield 
stress is independent of the coordinate system used.  The yield stress can in general be written as  

𝐹𝐹(𝜎𝜎1,𝜎𝜎2,𝜎𝜎3,𝒏𝒏,𝑘𝑘) = 0 (5.1) 

where n is the direction of the principal stresses, and k is the yield limit.  To describe complex 
materials, such as concrete, several yield criteria have been suggested. They are all functions of 
the stress invariants, and have two, three, four or five parameters to describe the material.  A 
review of these models can be found in Chen [3], and is listed in Table 5.1.  All these models 
are pressure dependent.  A brief discussion of some of these models are given in the next 
subsections. 

Table 5.1 Yield crieria for concrete 

Number of parameters Model Remarks 

2 
Drucker Prager 

Mohr Coloumb 

“Extended” Mises 

“Extended” Tresca 

3 

Bresler-Pister 

William Warnke 

Lubliner 

“Extended” Drucker-Prager 

4 

Menetray and William 

Mises Schleicher 

Hsieh-Ting-Chen 

Ottosen 

 

5 5 param. William Warnke  
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5.1 Two parameter models 

5.1.1 Mohr-Coulomb  

The Mohr-Coulomb model was first expressed by Coulomb in 1773 as 

|𝜏𝜏| = 𝑐𝑐 − 𝜎𝜎𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (5.2) 

where  c is “cohesion” and ϕ is «angle of internal friction».   

Note that the Mohr Coulomb model is reduced to Tresca’s criterion setting ϕ= 0 and c = k.  The 
Mohr-Coulomb criterion can be expressed as a function of the principal stresses:  

𝐹𝐹(𝜎𝜎1,𝜎𝜎2,𝜎𝜎3) = 𝜎𝜎1 − 𝜎𝜎3 − 2𝑐𝑐 cos𝑡𝑡 + (𝜎𝜎1 + 𝜎𝜎3) sin𝑡𝑡 (5.3) 

Note that the Mohr Coulomb criterion is independent of the middle principal stress. 

Abbo and Sloan [7] made a hyperbolic approximation to make the yield strength function 
smooth.  

𝐹𝐹 =  𝜎𝜎𝑚𝑚 +  �𝜎𝜎2 𝐾𝐾2(𝜃𝜃) + 𝑡𝑡2 sin2 𝑡𝑡 − 𝑐𝑐 cos𝑡𝑡 (5.4) 

The parameter 𝑡𝑡 can be adjusted to give a better approximation. This approximation is shown in 
Figure 5.1. 

 

Figure 5.1 Hyperbolic approximation to the Mohr Coulomb criterion (from [7]). 

The yield strength in Haigh-Westegaard coordinates becomes: 

𝐹𝐹(𝜌𝜌, 𝑠𝑠,𝜃𝜃) = √2𝜌𝜌 sin𝑡𝑡 + √3𝑠𝑠 sin �𝜃𝜃 +
𝜋𝜋
3
� + 𝑠𝑠 cos �𝜃𝜃 +

𝜋𝜋
3
� sin𝑡𝑡 − √6𝑐𝑐 cos𝑡𝑡 (5.5) 

The Mohr Coulomb model is an irregular hexagon in the pi-plane, and the meridians are straight 
lines.  Figure 5.2 shows Drucker-Prager and Mohr-Coulomb in the principal stress space and the 
pi-plane. 
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Figure 5.2  Drucker-Prager and Mohr-Coulomb criteria in principal stress space and pi-
plane.  

 

5.1.2 Drucker-Prager 

𝐹𝐹(𝐼𝐼1, 𝐽𝐽2) = 𝛼𝛼𝐼𝐼1 + �𝐽𝐽2 − 𝑘𝑘 = 0 (5.6) 

where α is a material constant. α = 0 gives the Mises criterion. In the pi plane, I1 = 0, and «yield 
locus» becomes a circle.  While the Mises criterion is a cylinder in the principal stress space, the 
Drucker-Prager criterion is a circular cone, as shown in Figure 5.2. 

5.2 Three parameter models 

The Drucker-Prager surface in the meridian plane is linear curves, and the cross sections in the 
deviatoric plane (pi-plane) are circles.  Experiments shows that the plot in the meridian space 
are curved, and the cross sections in the pi-planes are non-circular. To incorporate this fact, 
another parameter is needed to describe the yield surface.  In some models, an elliptical function 
with the Lode angle is included.  This elliptical function is defined as 

𝑟𝑟(𝜃𝜃, 𝑒𝑒) =
4(1 − 𝑒𝑒2) cos2 𝜃𝜃 + (2𝑒𝑒 − 1)2

2(1 − 𝑒𝑒2) cos2 𝜃𝜃 + (2𝑒𝑒 − 1)�4(1 − 𝑒𝑒2) cos2 𝜃𝜃 + 5𝑒𝑒2 − 4𝑒𝑒
 (5.7) 

 

 

5.2.1 Bresler-Pister 

The Bresler-Pister model assumes a parabolic relationship, and can be expressed using 
octahedral stress 

𝐹𝐹 =
𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜
𝑓𝑓𝑜𝑜

= 𝑡𝑡 − 𝑏𝑏 
𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜
𝑓𝑓𝑜𝑜

+ 𝑐𝑐 �
𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜
𝑓𝑓𝑜𝑜
�
2
 (5.8) 
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Plasticity model for concrete based on Bresler-Pister can be found in Dede and Ayvaz (2010) 
[8].  

 

5.2.2 William-Warnke 

William and Warnke (1975) [9] defined the following 3 parameter model 

𝐹𝐹 = ��1,5
𝜌𝜌
𝑓𝑓𝑜𝑜
�+ 𝑚𝑚 �

𝜌𝜌
√6𝑓𝑓𝑜𝑜

𝑟𝑟(𝜃𝜃, 𝑒𝑒) +
𝜉𝜉

√3𝑓𝑓𝑜𝑜
� (5.9) 

Where ξ is hydrostatic stress invariant, ρ is deviatoric stress invariant and θ is deviatoric polar 
angle.  This model has straight meridians and non-circular cross sections.  In Section *, this 
model is extended with two additional parameters in order to model the materials for high 
pressures in compression. 

5.2.3 Lubliner yield criterion 

The Lubliner yield criterion is originally a four parameter model, but the yield criterion in 
uniaxial compression reduces the yield surface to 

𝐹𝐹 = �3𝐽𝐽2 + 𝛼𝛼𝐼𝐼1 + 𝛽𝛽〈𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥〉 − 𝛾𝛾〈−𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥〉 − (1 − 𝛼𝛼)𝑐𝑐 (5.10) 

where  

〈𝑥𝑥〉 =  (|𝑥𝑥| + 𝑥𝑥) 2⁄  (5.11) 

This model is used in Cicekli (2006,2007) [10, 11] and in In Zhang and Li (2012) [12]. 

 

5.3 Four parameter models 

5.3.1 Ottosen yield surface 

Ottosen (1977) [13] developed a four-parameter model.  This model contains all stress 
invariants, and is valid for all stress combinations. 

𝐹𝐹 = 𝑡𝑡
𝐽𝐽2
𝑓𝑓𝑜𝑜2

+ 𝜆𝜆
�𝐽𝐽2
𝑓𝑓𝑜𝑜

+ 𝑏𝑏
𝐼𝐼1
𝑓𝑓𝑜𝑜
− 1 (5.12) 

Where a and b are parameters, and λ is given by 
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𝜆𝜆 = �
𝐾𝐾1 cos �

1
3

arccos(𝐾𝐾2 cos 3𝜃𝜃)� cos 3𝜃𝜃  ≥ 0

𝐾𝐾1 cos �
𝜋𝜋
3
−

1
3

arccos(−𝐾𝐾2 cos 3𝜃𝜃)� cos 3𝜃𝜃  ≤ 0
 (5.13) 

The factors K1 (size factor) and K2 (shape factor) are between 0 and 1.  In Zhang et al (2020) 
[14], a constitutive model based on Ottosen yield criterion was developed.  The plastic potential 
is 

𝑄𝑄 =  
𝑡𝑡

𝑘𝑘2𝑞𝑞0,5
𝐽𝐽2
𝑓𝑓𝑜𝑜2

+ �1 +
𝑘𝑘
𝑞𝑞2
��𝜆𝜆

�𝐽𝐽2
𝑓𝑓𝑜𝑜

+ 𝐹𝐹𝑜𝑜𝑏𝑏
𝐼𝐼1
𝑓𝑓𝑜𝑜
� − 𝑑𝑑 = 0 (5.14) 

 

5.3.2 Menetrey and William (1995)  

This is a modification of the Hoek and Brown [15] model, see for example Radoslav (2017) 
[16] 

𝐹𝐹 = ��1,5
𝜌𝜌

𝑘𝑘(𝜅𝜅)𝑓𝑓𝑜𝑜
�
2

+𝑚𝑚�
𝜌𝜌

√6𝑘𝑘(𝜅𝜅)𝑓𝑓𝑜𝑜
𝑟𝑟(𝜃𝜃, 𝑒𝑒) +

𝜉𝜉
√3𝑘𝑘(𝜅𝜅)𝑓𝑓𝑜𝑜

� − 𝑐𝑐(𝜅𝜅) (5.15) 

where 

𝑚𝑚 = 3
(𝑘𝑘(𝜅𝜅)𝑓𝑓𝑜𝑜)2 − (𝜆𝜆𝑜𝑜𝑓𝑓𝑜𝑜)2

𝑘𝑘(𝜅𝜅)𝑓𝑓𝑜𝑜𝜆𝜆𝑜𝑜𝑓𝑓𝑜𝑜
𝑒𝑒

𝑒𝑒 + 1
 (5.16) 

In this model, m is a parameter equivalent to cohesion, r is an elliptical function, e is the 
eccentricity of the elliptical function (between 0,5 and 1,0), and λt is a scaling parameter of the 
M-W-3 surface (greater than 1,0). k is a strengthening parameter at plasticization moment (close 
to 1,0).  

           

Figure 5.3 Menetrey and William model. 
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5.3.3 Mises Schleicher  

The Mises Schleicher crtiterion is defined as (see for example Shen et al (2015) [17]) 

𝐹𝐹 = 𝜎𝜎𝑒𝑒𝑒𝑒2 + 3𝛼𝛼𝜎𝜎0𝜎𝜎𝑚𝑚 − 𝜎𝜎02 (5.17) 

where 

𝛼𝛼 =
𝜎𝜎𝑜𝑜 − 𝜎𝜎𝑇𝑇
�𝜎𝜎𝑜𝑜𝜎𝜎𝑇𝑇

𝜎𝜎0 = �𝜎𝜎𝑜𝑜𝜎𝜎𝑇𝑇
 (5.18) 

In Durban et al (2010) [18], the Mises Schleicher criterion is used. An exact solution can be 
found in Monchiet and Kondo (2012) [19]. 

 

5.3.4 Hsieh-Ting-Chen criterion (1979) 

The Hsieh-Ting-Chen criterion is a four parameter model, which is a combination of Rankine, 
Mises and Drucker-Prager models. 

𝐹𝐹 = 𝑡𝑡
𝐽𝐽2
𝑓𝑓𝑜𝑜′2

+ 𝑏𝑏
�𝐽𝐽2
𝑓𝑓𝑜𝑜′

+ 𝑐𝑐
𝜎𝜎1
𝑓𝑓𝑜𝑜′

+ 𝑑𝑑
𝐼𝐼1
𝑓𝑓𝑜𝑜′
− 1 (5.19) 

• If a = c = 0, we get the Drucker-Prager criterion. 

• If a = c = d = 0, we get the von Mises criterion. 

• If a = b = d = 0, and c = fc/ft, we get the Rankine criterion. 

Plasticity model for concrete based on Hsieh-Ting-Chen criterion can be found in Dede and 
Ayvaz (2010) [20].  In Haigh-Westegaard coordinates, we get 

𝐹𝐹 = �2𝐽𝐽2 −  
1

2𝑡𝑡 �
−(𝑏𝑏 cos𝜃𝜃 + 𝑐𝑐) + �(𝑏𝑏 cos𝜃𝜃 + 𝑐𝑐)2 − 4𝑡𝑡 �√3𝑑𝑑

𝐼𝐼1
3
− 1�� (5.20) 

 

5.3.5 Reimann criterion  

Reimann (1965) suggested a four parameter hyperbolic criterion 
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𝜉𝜉
𝑓𝑓𝑜𝑜′

= 𝑡𝑡 �
𝑟𝑟𝑜𝑜
𝑓𝑓𝑜𝑜′
�
2

+ 𝑏𝑏
𝑟𝑟𝑜𝑜
𝑓𝑓𝑜𝑜′

+ 𝑐𝑐 (5.21) 

According to Chen [3], this criterion works best in compression, and will not be analyzed 
further in this report. 

5.4 Five parameter model 

A refined William Warnke model, giving a general expression for both the compressive and 
tensile meridian, is defined as 

𝜏𝜏𝑚𝑚𝑜𝑜

𝑓𝑓𝑜𝑜
=  

𝑟𝑟𝑜𝑜
√5 𝑓𝑓𝑜𝑜

=  𝑡𝑡0 +  𝑡𝑡1
𝜎𝜎𝑚𝑚
𝑓𝑓𝑜𝑜

+ 𝑡𝑡2 �
𝜎𝜎𝑚𝑚
𝑓𝑓𝑜𝑜
�
2

𝜏𝜏𝑚𝑚𝑜𝑜

𝑓𝑓𝑜𝑜
=  

𝑟𝑟𝑜𝑜
√5 𝑓𝑓𝑜𝑜

=  𝑏𝑏0 + 𝑏𝑏1
𝜎𝜎𝑚𝑚
𝑓𝑓𝑜𝑜

+  𝑏𝑏2 �
𝜎𝜎𝑚𝑚
𝑓𝑓𝑜𝑜
�
2  (5.22) 

We have here six unknown parameters, but if we in addition specify that these meridians both 
intersect the hydrostatic axis at 𝜎𝜎𝑚𝑚0 𝑓𝑓𝑜𝑜 =  𝜌𝜌⁄ , the number of parameters is reduced to five. 

 

5.5  Comparison yield models 

Figure 5.4 shows schematically some of these models (from Riedel et al [21]).                     

 

 

Figure 5.4 Different yield models for concrete (from Riedel et al [21]) 
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6 Plasticity models 

Plasticity models for reinforced concrete are discussed in Chen (1982) [3].  The strain increment 
can be decomposed into an elastic part and a plastic part 

𝑑𝑑𝜖𝜖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝜖𝜖𝑖𝑖𝑖𝑖𝑒𝑒 +  𝑑𝑑𝜖𝜖𝑖𝑖𝑖𝑖
𝑝𝑝  (6.1) 

 

A plasticity model must contain 

• Yield surface (described in the previous sections) 

• Flow rule 

• Hardening rule 

In the elastic region, the governing equations, with appropriate boundary conditions, have well 
defined and unique solutions.  In a plastic material, this may not be obvious.  To assure 
uniqueness and stability of the solution, the yield surface must satisfy certain (physical) 
requirements: 

• Smoothness 

• Convex 

• Non-circular deviatoric section 

Table 6.1 Some plasticity models with non-associative flow rule described in Babu et al [4]. 

Model Yield surface Hardening law 

Grassl (2002) Menetrey & William  

Imran et al (2001) Hsieh-Ting-Chen Isotropic 

Feenstra et al (1996) Drucker-Prager  

Onate et al (1988) Modified MC  

Vermeer et al (1984) Mohr Coloumb  
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6.1 Flow rule 

A flow rule is in general defined as 

𝑑𝑑𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝 = 𝑑𝑑𝜆𝜆

𝜕𝜕𝑄𝑄
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖

 (6.2) 

where 𝑑𝑑𝜆𝜆 is a nonnegative scalar and Q is a plastic potential function.  When Q is equal to the 
yield function F, we have an associated flow rule.  For concrete, however, experimental data 
[22-24] indicate that an associated flow rule does not give a correct description.  

6.1.1 Drucker stability 

Drucker defined a stable material to satisfy the following statements: 

• Positive work by external agency during the application of the loads 

• The net work performed by the external agency over a stress cycle is nonnegative 

Equation (6.2) implies that the plastic flow vector 𝑑𝑑𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝  is perpendicular to the plastic potential 

surface (see Chen [3]).  Another implication is that the yield surface must be convex.   

6.1.2 Shear dilatancy 

Shear dilatancy is a phenomenon characterized by volume change associated with shear 
distortion of the material.   Several experimental data from the literature shows that concrete 
materials have this property.  In the next sections, we first explain the property of an elastic 
perfectly plastic material. 

6.1.3 Prandtl-Reuss material 

A Prandtl-Reuss material is an elastic perfect plastic material.  It follows from the definition that 
all volume change is elastic.  Hence, we have no plastic strain. 

6.1.4 Drucker-Prager based potential 

A Drucker-Prager based potential can be written on the form 

𝑄𝑄�𝜎𝜎𝑖𝑖𝑖𝑖,𝛼𝛼� = 𝛼𝛼𝐼𝐼1 + �𝐽𝐽2 + 𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (6.3) 

where α can be found from uniaxial compression test: 
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𝛼𝛼 =
1

�3 �1 − 𝜀𝜀𝑝𝑝
𝜀𝜀𝑣𝑣
𝑝𝑝�

 
(6.4) 

 

𝜀𝜀𝑣𝑣
𝑝𝑝 is volumetric part of the plastic strain.  It can be shown from Equation (6.4) that the plastic 

rate of cubical dilatation is 

𝑑𝑑𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝 = 3𝛼𝛼 𝑑𝑑𝜆𝜆 (6.5) 

This means that we have an increase in volume, which is due to the face that the yield function 
is pressure dependent.  

6.1.5 Mohr Coulomb based potential 

A Mohr Coulomb based potential can be written as 

𝑄𝑄 =
𝐼𝐼1
3

sin𝜓𝜓 + �𝐽𝐽2 �cos𝜃𝜃 −
sin𝜃𝜃 sin𝜓𝜓

√3
� (6.6) 

where ψ is the angle of dilatancy (found experimentally).  This model is among others used in 
Vermeer and de Borst (1984) [23]. 

  

6.2 Hardening rule 

The perfectly plastic model described in Section 6.1.3 has a fixed failure surface in the stress 
space.  This is not true for most materials, and we need a way to describe the “motion” of the 
yield surface during plastic flow. This is called a hardening rule.  We have two different 
hardening rules, and a combination of these.  

• Isotropic hardening is a uniform expansion of yield surface. 

• Kinematic hardening is a translation of the yield surface as a rigid body in stress space. 

• Mixed hardening is a combination of isotropic and kinematic hardening.   

𝑑𝑑𝜖𝜖𝑝𝑝 = 𝑑𝑑𝜖𝜖𝑝𝑝𝑖𝑖 +  𝑑𝑑𝜖𝜖𝑝𝑝𝑖𝑖 = 𝑀𝑀 𝑑𝑑𝜖𝜖𝑝𝑝 + (1 −𝑀𝑀) 𝑑𝑑𝜖𝜖𝑝𝑝 (6.7) 

where M is a mixed hardening parameter between 0 and 1. 
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6.3 CAP models 

The yield surfaces described in Chapter 5 have no yield along the hydrostatic axis.  To control 
the dilatation of soils, a “cap function” was introduced.  The simplest way of doing this, is to 
introduce a plane cap, but this may introduce discontinuities in the derivatives.  

6.3.1 Drucker Prager with cap  

6.3.1.1 Plane cap 

The loading function can be separated in three parts: 

• A yield surface for loading and failure  𝐹𝐹1 =  𝛼𝛼𝐼𝐼1 + �𝐽𝐽2 −  𝜅𝜅�𝜖𝜖𝑝𝑝� = 0 

• A compression plane cap surface 𝐹𝐹𝑜𝑜 =  𝐼𝐼1 − 𝑥𝑥�𝜖𝜖𝑖𝑖𝑖𝑖
𝑝𝑝 � = 0 

• A tension cutoff limit plane 𝐹𝐹𝑜𝑜 =  𝐼𝐼1 − 𝑇𝑇 = 0 

This is schematically shown in Figure 6.1.  

 

Figure 6.1 Drucker Prager with plane cap 

 

6.3.1.2 Elliptic cap 

The elliptic cap model is defined by using a quarter of an ellipse for the strain hardening cap 
function: 

𝐹𝐹𝑜𝑜 =  (𝐼𝐼1 − 𝑙𝑙)2 +  𝑅𝑅2𝐽𝐽2 −  (𝑥𝑥 − 𝑙𝑙)2 = 0 (6.8) 

Where l is the value of I1 at the center of the cap and R is the ratio of the major to minor axis of 
the elliptic cap (may be a function of l).  This is shown in Figure 6.2. 
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Figure 6.2 Drucker Prager with elliptical cap 

 

6.3.2 LS DYNA 

In LS DYNA, there is an inbuilt continuous surface cap model (CSCM), see the user’s manual 
[25]  

𝐹𝐹 = 𝐽𝐽2 − ℜ2(𝐽𝐽3)𝐹𝐹𝑓𝑓2(𝐽𝐽1)𝐹𝐹𝑜𝑜(𝐽𝐽1,𝜅𝜅) (6.9) 

where ℜ is Rubin three invariant reduction factor, Ff is the shear failure surface and Fc is the 
hardening cap.  The Rubin reduction factor is illustrated in Figure 6.3, where a two-invariant 
circle in the pi-plane is reduced to an (in general) irregular hexagon. 

 

Figure 6.3 Illustration of the Rubin reduction factor in the pi-plase, from the LS-DYNA 
manual). 

The Rubin reduction factor is (see LS-DYNA manual) 
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ℜ =
−𝑏𝑏1 + �𝑏𝑏12 − 4𝑏𝑏2𝑏𝑏0

2𝑏𝑏2
 (6.10) 

where 

𝑏𝑏2 =  �cos �̂�𝛽 − 𝑡𝑡 sin �̂�𝛽�
2 + 𝑏𝑏 sin2 �̂�𝛽

𝑏𝑏1 =  𝑡𝑡 �cos �̂�𝛽 − 𝑡𝑡 sin �̂�𝛽�
𝑏𝑏0 =  − (3 + 𝑏𝑏 −  𝑡𝑡2) 4⁄

 (6.11) 

 

𝑏𝑏 =  (2 𝑄𝑄1 + 𝑡𝑡)2 − 3

𝑡𝑡 =  
−𝑡𝑡1 + �𝑡𝑡12 − 4𝑡𝑡2𝑡𝑡0

2𝑡𝑡2

 (6.12) 

𝑡𝑡2 =  𝑄𝑄2
𝑡𝑡1 =  √3 𝑄𝑄2 + 2 𝑄𝑄1(𝑄𝑄2 − 1)

𝑡𝑡0 = 2 𝑄𝑄12 (𝑄𝑄2 − 1)
 (6.13) 

The shear failure surface Ff is given by 

𝐹𝐹𝑓𝑓(𝐽𝐽1) = 𝛼𝛼 − 𝜆𝜆 exp(−𝛽𝛽𝐽𝐽1) + 𝜃𝜃𝐽𝐽1 (6.14) 

The Rubin reduction formulation is more flexible in fitting experimental data than the William-
Warnke model. From the LS DYNA model, four example fits are listed: 

• Most general fit 

o 8 input parameters 

o   𝑄𝑄1 =  𝛼𝛼1 − 𝜆𝜆1 exp(−𝛽𝛽1𝐽𝐽1) + 𝜃𝜃1𝐽𝐽1   𝑄𝑄2 =  𝛼𝛼2 − 𝜆𝜆2 exp(−𝛽𝛽2𝐽𝐽1) + 𝜃𝜃2𝐽𝐽1 

• Mohr Coloumb fit 

o Straight lines between TXE and TXC 

o 𝑄𝑄1 =  √3 𝑄𝑄2
1+𝑄𝑄2

 and 𝑄𝑄2 =  3−sin𝜙𝜙
3 + sin𝜙𝜙

 

• Two parameter fit 

o Input 𝛼𝛼1 and 𝛼𝛼2.  All other Rubin parameters are zero. 

• William Warnke fit 
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o Select 𝑄𝑄2 as a constant or as a function of pressure 

o 𝑄𝑄1 =  
√3  �1−𝑄𝑄22�+(2𝑄𝑄2−1) �3 �1−𝑄𝑄22�+5 𝑄𝑄22−4 𝑄𝑄2 

3 �1− 𝑄𝑄22�+ (1− 2𝑄𝑄2)2  

 

The hardening cap Fc is given by 

𝐹𝐹𝑜𝑜 = 1 −
[𝐽𝐽1 − 𝐿𝐿(𝜅𝜅)][|𝐽𝐽1 − 𝐿𝐿(𝜅𝜅)| + 𝐽𝐽1 − 𝐿𝐿(𝜅𝜅)]

2[𝑋𝑋(𝜅𝜅) −  𝐿𝐿(𝜅𝜅)]  (6.15) 

 

This model has also been used in Saini et al (2021) [26] for low velocity impact on high 
performance fiber reinforced concrete. 

7 RHT 

Riedel et al [21] developed a rather complicated model to describe the damage curve for 
concrete.  The yield surface is defined as 

𝐹𝐹 = �3𝐽𝐽2 − 𝑌𝑌𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇𝐶𝐶𝐶𝐶𝑅𝑅3𝐹𝐹𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅 (7.1) 

Where 

𝑌𝑌𝑇𝑇𝑇𝑇𝑇𝑇∗ = 𝐴𝐴𝑓𝑓𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑓𝑓𝑚𝑚𝑖𝑖𝑖𝑖�𝑝𝑝∗ − �𝑝𝑝𝑠𝑠𝑝𝑝𝑚𝑚𝑖𝑖𝑖𝑖∗ 𝐹𝐹𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅��
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (7.2) 

𝐹𝐹𝑅𝑅𝐶𝐶𝑇𝑇𝑅𝑅 =

⎩
⎨

⎧1 + 𝑅𝑅1 𝑙𝑙𝐶𝐶𝑙𝑙
𝜀𝜀̇
𝜀𝜀0̇

𝜀𝜀̇ <  𝜀𝜀�̇�𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜

1 + 𝑅𝑅2 𝑙𝑙𝐶𝐶𝑙𝑙
𝜀𝜀̇
𝜀𝜀0̇

𝜀𝜀̇ >  𝜀𝜀�̇�𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜

 (7.3) 

 

𝑅𝑅3(𝜃𝜃) =
2(1 − 𝑄𝑄22) cos2 𝜃𝜃 + (2𝑄𝑄2 − 1)�4(1− 𝑄𝑄22) cos2 𝜃𝜃 + 5𝑄𝑄22 − 4𝑄𝑄2

4(1 − 𝑄𝑄22) cos2 𝜃𝜃 + (1 − 2𝑄𝑄2)2
 (7.4) 

Where 𝑄𝑄2 is a parameter between 0,5 and 1,0.  
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𝐹𝐹𝑇𝑇𝐶𝐶𝐶𝐶 =

⎩
⎪
⎨

⎪
⎧

1 𝑝𝑝 ≤ 𝑝𝑝𝑢𝑢

�1 − �
𝑝𝑝 − 𝑝𝑝𝑢𝑢
𝑝𝑝0 − 𝑝𝑝𝑢𝑢

�
2

𝑝𝑝𝑢𝑢 ≤ 𝑝𝑝 ≤ 𝑝𝑝0

0 𝑝𝑝0 ≤ 𝑝𝑝

 (7.5) 

where YTXC adjust for triaxial compression, FCAP defines the cap-model for high hydrostatic 
pressure, R3 reduce the strength of concrete after damage and FRATE adjust for strain rate effects.  
This model uses many parameters to describe the concrete, and may be difficult to apply. 
However, it was widely used around year 2000 and was implemented in the hydrocode 
Autodyn, see for example Hansson et al (2002) [27], and LS-DYNA. In Heckötter and Sievers 
(2017) [28], the implementation in these hydrocodes are compared. The main difference in these 
implementations, is how the initial parameters in the P-α EOS model are defined. In 
AUTODYN, the initial densities for the porous and matrix materials are given.  In LS-DYNA, 
the initial porosity is defined.  

8 K & C (Karagozian & Case) 

The K&C model was developed in 1994, and later modified by several researchers. A summary 
of the model, and description of the parameters can for instance be found in Malvar et al [29]. 
This model was widely used by FOI around year 2000. Three independant yield surfaces are 
defined, «yield», «failure» and «maximum residual strength».  All these surfaces are on trhe 
form 

𝐹𝐹𝑖𝑖 = 𝑡𝑡0𝑖𝑖 +
𝑃𝑃

𝑡𝑡1𝑖𝑖 + 𝑡𝑡2𝑖𝑖𝑃𝑃
 (8.1) 

There is a total of 9 parameters aki to be determined.  In Magallanes et al (2017) [30] and Kong 
et al (2017) [31], some recent improvements of the K&C model is presented.   

In Saini et al (2021) [26], the K&C model is studied for low impact velocities on ultrahigh 
performance fiber reinforced concrete, and compared to the CSC (continuous surface cap) 
model. 
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9 Holmquist Johnson Cook (HJC) 

The first version of the HJC model, was published by Johnson and Cook in the mid 1980s. It 
was originally constructed to describe metals when exposed to loads resulting in high strain 
rates. This model was later modified to describe concrete. 

9.1 Johnson Cook (1983) 

Johnson and Cook (1983) [32] developed a constitutive model for metals subjected to large 
strains, high strain rates and high temperatures. The von Mises flow stress is expressed as 

𝜎𝜎 = [𝐴𝐴 + 𝐵𝐵𝜀𝜀𝑛𝑛][1 + 𝐶𝐶 ln 𝜀𝜀̇∗ ][1 − 𝑇𝑇∗𝑚𝑚] (9.1) 

where 𝜀𝜀 is the equivalent plastic strain. 

9.2 HJC (1993)  

In the International Symposium on Ballistics in 1993, Holmquist, Johnson and Cook [33] 
presented a material model for concrete. In this paper, numerical simulations of experiments in 
Hanchak et al [34] is performed to verify the model.  

The equivalent stress is in [33] given by 

𝜎𝜎𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑜𝑜 ∗ 𝑚𝑚𝑚𝑚𝑡𝑡 �𝑠𝑠𝑓𝑓𝑚𝑚𝑡𝑡𝑥𝑥,�𝐴𝐴(1 − 𝐷𝐷) + 𝐵𝐵 �
𝑝𝑝
𝜎𝜎𝑜𝑜
�
𝑁𝑁
� ∗ �1 + 𝐶𝐶𝑙𝑙𝑡𝑡 �

𝜀𝜀̇
𝜀𝜀0̇
��� (9.2) 

where p = 1/3I1. This is schematically shown in Figur 10.1.  The parameters A, B, C, N and 
Sfmax is found from material testing, as described in [33].  The yield stress is given by 

𝐹𝐹 = �3𝐽𝐽2 − 𝜎𝜎𝑜𝑜 ∗ 𝑚𝑚𝑚𝑚𝑡𝑡 �𝑠𝑠𝑓𝑓𝑚𝑚𝑡𝑡𝑥𝑥,�𝐴𝐴(1 −𝐷𝐷) + 𝐵𝐵 �
𝑝𝑝
𝜎𝜎𝑜𝑜
�
𝑁𝑁
� ∗ �1 + 𝐶𝐶𝑙𝑙𝑡𝑡 �

𝜀𝜀̇
𝜀𝜀0̇
��� (9.3) 
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Figure 9.1 The yield stress. 

 

The damage parameter D is defined as 

𝐷𝐷 = �
Δ𝜀𝜀𝑝𝑝 + Δ𝜇𝜇𝑝𝑝
𝜀𝜀𝑝𝑝
𝑓𝑓 + 𝜇𝜇𝑝𝑝

𝑓𝑓  (9.4) 

where the denominator is given by 

𝜀𝜀𝑝𝑝
𝑓𝑓 + 𝜇𝜇𝑝𝑝

𝑓𝑓 = 𝐷𝐷1(𝑃𝑃 + 𝑇𝑇)𝐷𝐷2 (9.5) 

When the concrete is crushed, the pressure will change. This is done in the following way: 

𝑃𝑃 = 𝐾𝐾1�̅�𝜇 + 𝐾𝐾2�̅�𝜇2 + 𝐾𝐾3�̅�𝜇3 (9.6) 

where  

�̅�𝜇 =
𝜇𝜇 − 𝜇𝜇𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖
1 + 𝜇𝜇𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖

 (9.7) 

𝜇𝜇𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖 is different for different concrete types. 
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Figure 9.2 Pressure as a function of volumetric strain. 

The HJC model has many parameters, which should be determined from material tests of the 
actual concrete. I Table 10.1, all parameters are described, and the values are taken from [33].    

Tabell 9.1 Material parameters in the HJC model for 48 MPa concrete [33].  

Strength  Damage  Pressure  

A 0,79 D1 0,04 Pcrush 0,016 GPa 

B 1,6 D2 1,0 µcrush 0,001 

N 0,61 EFMIN 0,01 K1 85 GPa 

C 0,007   K2 -171 GPa 

σc 48 MPa   K3 208 GPa 

Smax 7   Plock 0,80 GPa 

Shear modulus 
(G) 

14,86 GPa   µlock 0,10 

    T 0,004 GPa 

This model is used in [33] to simulate perforation of a 25,4 mm projectile with impact velocity 
400 m/s in a 48 MPa concrete slab. In Sjøl (2020), this simulation was repeated using the 
hydrocode Impetus Afea.  
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9.2.1 Polanco-Loria et al (2008) 

Polanco-Loria et al (2008) [35] modified the HJC model in the following way: 

𝐹𝐹 =  𝜎𝜎𝑒𝑒𝑒𝑒 − 𝐵𝐵�𝑃𝑃 + 𝑇𝑇(1 − 𝐷𝐷)�𝑁𝑁 ∗ �1 + �
𝜀𝜀̇
𝜀𝜀0̇
��

𝑇𝑇

∗ 𝑅𝑅(𝜃𝜃, 𝑒𝑒) (9.8) 

 

 

Figure 10.3 Equivalent stress as a function of normalized pressure.  Comparison of HJC, 
MHJC and experiments.  Figure taken from [35]. 

 

9.2.2 Islam et al (2013) 

In Islam et al (2013) [36], the HJC model is modified. The numerical simulations is also 
compared to the experiments in Hanchak et al [34].  The yield strength in the modified HJC 
model is  

𝐹𝐹 = �3𝐽𝐽2 − 𝜎𝜎𝑜𝑜 ∗ �𝐴𝐴(1 − 𝐷𝐷) + 𝐵𝐵 �
𝑝𝑝
𝜎𝜎𝑜𝑜
�
𝑁𝑁
� ∗ 𝐶𝐶 �

𝜀𝜀̇
𝜀𝜀0̇
�
1
3
 (9.9) 

Compared to the original HJC model, there are two differencies. First, there is no maximum 
value of the equivalent stress.  In addition, there is a slightly different way of including strain 
rate effects.  The parameters describing the strain rate effects (C and 𝜀𝜀0̇) are different in 
compression and tension. 

9.2.3 Kong et al (2016) 

Kong et al (2016)  [37] cratering and scabbing modified HJC material model. In order to obtain 
a continuous yield surface for all pressure values, the following is proposed: 
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𝜎𝜎𝑒𝑒𝑒𝑒 =  �3𝐽𝐽2

=  

⎩
⎪
⎪
⎨

⎪
⎪
⎧

3[𝑝𝑝 + 𝑇𝑇 (1 − 𝐷𝐷𝑜𝑜)]𝑟𝑟′ 𝑝𝑝 < 0

�3𝑇𝑇 (1 − 𝐷𝐷𝑜𝑜) −
9𝑝𝑝𝑇𝑇 (1 − 𝐷𝐷𝑜𝑜)
𝑓𝑓𝑜𝑜 (1 − 𝐷𝐷𝑜𝑜) + 3𝑝𝑝� 𝑟𝑟′ 0 ≤ 𝑝𝑝 ≤ 𝑓𝑓𝑜𝑜(1 − 𝐷𝐷𝑜𝑜) 3⁄

�3𝑝𝑝 �1 −
3𝑇𝑇
𝑓𝑓𝑜𝑜
� + 3 (1 − 𝐷𝐷𝑜𝑜) 𝑇𝑇� 𝑟𝑟′ 𝑓𝑓𝑜𝑜(1− 𝐷𝐷𝑜𝑜) 3⁄ ≤ 𝑝𝑝 ≤ 𝑓𝑓𝑜𝑜 3⁄

�𝑓𝑓𝑜𝑜 − 3𝑇𝑇𝐷𝐷𝑜𝑜 + 𝐵𝐵𝑓𝑓𝑜𝑜  �
𝑝𝑝
𝑓𝑓𝑜𝑜
−  

1
3
�
𝑁𝑁
� 𝑟𝑟′ 𝑝𝑝 > 𝑓𝑓𝑜𝑜 3⁄

 
(9.10) 

In addition to the parameters defined in the original HJC-model, we have Dt (cumulative tensile 
damage) and r’, which is defined in Equation (5.7). The tensile failure Dt  is based on the work 
in Weerheijm et al (2007) [38] 

𝐷𝐷𝑜𝑜 = �1 + �𝑐𝑐1
𝜀𝜀�̅�𝑝
𝜀𝜀𝑓𝑓𝑓𝑓𝑚𝑚𝑜𝑜

�
3

� exp�−𝑐𝑐2
𝜀𝜀�̅�𝑝
𝜀𝜀𝑓𝑓𝑓𝑓𝑚𝑚𝑜𝑜

� −
𝜀𝜀�̅�𝑝
𝜀𝜀𝑓𝑓𝑓𝑓𝑚𝑚𝑜𝑜

(1 + 𝑐𝑐13) exp(−𝑐𝑐2) (9.11) 

Here, we have 𝜀𝜀�̅�𝑝 (effective plastic strain), 𝜀𝜀𝑓𝑓𝑓𝑓𝑚𝑚𝑜𝑜 (fracture strain) and two constants c1=3 and c2 
= 6,93 (from Kong et al (2016)). 

10 Material models calibrated for blast loading 

The yield curve in MAT_CONCRETE_2018 in Impetus is defined by 

𝜎𝜎𝑥𝑥 =

⎩
⎪
⎨

⎪
⎧

0 𝑝𝑝 < 𝑝𝑝𝑠𝑠
𝐾𝐾(𝑝𝑝 − 𝑝𝑝𝑠𝑠) 𝑝𝑝𝑠𝑠 < 𝑝𝑝 < 𝜉𝜉𝑝𝑝𝑜𝑜

𝐾𝐾(𝑝𝑝 − 𝑝𝑝𝑠𝑠)�1 −
1 − 𝑝𝑝

𝑝𝑝𝑜𝑜�
1 − 𝜉𝜉

𝜉𝜉𝑝𝑝𝑜𝑜 < 𝑝𝑝 < 𝑝𝑝𝑜𝑜

 (10.1) 

This is shown graphically in Figure 10.1.  Note that this material model is an associated flow 
model at the cap (for high hydrostatic pressure).   
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Figure 10.1 Damage model for MAT_CONCRETE_2018. The figure is taken from the Impetus 
manual [39] 

In Impetus, the material parameters for MAT_CONCRETE_2018 are defined as: 

*MAT_CONCRETE_2018 
"Optional title" 
mid, ρ, G 
K0, KL, p0, pL, ϵL, n, ft, fc 
rf, re, ϵt, ϵc, c, cdec, ξ, bulk 
KIc 

In Table 10.1, these parameters are described. 

Table 10.1 Parameters used in MAT_CONCRETE_2018. 

Parameter Description 

mid Material ID-number 

ρ Density 

G Shear modulus 

K0 Initial bulk modulus 

KL Bulk modulus at full compaction 

P0 Hydrostatic pressure at “crush limit” 
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PL og εL Hydrostatic pressure og volumetric strain at full compaction 

ft og fc Uniaxial tensile and compressive strength 

rf og re Strain rate parameters 

εt Uniaxial «failure tensile strain» 

εc Volumetric failure crushing strain 

C og cdec Parameters describing the viscosity of the material 

ξ Parameter controlling the shape of the yield surface  

Bulk 0:  No bulk ; 1:  Bulking activated 

KIC Fracture toughness 

 

11 Kong-Fang model 

Kong et al (2018) [40] published a new model based on the best features of HJC, RHT and 
K&C models. This was later modified in 2020 by Zhang et al [41].  First, we recapture the 
shortcomings of the three models before we introduce the new model.   

HJC has three shortcomings: 

• In tension, HJC uses elastic perfect plastic model, which is too simple 

• Only two stress invariants are used, which cannot capture the transition from triangular 
shape (low pressure) to circular shape (high pressure) 

• J2 flow rule is adopted, shear dilatation behavior cannot be reproduced 

RHT has shortcomings 

• Linear crack softening – too simple 

• Use J2 flow rule, which means that shear dilatation behavior cannot be captured 
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K& C has shortcomings 

• Not well suited for high pressures, i e for projectile impact and contact blast loadings 

• Dynamic tensile behavior is not consistent with experiments 

• Tensile failure criterion is not available  

The new Kong and Fang model include the advantages and discards the disadvantages of the 
HJC, RHT and K&C models. 

11.1 Three invariant failure surface 

The maximum and residual strength surface are defined as 

𝜎𝜎𝑚𝑚 =

⎩
⎨

⎧
3[𝑃𝑃 (1 − 𝐷𝐷) + 𝑇𝑇⁄ ] 𝑃𝑃 ≤ 0

1,5(𝑃𝑃 + 𝑇𝑇) 𝜓𝜓⁄ 0 < 𝑃𝑃 ≤ 𝑓𝑓𝑜𝑜 3⁄

𝑓𝑓𝑜𝑜 +
𝑃𝑃 − 𝑓𝑓𝑜𝑜 3⁄
𝑡𝑡1 + 𝑡𝑡2𝑃𝑃

𝑃𝑃 > 𝑓𝑓𝑜𝑜 3⁄
 (11.1) 

 

𝜎𝜎𝑓𝑓 = �
0 𝑃𝑃 ≤ 0
𝑃𝑃

𝑡𝑡1 + 𝑡𝑡2𝑃𝑃
𝑃𝑃 > 0 (11.2) 

Where 

𝜓𝜓(𝑃𝑃) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0,5 𝑃𝑃 ≤ 0

0,5 + 1,5𝑇𝑇 𝑓𝑓𝑜𝑜⁄ 𝑃𝑃 =
𝑓𝑓𝑜𝑜
3

1,15 [1 + 1,3 (3𝑡𝑡1 + 2,3𝑡𝑡2𝑓𝑓𝑜𝑜)⁄ ]⁄ 𝑃𝑃 =
2,3𝑓𝑓𝑜𝑜

3
0,753 𝑃𝑃 = 3𝑓𝑓𝑜𝑜

1 𝑃𝑃 ≥ 8,45𝑓𝑓𝑜𝑜

 (11.3) 

For pressure between the points defined in Equation (11.4), linear interpolation is used. The 
maximum strength surface as a function of pressure is shown in Figure 11.1 for HJC, RHT, 
K&C compared to the Kong and Fang model and experiments from the literature.  We see that, 
especially for high pressures, the Kong and Fang model is in better agreement with the 
experiments. 
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Figure 11.1 Maximum strength surface  

 

Current failure surface: 

𝑌𝑌�𝜎𝜎𝑖𝑖𝑖𝑖,𝐷𝐷� = �3𝐽𝐽2 = 𝑟𝑟′[𝐷𝐷(𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑚𝑚) + 𝜎𝜎𝑚𝑚] (11.4) 

Where 

𝑟𝑟′(𝜃𝜃,𝜓𝜓) =
2(1 − 𝜓𝜓2) cos𝜃𝜃 + (2𝜓𝜓 − 1)�4(1 − 𝜓𝜓2) cos2 𝜃𝜃 + 5𝜓𝜓2 − 4𝜓𝜓

4(1 − 𝜓𝜓2) cos2 𝜃𝜃 + (1 − 2𝜓𝜓)2  (11.5) 

and θ is the Lode angle, see Chapter 2 for definition. Strain rate effects are taken care of by 
using a “Dynamic Increase Factor” (DIF - 𝑟𝑟𝑓𝑓): 

𝑌𝑌 = 𝑟𝑟𝑓𝑓𝑌𝑌(𝑃𝑃 𝑟𝑟𝑓𝑓⁄ ) (11.6) 

𝑟𝑟𝑓𝑓 is defined different in compression and tension.  The following expressions are found 
experimentally: 

�𝑟𝑟𝑓𝑓�𝑜𝑜 =  �[tanh(log(𝜖𝜖̇ 𝜖𝜖0̇⁄ ) −  𝑊𝑊𝑥𝑥)𝑆𝑆]�𝐹𝐹𝑚𝑚 𝑊𝑊𝑥𝑥 − 1⁄ � + 1�𝑊𝑊𝑥𝑥

�𝑟𝑟𝑓𝑓�𝑜𝑜 =  ��𝑟𝑟𝑓𝑓�𝑜𝑜 − 1� (𝑇𝑇 𝑓𝑓𝑜𝑜⁄ ) + 1
 (11.7) 

In Kong et al (2018), the reference strain rate 𝜖𝜖0̇ = 1 𝑠𝑠−1 and the following parameters were 
used: 

𝐹𝐹𝑚𝑚 = 10 𝑊𝑊𝑥𝑥 = 1,6 𝑆𝑆 = 0,8 𝑊𝑊𝑥𝑥 = 5,5 (11.8) 
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11.2 Flow rule 

The Kong and Fang model uses the same flow rule as the K&C model 

𝑙𝑙 = �3𝐽𝐽2 − 𝜔𝜔𝐹𝐹�𝜎𝜎𝑖𝑖𝑖𝑖,𝐷𝐷� (11.9) 

where ω is a parameter between 0 and 1.  This rule is partially associative. 

The effective plastic strain increment is  

Δ𝜀𝜀�̅�𝑝 = �2
3
Δ𝜀𝜀𝑖𝑖𝑖𝑖

𝑝𝑝Δ𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝 = �1 +

2
9�

𝜔𝜔
𝑑𝑑𝐹𝐹�𝜎𝜎𝑖𝑖𝑖𝑖 ,𝐷𝐷�

𝑑𝑑𝑃𝑃 �
2

Δ𝜆𝜆 (11.10) 

 

11.3 Modification of Kong-Fang model 

Zhang et al (2020) [41] made some improvements and modifications to the original Kong and 
Fang model.  

11.3.1 Modification of residual strength 

Numerical simulations with the original Kong and Fang model show that the tunneling diameter 
is larger than the projectile diameter. This is probably due to an inaccurate description of the 
residual strength when the concrete is totally damaged.  The residual strength is in Zhang et al 
(2020) modified to 

𝜎𝜎𝑓𝑓 = �

0 𝑃𝑃 ≤ 0
0,7 𝑓𝑓𝑜𝑜  (3𝑃𝑃 𝑓𝑓𝑜𝑜⁄ )𝑚𝑚3 0 < 𝑃𝑃 ≤  𝑓𝑓𝑜𝑜 3⁄

𝑃𝑃
𝑡𝑡1 + 𝑡𝑡2𝑃𝑃

𝑃𝑃 >  𝑓𝑓𝑜𝑜 3⁄
  (11.11) 

where a3 is another material parameter.   

 

11.3.2 Introduction of yield strength surface 

The original Kong Fang cannot consider compressive strain hardening.  This leads to inaccurate 
prediction of compressive behavior under high confinement. A yield strength surface is 
therefore introduced. 
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𝜎𝜎𝑥𝑥 =

⎩
⎪
⎨

⎪
⎧�3−

9𝑇𝑇
𝑓𝑓𝑥𝑥𝑜𝑜

�𝑃𝑃 + 3𝑇𝑇 0 ≤ 𝑃𝑃 ≤ 𝑓𝑓𝑥𝑥𝑜𝑜 3⁄

𝑓𝑓𝑥𝑥𝑜𝑜 +
𝑃𝑃 − 𝑓𝑓𝑥𝑥𝑜𝑜 3⁄
𝑡𝑡1𝑥𝑥 + 𝑡𝑡2𝑥𝑥𝑃𝑃

𝑃𝑃 > 𝑓𝑓𝑥𝑥𝑜𝑜 3⁄
 (11.12) 

 

Modification of current failure surface: 

𝑌𝑌�𝜎𝜎𝑖𝑖𝑖𝑖,𝐷𝐷� = �
𝑟𝑟′[𝐷𝐷(𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑚𝑚) + 𝜎𝜎𝑚𝑚] 𝑃𝑃 ≤ 0, tensile
𝑟𝑟′�𝐾𝐾�𝜎𝜎𝑚𝑚 − 𝜎𝜎𝑥𝑥�+ 𝜎𝜎𝑥𝑥� 𝜆𝜆 ≤  𝜆𝜆𝑚𝑚,𝑃𝑃 > 0, strain − hardening
𝑟𝑟′[𝐾𝐾(𝜎𝜎𝑚𝑚 − 𝜎𝜎𝑓𝑓) + 𝜎𝜎𝑓𝑓] 𝜆𝜆 >  𝜆𝜆𝑚𝑚,𝑃𝑃 > 0, strain− softening

 (11.13) 

where 𝐾𝐾 is a scale factor related to the modified equivalent plastic strain 𝜆𝜆, and 𝜆𝜆𝑚𝑚 is the value 
of 𝜆𝜆 corresponding to the peak stress. 

12 Summary 

In this report, a wide range of material models for concrete are discussed. Some of these models 
were designed for use in finite element codes around 1990. They were later refined to give a 
better description of concrete, especially for high pressure.  In Table 11.1, the major properties 
of the different material models described in this report are listed.  

Yield functions with different number of parameters are discussed.  Models with at least three 
parameters are able to describe shear dilatancy, which is an important property for concrete.  
After yield is reached, some models for describing plastic flow are described.  Some of the 
models include a “cap-function”, which describe the concrete material at high hydrostatic 
pressures.   

As discussed in Chapter 11, it is not straightforward to define a material model which is valid 
for both impact loads and blast loads.  The new model from Kong and Fang tries to combine the 
best “parts” of existing models.   
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Table 12.1 Summary of different material models described in this report. 
# 

par. 
in 

yield 
mod. Model Yield EOS Flow 𝜀𝜀̇ J3  

C
A
P Damage 

Hardening
/Softening 

Tensile 
behavior Ref 

 

RHT  P-α  Y N Y  Linear 
crack s. 

 [21] 

HJC  Piece. 
lin 

 Y N N   
Elastic 
perfect 
plastic 

[33] 

  Piece. 
lin 

  Y     [35] 

Impetus   A/N-A   Y    [39] 
Kong and 

Fang 
  A/N-A  Y   Comp. 

strain h. 
 [40] 

   A/N-A  Y  Vol. tensile 
damage 

Exp. Crack 
s. 

 [41] 

LS_DYNA    Y Y Y Softening 
with erosion 

  [25] 

K & C Hyperbolic  A/N-A  Y N   No tensile 
fail 

 

Winfrith Ottosen   Y Y Y Smeared 
crack 

   

2 

 
 MC 

Lin  N N N N   FFI 

 N-A N N N Softening   [42] 
 N-A N Y N N   [23] 

 Drucker-
Prager 

   N     
Feenstr
a et al 
(1984) 

3 

 Bresler-
Pister 

        [8] 

 William-
Warnke 

   Y      

 
 Lubliner 

 N-A    Anisotropic   [11] 
        [12] 

 
 

Mentrey  
William 

 N-A Y Y  N Based on 
strain rate 

 [22] 

        [16] 

4 

 Ottosen  N-A   Y    [14] 

 
 

Hsieh Ting 
Chen 

 N-A     Isotropic  
Imran 
et al 

(2001) 
        [20] 

  
Mises 

Schleicher                 [18] 
5   5 par W-W                   
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