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1st Håkon Svee Eriksson
University of Oslo

Oslo, Norway
haakose@uio.no

2nd Gudmund Grov
Norwegian Defence Research Establishment & University of Oslo

Kjeller, Norway
Gudmund.Grov@ffi.no

Abstract—Many studies of the adoption of machine learning
(ML) in Security Operation Centres (SOCs) have pointed to
a lack of transparency and explanation – and thus trust –
as a barrier to ML adoption, and have suggested eXplainable
Artificial Intelligence (XAI) as a possible solution. However, there
is a lack of studies addressing to which degree XAI indeed
helps SOC analysts. Focusing on two XAI-techniques, SHAP and
LIME, we have interviewed several SOC analysts to understand
how XAI can be used and adapted to explain ML-generated
alerts. The results show that XAI can provide valuable insights
for the analyst by highlighting features and information deemed
important for a given alert. As far as we are aware, we are the
first to conduct such a user study of XAI usage in a SOC and
this short paper provides our initial findings.

Index Terms—Interpretability, explainability, artificial intel-
ligence, machine learning, security operation center, intrusion
detection system, explainable artificial intelligence, user studies

I. INTRODUCTION

At the core of a Security Operation Centre (SOC) is analysts
monitoring and analysing alerts. After an alert is deemed
suspicious, a closer inspection is usually conducted by an
experienced analyst, before closing or escalating the alert to an
incident management team [14], [36]. Traditionally, signature-
based intrusion detection systems (IDS), such as Suricata1,
have mostly been used to generate alerts from real-time mon-
itoring of systems and networks. Such signatures are typically
developed manually from cyber threat intelligence, published
vulnerabilities (e.g. CVEs2) or analysis of known malware
or incidents. When analysing an alert, the source of the
signature can then provide necessary contextual information
(or explanation) for the analyst. Examples of such ‘source’ can
for instance be the threat intelligence report, or knowledge of
the malware/incident, from which it was generated.

The resources required to develop and maintain signatures
does not scale with the increased number of threats and its
complexities. This has resulted in a stronger focus on data-
driven detection techniques, where machine learning (ML)
is often used. However, predictions made by modern ML-
systems are generally known to be hard to explain, which
is also the case for ML-generated alerts. To illustrate, instead
of providing the analyst with the intuition behind an alert,

1https://suricata.io/.
2https://www.cve.org/.
978-1-6654-8045-1/22/$31.00 ©2022 IEEE

e.g. in terms of a threat intelligence report, the analyst is
given a number that indicates how far the given data is from
what a ML-trained model perceives as normal. Such a lack
of transparency and explanation of both the ML-models, and
predictions they make, have led to the creation of a sub-field
within artificial intelligence (AI) called eXplainable AI (XAI).

Several studies of SOC environments, including the use of
AI in the SOC, have pointed towards adapting and using XAI
techniques to support analysts [25], [7], [21], [9], [32], [2],
[16], [26]. There have also been several attempts applying XAI
to explain ML-generated alerts [39], [38], [28], [15], [20], [27],
[34]. However, studies on how and if XAI actually provided
the necessary explanation for a security analyst seems to be
missing [11].

A tongue-in-cheek definition of XAI is “a translation from
one mathematical notation nobody understands to another
mathematical notation nobody understands”. Although this
“definition” is not to be taken seriously, it still has a valid
point: XAI-methods are mainly developed to support data
scientist in interpreting and debugging their ML-models. A
seminal paper by Sommer & Paxson [33] from more than
a decade ago, introduced what they called the semantic gap
between the language used by data scientist and the language
used by security analyst; this is still relevant today [32].

Today, ML-based IDS’ are almost exclusively compared and
contrasted based on their performance [1], [10], [12]. As most
alerts are managed manually, and future security automation is
unlikely to be end-to-end ML, we argue that usability aspects
should also be taken into account; there may be cases where
a ML-model that produces more false alerts is preferable over
a better performing model, if the generated alerts are easier
to understand and analyse (and possible to automate). A first
step in achieving this vision, is to improve our understanding
of what security analysts need from alerts, what constitutes a
“good” alert, and to which degree existing XAI-methods meet
such needs. To reflect this contextual need of end-users, we
use the definition of XAI by Arrieta et al. [4]:

Definition 1 (eXplainable AI (XAI) [4]): Given a certain
audience, explainability refers to the details and reasons
a model gives to make its functioning clear or easy to
understand.
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Fig. 1. XAI taxonomy (based on [22]).

Here, the context refers to a security analyst in a SOC, and
explainability refers to how usable they are for the analyst.

Our long term vision is to build tools that can generate
actionable alerts from ML-based models that meets the needs
of security analysts. In this paper, we initiate the process of
bridging XAI-based explanation of ML-generated IDS alerts
with the needs of security analyst in a SOC, by reporting on
the results from an initial five month experiment. We focus
on the usage of two commonly used XAI methods, SHAP
and LIME, used with a deep neural network on a well-known
dataset, to generate explainable alerts from network traffic. As
a baseline, a comparable Suricata signature was developed and
used to generate a signature-based alert. These were used in
interviews with SOC analysts to improve our understanding
of their needs, using LIME and SHAP as a concrete case. The
paper is based on the Master thesis by the first author [8], and
is structured as follows:

• §II provides background on both XAI and existing user
studies of SOCs;

• §III describes the experimental setup for the study, includ-
ing alert generation and how the interview was conducted;

• §IV summarises the results from the interview;
• §V concludes and outlines further work.

II. BACKGROUND

We build on work that can be categorised along two lines
of research: (A) XAI-methods with a focus on the use of ML-
generated alerts, and (B) previous user studies of analysts in
a SOC environment. 3

A. XAI

Figure 1 provides a taxonomy of XAI-approaches based
on [22]. Here, we separate between ML-methods that are

3For a broader study of this topic, we refer to [8].

Pred S. IP D. IP S. Port D. Port ...
0,1 Random() 10.0.0.8 10 80 ...
0,7 10.0.0.1 10.0.0.8 Random() Random() ...
0,7 10.0.0.1 Random() 10 Random() ...
0,6 10.0.0.1 Random() Random() 80 ...
... ... ... ... ... ...

Fig. 2. Example of SHAP-generated datapoints.

intrinsically explainable (e.g. logistic regression and decision
trees) and methods that are explained post-hoc. Among post-
hoc methods, we further separate model-specific methods,
which only works for specific architectures and methods that
are agnostic with respect to the underlying model. The focus of
this paper is on model-agnostic methods, that we further split
into global methods (explaining the underlying model), and
local methods (explaining given predictions). Both SHAP and
LIME falls under the latter category, and are one of the more
common XAI-methods. The intuition behind our focus on local
methods is that they are used to explain predictions (used to
generate alerts), while we see global methods as support to
data scientists for developing and debugging the ML-models.

1) Local Interpretable Model-agnostic Explanations
(LIME): Given a model, LIME [19], [29] runs it multiple
times for the same prediction, altering the feature inputs to
see how each feature affects the output for each run. A new
dataset with datapoints close to the datapoint in question is
created, which is used as input. From these new datapoints,
an interpretable model is created, weighted based on how
close each datapoint in the new dataset is to the instance we
are trying to explain.

2) SHapley Additive exPlanations (SHAP): SHAP [17] is
based on Shapley values [31], originally developed for game
theory, which shows how to distribute a payout evenly among
the features based on their contribution to a prediction. The
value is generated from the average of all marginal contri-
butions of every coalition. The marginal contribution is the
difference between two predictions, where one has changed a
feature with a random valid value. Figure 2 shows an example
of how SHAP would create subsets of a datapoint. It removes
values by substituting them with a random value from a
representative dataset. Pred is the prediction score from the
machine learning model. Note that without the value source
IP (S. IP), the prediction is low, indicating that it is influential.
The goal of SHAP is to interpret a prediction by calculating
how each feature contributes to the overall score. The unique
functionality of SHAP, contrary to Shapley values, is how the
values are represented in an additive feature attribution method
(linear model).

3) Use of XAI in IDS: There are several examples where
XAI-methods have been used with ML-based IDS. Wawrowski
et al. [39] used SHAP with a ML techniques called gradient
boosting to implement an anomaly detection system. Mane
& Rao [18] used a neural network to detect network intru-
sions, while presenting a XAI framework which explains each
step of the ML pipeline. Global (post-hoc) explanations are
provided to support the developer of the ML-model, while
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local explanations are provided both in terms of examples
from the training set and post-hoc feature contributions (as
with LIME and SHAP). Wang et al. [38] used SHAP’s local
capabilities to interpret single attack predictions, and global
functionality to highlight important features. This combination
tied feature values with various attack types. An approach first
discussed in [38] used global post-hoc explanations as a form
of enrichment, possibly gaining a deeper knowledge of attacks
and their patterns. Finally, Mathews [20] used LIME to support
explanation of classification of Windows malware from a deep
neural network.

B. User-centric SOC studies

There have been several studies focusing on the analyst in
a SOC. Yu [25] targets human interaction aspects to elicit
functional requirements for automating tasks performed by a
digital teammate Feng et al. [9] developed a ML framework
by generating labels from SOC notes in order to correlate IP-
addresses, hosts and end-users. Akinrolabu et al. [2] discov-
ered valuable features (for ML models) by interviewing SOC
analysts. Oesch et al. [26] discovered several usability issues
when using ML in a SOC. They also found that the analysts
lacked an understanding of how scores were generated, result-
ing in misuse and mistrust. Alahmadi et al. [5] defined five
properties to improve and speed up alert validation: Reliable,
Explainable, Analytical, Contextual, and Transferable. Finally,
Franke et al [11] used interviews of analyst to understand their
information needs with respect to threat actors when handling
alerts. We are not familiar with any user studies addressing
the effect XAI provides for security analyst when analysing
and handling generated alerts.

III. EXPERIMENTAL SETUP

A signature-based alert was created as a baseline, and a
ML-based alert system was created, with LIME and SHAP
used to explain the generated alerts. This was then used in a
semi-structured interview with ten security analysts working
in a SOC. The following section explains this experimental
setup, while §IV summarises the results from the interviews.

A. Signature-based alert

Suricata, an open source and widely used signature-based
detection engine, was used to generate the signature-based
alert. The PCAP processing capability of Suricata was used,
by generating a custom rule to detect a simple TCP SYN scan
reconnaissance attack from a tool called nmap:

alert tcp any any -> any any (
msg:"Reconnaissance: nmap SYN SCAN";
flow:stateless; flags:S,12;
classtype:attempted-recon; sid:2300000;
priority:10; rev:1;
threshold:type threshold, track by_src,
count 50, seconds1;)

The signature looks for the S flag in a TCP packet, while
counting the number of unique source IPs. If one IP sends

more than 50 packets during one second, an alert is generated.
Such alerts will contain a timestamp, signature ID, title,
category classification, priority, and relevant systems in the
form of IP-addresses and port numbers.

B. ML-based alert

Fig. 3. ML-architecture.

To generate a ML-based alert, we first had to train a ML-
model. As the focus is on explainability issues, its performance
is not a major issue as long as it is sufficiently realistic and
complex. We therefore trained a simple neural network based
on [37], as shown in figure 3. Note that ‘density’ in the figure
refers to the number of nodes for each layer. The final sigmoid-
activation function will return a number between 0 and 1 where
everything above 0.5 is considered malicious.

For the actual training of this ML-model a dataset called
UNSW-NB15 [24] was used. Only datapoints related to re-
connaissance attacks was included in the training data.

We then used an existing implementation of LIME4 [29]
and a SHAP implementation called DeepSHAP5 [17]. These
provideded local explanation of the predictions as discussed
in §II-A.

C. The interview

Due to the number of potential participants (given our
time frame) and, more crucially, to uncover new factors and
understand why certain opinions were raised, a qualitative
approach was taken. To ensure a good portion of exploration,
the interview was done in a semi-structured fashion following
the approach and guidelines of Elstad [3].

A total of ten people participated in the interview. All had
a direct or supporting role in a Security Operations Center
(SOC). Most had a master’s degree, and the self-reported
experience of their work was on average high. Each interview
started with a “warm-up” exercise discussing what, in their
view, constituted a good or bad alert. This was followed
by a case showcasing two alerts (as described above): one
signature-based, and one Machine Learning (ML)-based using
no XAI, LIME and SHAP, respectively.

The following signature-based alert was provided:

03/09/2022-20:37:49.833584 [1:2300000:3]
Reconnaissance with nmap's SYN SCAN
[Classification:Attempted Information Leak]

4https://github.com/marcotcr/lime.
5https://github.com/slundberg/shap.
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Flow column Flow value Importance
(SUM 8.2) Description

proto ipv6-no Ipv6-no 0.18 No next header
for IPv6

Sttl 254 0.14 Source to
destination TTL

swin 0 0.09 Source TCP window
advertisement value

Fig. 4. SHAP-scores provided to interviewees.

[Priority: 10] {TCP}
10.0.0.99:60522 -> 10.0.0.100:1309

The participants were also given the signature in which the
alert was generated from (see §III-B). A similar alert was
provided for the ML-generated case. For LIME and SHAP,
a table with the three features with the highest scores was
given. This is illustrated for SHAP in figure 4. A second
table, summarising datapoints from the training data was also
provided, as was a textual explanation of feature importance
and how they might be influential based on the tables.

The questions and discussions in the interviews focused on
how the methods differed. Our intention behind this structure
was that by focusing on their perceptions of the concrete alerts,
we would be able to better elicit their alert requirements.

We refer to [8] for additional details about how the interview
was conducted (including the interview guide).

IV. RESULTS

Signature-based alerts were perceived as detailed, easy to
understand and providing a suitably isolated view of the
underlying data by the participants in the interview. This was
rather unsurprising given most of the participants were used
to signature-based alerts. They did however find them to be
strict in their capabilities.

ML-based alerts provided a better overall overview of the
data and a more precise evaluation, as the influence of fea-
tures previously considered uninteresting could now be seen.
However, this type of alerts was not seen to provide sufficient
explanation and control for the actual decision making, and
it was unclear how analysts could influence and change
future predictions. At a high-level, the participants found both
signature- and ML-based alerts to provide some level of alert
interpretability and could not see an advantage of either alerts
with regards to analysis time. ML-based alerts were however
seen to require more knowledge and analytical skills – one
reason for this being the higher number of variations (features)
provided.

Two rather surprising results was (a) the new insight pro-
vided by XAI and (b) a need for global explanation. With
respect to (a), one advantage of ML-based alerts (in particular
when used for anomaly detection) was the possibility of
detecting unseen attacks. Another advantage, highlighted by
one participant, was the novel insight of the data used for
detection: “They [SHAP and LIME] show values (features)
I never would have thought of checking ... speeding up my
work, since I can start with the most important ones”. For

example, the “No next header for IPv6” shown in figure 4
was considered important. Thus, it may also act as a noise
filter.

We see (b) as part of a larger question of how to close the
“semantic gap” between data science and security analysts. At
one end of the spectrum, the argument is to educate security
analysts or employing data scientists in the SOC, probably
resulting in some change to the processes in the SOC. This is
proposed in both [26], [38] and [38]. It has also been proposed
to include end-users during development in order to ensure
“actionable” alerts [2], [6].

Our initial hypothesis was at the other end of the spectrum,
where the ambition is to hide ML-details and provide explana-
tions that are adapted to the existing knowledge and processes
in a SOC.6 We have not considered global explanation as
relevant, as we consider them more as support for data
scientists when developing, debugging and optimising their
models. This is thus seen as an implementation detail we
did not consider to be relevant for the security analyst. The
results from the interview has however showed that many want
a more conscious understanding of the ML-models used to
generate the prediction score – and even more than SHAP
and LIME provided. A similar result was seen in [26], where
an analyst lost trust in the system when provided with just
the prediction score of the ML model – thus showing the
need for explanation. These results have made us revisit our
initial hypothesis, where as many details as possible should be
hidden, and include underlying details we initially considered
exclusively for developing models. Finally, note that we did
not experience the same as a previous study with the Situ
system [13]. There, they found that the biggest challenge
security analysts faced was a change of habit in the analyst’s
mindset when moving from a signature-based to a ML-based
system.

A. “Good” alerts and alert enrichment

In addition to our main study of XAI, the “warm-up”
exercise of the interview was a discussion of what constitutes
a “good” alert. The purpose of this discussion was to enable
the interviewees to relate their views on this matter to the
XAI-specific questions. Secondly, enrichment of alerts with
relevant contextual information was known to us prior to this
project: an appropriate alert enrichment is likely to reduce the
burden of initial alert triage in the SOC. However, the type of
enrichment needed was less clear. Whilst not XAI specific, we
did consider this topic to be sufficiently relevant and important
to be included in the interview and we briefly summarise the
results here.

First and foremost, a good alert must be actionable and
trigger a process, or “a good alert is relevant, meaning that
you can act on it”, as was one of the opening statements.

6An analogy can be found for high-level programming languages: such
programs are often complied to lower-level languages such as C. Here you
want the debugger to work in the high-level language and not the compiled
C code.
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The source of the alert, and what made it trigger, was also
considered to be important. The source could for instance
be the malware or (Mitre ATT&CK)7 technique that the
model/signature tries to detect. One of the interviewees said
“... if it is C2 we are looking at, then it should be clear
in the title.”8. Some sort of example-based explanation was
also sought as it is easier for analysts to compare, rather than
making up their own attack behavior. An example could be a
simulated scenario or data from the training set if feasible.

The source of the data, sensors capturing the data and the
underlying infrastructure were all seen as important contextual
information by the analyst. It should be clear: what is internal
and what is external traffic; which services are running; what
the SOC should protect; and information about which parts of
the infrastructure belong to the enterprise which the SOC is
protecting. The placement of sensors (e.g. if they are behind
a firewall, gateway, NAT, etc) was also considered important
as this shows which type of traffic the sensors can see and
capture.

Enrichment with relevant historical information was also
highlighted in the interviews, and providing previous analysis
of the same alert type would arguably speed up the analysis.
Historical precision of the signature, or, in the case of ML,
historical performance9 of the ML-model that generated the
alert was considered relevant. Trust in the supply-chain did
also come up in the discussions; for example, if a signature
or ML-model is obtained from a stakeholder known for their
high quality products, or has a high degree of trust, then this
information should be provided. Similarly, if this has been
developed internally then such details should also be given.
Previous analysis arising from the signature/model should also
be used to develop a notion of risk for the alert10, including
the likelihood and consequence of an associated vulnerability
or incident.

Enrichment should use both internal and external knowledge
as well as threat intelligence to enrich the alerts. Such en-
richment should include information related to artefacts, such
as IP-addresses and domain names extracted from the logs
(data point(s)) in which the alert was generated. Information
considered relevant included previous usage such as: previous
observations and their location, relevant campaigns or previous
incidents, association with known CVEs11, vulnerabilities,
(type of) threat actor, who has information on them, and links
to the (US) national vulnerability database12 which contains
information on severity score and weakness enumeration13.
Finally, information of whether or not a Proof of Concept
(POC)14 has been published should be provided.

7https://attack.mitre.org/.
8Here, ‘title’ refers to the name of the signature and for ML-models this

could be the type of tactic or technique the model was trained on.
9E.g. metrics such as accuracy, precision, recall and Fβ .
10This has some similarities with Splunk’s risk-based alerting; see e.g.

https://splk.it/3ycCQgS
11https://www.cve.org/
12https://nvd.nist.gov.
13http://cwe.mitre.org.
14A POC is a publicly available working exploit.

V. CONCLUSION AND FUTURE WORK

As far we are aware, this is the first user study on the impact
of XAI to explain alerts to analysts in a SOC.15 We see this as
an important first step towards operationalising XAI for alerts,
which will only be possible when understanding the needs of
the analysts that will be using it.

Techniques such as SHAP and LIME seems promising,
but needs to be further tailored and enriched with contextual
information. The interviews have also improved our under-
standing of the type of information a “good” alert should
provide and stressed the importance that the explanations are
precise and deemed trustworthy. We did also see the need
to include information about the underlying ML-model we
originally considered less relevant.

This paper has only documented the first step of a larger
research vision with a limited scope. We have only focused on
a single tactic of Mitre ATT&CK (Reconnaissance), and all
interviewees were from the same enterprise/SOC which may
introduce enterprise-specific bias.

Our discussion is limited to SHAP and LIME, but as
indicated in figure 1, there are many other XAI-methods to
be considered. Examples include model-specific methods (e.g.
[35]), counter-factual explanations [23], intrinsic methods like
decision trees and the use of knowledge graphs [16].

Finally, is it possible to develop metrics to quantitatively
measure and compare ML-models based on how explainable
the alerts they generate are? There are proposals for general
XAI metrics (e.g. [30]), which can be build upon, however as
eluded to in definition 1, explanations must be tailored to their
context, which the metrics also need to reflect.
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