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Summary 

The process of designing a radar detector scan schedule is inherently one of compromise and 
problem specific prioritization. Tuning such a schedule to the problem at hand tends to happen 
iteratively. This is characterized by continuous testing and evaluation against some acceptable 
performance benchmark. This project explored whether genetic algorithms with variable-length 
chromosomes (GA-VLC) could be used for generating such schedules. This optimization 
scheme is inspired by the process of evolution by natural selection. Given a database of known 
radar systems, the aim was to generate scan schedules capable of detecting as many of these 
systems as possible when placed in a radar environment described by the database in question. 
Achieving this required the design of a fitness function capable of assigning a figure of merit to a 
given schedule. This figure would reflect the degree to which the schedule was capable of 
capturing the underlying structure of the solution space. These figures of merit, i.e. their fitness 
value, were then used to guide the schedules towards optimality. After the optimization process, 
the schedules were tested using Monte Carlo simulations, the results of which shoved that GA-
VLC is capable of generating scan schedules of high quality, optimized for radar databases of 
different sizes. 
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Sammendrag 

Å designe en søkestrategi for en radardetektor krever problemspesifikke kompromisser og 
prioriteringer. Kalibreringen av slike strategier er typisk iterative prosesser. Framgangsmåtene 
kjennetegnes av kontinuerlig testing og evaluering, opp mot et satt kvalitetskriterium. I dette 
prosjektet undersøktes det hvorvidt genetiske algoritmer med kromosomer av variabel lengde 
kunne brukes til å generere slike strategier. Dette er en optimaliseringsmetode som er inspirert 
av den naturlige evolusjonsprosessen. Målet var å lage strategier som, gitt en database med 
kjente radarsystemer, kunne detektere så mange av disse systemene som mulig når 
søkestrategien ble brukt i et radarmiljø som svarer til databasen. For at dette skulle være mulig 
måtte det defineres en fitness-funksjon. Funksjonen måtte være i stand til bedømme en gitt 
strategis evne til å kapre det underliggende løsningsrommet. Det vil si at jo bedre en løsning 
var, dess høyere ble dens fitness-verdi. Disse verdiene var nødvendige for å guide 
optimaliseringsprosessen. Etter optimaliseringen ble strategiene testet med Monte Carlo-
simuleringer av radarmiljøene. Resultatene viste at de beskrevne genetiske algoritmene er i 
stand til å generere søkestrategier av høy kvalitet for radardatabaser av ulik størrelse. 
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1 Introduction 

When designing a scan schedule for a radar detector, a common procedure is to make an 
initial guess based on some knowledge of the radar environment or problem parameters, 
followed by subsequent testing and evaluation, leading to a continuous, iterative tuning of the 
schedule, with the aim being an increase in performance in relation to one or more objectives. 
Essentially, one first generates a schedule using a random search with a set of “sensible” 
parameters, before the schedule in question becomes subject to a subsequent tuning process, one 
in which various objectives are introduced and attempted met. While relatively straightforward 
for detection systems in simple radar environments, or systems whose task is comparatively 
achievable, the design of a scan schedule becomes increasingly difficult as the radar 
environment or task increases in complexity. The aim of this paper is to explore the feasibility 
of using genetic algorithms with variable-length chromosomes in the design of scan schedules 
for radar detectors. Specifically, whether such an optimization scheme might be able to handle 
the tuning process of a schedule initialized using random search automatically. 
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2 Optimization and the Scan Schedule Problem 

2.1  Optimization  

Not all problems have a single, optimal and analytically discoverable solution. For a 
given problem, there may exist a wide range of possible solutions, or indeed an infinite amount, 
depending on the criteria by which a problem would be considered solved. While the entire set 
of possible solutions might not be of interest, for instance due to the low quality of a given 
solution, the subset in which only the suitable ones are contained might still be quite large. 
Searching the entirety of this space for a so-called optimal solution might be difficult, be it due 
to the sheer size of the solution space, uncertainty as to what constitutes an optimal solution or 
merely the fact that there might not exist one single optimal solution, but indeed several, with 
each differing from the others in some way. This type of problem is considered an optimization 
problem and can be solved using optimization algorithms, i.e. algorithms that iteratively search 
for an ideal solution based on some pre-defined criteria of quality for the problem in question 
[1]. A general assumption concerning such problems is that there is an underlying structure in 
the solution space, although its precise nature is not, or cannot be, known analytically. The aim 
of optimization algorithms is to find, or at least approximate, these solutions. A typical 
optimization problem will consist of several parameters that are to be tuned in relation to each 
other, with the value of one often affecting which values the others might take. Together, these 
values then correspond to some solution. The manner in which the solution parameters are tuned 
is governed by some objective function, which is an expression of the desired goals and 
constraints the algorithm should optimize towards and operate within, respectively. The 
objective function is a mathematical formulation of the criteria an algorithm must consider 
when searching for a solution to a given problem. Examples of typical optimization problems, 
which tend to be characterized by there not being one single ideal way of solving the problem in 
question, include tasks related to scheduling or resource allocation. In other words, tasks in 
which different solutions reflect different considerations, prioritizations and ideas of optimality. 
The nature of these kinds of problems makes optimization an exercise in compromise. One such 
problem concerns the scanning pattern of a radar detection system.  

2.2 The Scan Schedule Problem  

The radar bands, i.e. the frequency range in which most radars operate, span from about 3 
MHz to 300 GHz [2]. If one were to sample signals from this entire range at once, disregarding 
the technical challenges and inconveniences related to designing a system capable of doing so, 
the noise level alone would render the results gathered rather useless for most applications. 
Now, generally and luckily, one is usually not interested in listening to the entire radar spectrum 
at once, but rather a subset of it, with the precise frequency range of interest being dependent 
upon the task at hand. In electromagnetic warfare (EW), the research area with which this report 
concerns itself, a general example of a frequency range of interest is 2-18 GHz. While definitely 
an improvement, this is still, however, quite a large frequency span to sample from at once, 
particularly considering that one of the major challenges EW faces is trying to detect signals 



 

 

    

 

FFI-RAPPORT 23/00688 9  
 

from sources which would very much prefer to, and might indeed have been specifically 
designed to, go undetected. The fact that these sources pose a potentially lethal threat further 
incentivizes having a sensitive detection system. These considerations, in addition to technical 
and noise related challenges, result in it being common to design radar detection systems that 
only operate within a limited part of the frequency range of interest at any one time, sequentially 
switching between bandlimited channels. While this significantly increases the sensitivity of the 
system, it does bring with it some problems, mainly stemming from the fact that most radars are 
not constantly illuminating their target, meaning the signals will not always be there for the 
detection system to detect. The consequence of this is that, although a radar signal might be 
present at some point in time, the detection system might not be sampling at the relevant 
frequency at that time, meaning the radar signal goes undetected. The problem, therefore, is this: 
if a given radar detector is to be useful, it must operate by sequentially switching between 
frequency channels, but doing so will cause constant blind spots that potentially contain signals 
that ought to be detected. This is the scan schedule problem for radar detection systems. How 
should the system divide its time between the various channels in order to maximize the signal 
detections?  

2.3 Problem Description 

This paper examines the feasibility of using genetic algorithms with variable-length 
chromosomes1 (GA-VLC) in scan schedule optimization for radar detection systems. Given a 
radar database, i.e. a list of potentially detectable radar systems, the goal was to maximize the 
mean detection rates achieved by a schedule in a corresponding radar environment. Every radar 
system was assigned a priority of detection (1, 2 or 3) and greater emphasis was placed on the 
detection of high priority systems. Additionally, a subset of the top priority systems would have 
a time restriction associated with them. These were systems that, instead of being present at all 
times, might suddenly appear in the radar environment during the schedule run. The time 
restriction would then signify how quickly this system ought to be detected once present. This 
latter point was of key importance, and a major goal of the project was to examine whether it 
was possible to maximize the detections of time-restricted systems without otherwise 
compromising the overall performance of a schedule. Each scan schedule throughout the project 
was to last the same amount of time, Tschedule, somewhat arbitrarily set equal to 5 seconds. After 
optimization, the robustness of the scan schedules was tested using Monte Carlo (MC) 
simulations of the radar environments. This was done for radar databases of varying size, as the 
scalability of the optimization method was of interest. The optimized results were compared 
with results achieved by schedules that were generated using random search.  

2.3.1 Radar Databases  

As the purpose of the project was not to explore a specific situation, but rather to examine 
the general feasibility of using GA-VLC for solving the scan schedule problem, the radars used 
for optimization were not required to be overly complex, or real, systems. Instead, the radar 

                                                           
1 Explained in chapter 3. 
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databases were generated by sampling pre-defined intervals of common radar parameters, 
generating randomized systems, while remaining subject to certain restrictions. In order to avoid 
a uniform distribution of systems across all channels, which is an overly unrealistic and rather 
uninteresting scenario, the radar systems were distributed across smaller frequency intervals, 
each of which had restrictions as to the type of system that might be present. This was done in 
order to better emulate a real radar environment, in which certain systems only operate within a 
small subset of the total frequency range available. Generally, the lower frequencies might be 
populated by lower priority systems, while the medium frequency channels might contain 
systems of any priority. At the highest end of the frequency range, there might only be time-
restricted systems of top priority. Additionally, depending on the frequency range in which a 
system operated, some arbitrary restrictions were placed on the possible range of scan times the 
system in question be sampled from. This was done to assure non-uniformity in the radar 
parameters across different channels. Furthermore, the systems were allowed a maximum duty 
cycle of 10%, they were set to operate within only one frequency channel, and the parameters, 
once assigned, were held constant. In Table 2.1 is presented the value ranges from which the 
system parameters were sampled, while Table 2.2 contains information about how the systems 
were distributed across radar channels. The radar channel distribution is also illustrated in 
Figure 2.1.   

Table 2.1  The parameters used for describing a radar system along with the possible values 
they might take. 

 

 

 

 

 

 

Parameter Value 
Pulse width (PW) 0.1 – 100 µs 

Pulse repetition interval (PRI) 10 – 1000 µs 
Dwell time 5 – 20 PRI 

Time restriction 0.2 – 0.5 Tschedule, None 
Scan time (systems with time restriction) 0, 2 – 10 dwell times 

Scan time (priority 1 systems without time restriction) 10 dwell times – 5 s 
Scan time ( priority 2 & 3 systems without time restriction ) 1 – 5 s 
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Table 2.2  Description of how radar systems of varying priorities are distributed across 
frequency channels and the potential constraints that consequently might be placed 
on the scan times. 

Radar system distribution 

# of systems  
[% of 
database size] 

Frequency intervals Priority distribution 
[1 restricted / 1 unrestricted / 2 / 3] 

Min. scan 
time 

Max. scan 
time 

10 2.5 GHz - 3.5 GHz 0 % / 0 % / 50 % / 50 % 4 s - 

10 5 GHz - 6 GHz 0 % / 20 % / 50 % / 30 % - 2 s 

70 6.5 GHz - 12.5 GHz 10 % / 10 % / 40 % / 40 % - - 

10 13.5 GHz – 17 GHz  100 % / 0 % / 0 % / 0 % - - 

 

Figure 2.1 Radar system distribution across frequencies. 
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3  Genetic Algorithms 

Genetic algorithms (GA), a family of algorithms that again belongs to the larger family of 
evolutionary computation algorithms, are search algorithms whose behavior is inspired by the 
principle of evolution by natural selection [1, 3]. Robust and versatile, such algorithms have 
been used in a wide range of complex optimization problems. The basic principle is to generate 
a group of candidate solutions, also referred to as a population of individuals2, and then 
continuously improving upon the quality of these using biologically inspired mechanisms, such 
as crossover, mutation and selection. 

3.1  Biological Overview for Intuition 

While an in-depth understanding of evolutionary biology is certainly not necessary in 
order to understand this paper, a brief and quite simplified overview of the process of evolution 
might be helpful for intuition. Consider the lobster. Consider every lobster. Consider them 
solutions, a realization of a blueprint written by their very DNA, and consider this blueprint to 
be contained within a box called a “chromosome”. This chromosome would then contain within 
it a complete description of a lobster3, with separate sections of the DNA – the “genes” – 
corresponding to different features of the organism, such as size or color. Now, the theory of 
evolution suggests that the lobster chromosome did not start out this way, but rather, that its 
variety of features were developed gradually from generation to generation, with slight 
improvements over time gradually leading to what is now considered a lobster. The idea is that 
there are small variations within the chromosomes of individuals in a given species, meaning 
some individuals have certain features that others might lack. If such features prove to be useful 
for survival, this might then lead to an increased likelihood of reproduction, yielding these 
features a greater chance of crossing over into the next generation. Following this principle of 
crossover from generation to generation, one can see how, over time, the most useful genes 
might survive. However, this does not fully account for the variation one encounters in nature, 
as organisms occasionally develop entirely new features not already available in the mating 
pool. This happens through mutation, i.e. a random change that occurs in the DNA sequence of 
a living organism. If such a change proves useful for the organism, it will consequently have a 
greater chance of being passed on to the next generation. 
 

                                                           
2 A quick note on the terminology: while “population” and “individual” are commonly used terms in the discussion of 
genetic algorithms, even a light perusal of the literature will reveal a somewhat divided community concerning the 
language one should use. Some opt for a naming convention in line with the biology from which it stems, while 
others prefer more computer scientifically sounding terms.  
3 In reality, an organism tends to be made up of several chromosomes, but for simplicity, assume only one is needed. 
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3.2 Theory of Genetic Algorithms 

Designed to emulate the process of evolution by natural selection, genetic algorithms 
work by continuously evolving a population of candidate solutions, i.e. generating increasingly 
suitable individuals, in order to solve some optimization problem. Initially, once such a problem 
is defined, a population PT consisting of N random individuals is generated, with each 
individual, i, being coded to represent a possible solution. In GA, solutions are commonly 
represented as an array of fixed length, with each element of the array corresponding to a part of 
the solution. These arrays are directly analogous to the structure of genes within DNA and may 
be coded in a variety of ways, depending on the problem at hand. Once initialized, each 
individual, i, is then evaluated based on some problem specific objective function, referred to as 
a fitness function, which yields a numerical score reflecting the quality of the solution to which 
the individual corresponds. After the fitness evaluation, the population will undergo genetic 
operations in order to create the next generation of the population, PT+1. When generating a 
child population, the first step might be to clone the Ntop individuals of the existing population, 
as this will make sure that the quality of the next generation remain at least at the same level as 
the current one.  The population PT will then undergo a selection process, which involves a 
pairwise statistical selection of parent individuals, with their selection probability depending on 
their fitness score. These parent individuals will then be used to generate one or more children 
through a crossover operation. The specifics of the crossover operation will vary depending on 
the nature of the problem and its implementation, but generally involves the exchange of 
features between the parents. Following this operation, the resulting children might then 
undergo a mutation operation, depending on some predefined mutation probability, during 
which random changes to its features may occur. This allows for the full exploration of the 
solution space. The children might also be generated through mutation alone, without crossover, 
if so desired. Regardless of method, the child individuals are then added to the population PT+1. 
This cycle of selection-crossover-mutation repeats until the population PT+1 contains N 
individuals, at which point the new generation is evaluated and the cycle starts over. This 
process repeats for a desired number of generations or until some condition for termination is 
reached. The cycle is illustrated in Figure 3.1, as well as in the pseudocode below. 
 

1. Initialize a population PT to consist of N random individuals 

2. Evaluate each individual i and assign them a fitness value 

3. Clone the Ntop most fit individuals into population PT+1. 

4. Select a pair of parent individuals from PT 

5. Generate children using crossover operations on the parents  

6. Mutate children according to probability 

7. Add children to PT+1 

8. Repeat step 4-7 until PT+1 contains N individuals  

9. Return to step 2 and then either terminate or keep going 
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3.3 Implementing a Genetic Algorithm 

Although every implementation of genetic algorithms will generally follow the abovementioned 
structure, each implementation will differ in several regards, as the design of a given operation 
will depend upon problem specific knowledge, albeit to a varying degree.  

3.3.1 Selection Method 

The selection process, i.e. the process through which elite individuals to be cloned or used 
for reproduction are chosen, need not necessarily depend on any knowledge of the problem, but 
rather on the fitness quality assigned during the evaluation process. There are several selection 
methods available in the literature, each with its own benefits and drawbacks [4]. In this project, 
rank selection was used, which works by ranking each solution according to their fitness score, 
a value which would then correspond to the probability of that individual being chosen as a 
parent.  
 

3.3.2 Crossover and Mutation 

The crossover and mutation operations tend to be comparatively problem specific, as 
these need to ensure the possible exploration of the entire solution space and the ways in which 
features are exchanged between individuals. The structure of the solutions and the values the 

Figure 3.1 Cycle of genetic algorithms. 
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variables might take will therefore affect the implementation of these operations, and their 
specifics will depend heavily on how the solutions are coded (for instance, crossover might 
work differently for binary strings as opposed to real-coded chromosomes – the same being the 
case for mutation). Simply put, a certain level of understanding relating to how features are 
allowed to link together and which values the parameters might take is beneficial during 
implementation. 

3.3.3 The Fitness Function 

The fitness function, i.e. the governing force of the entire algorithm, will depend heavily 
on knowledge (or assumptions) about what constitutes a high quality solution. During this 
process, a specially designed fitness function is used to assign a measure of quality to each 
individual in a population, reflecting how suited they are for solving the problem in question. 
The specifics of how such a fitness function is implemented will determine the quality of the 
solutions generated, and its design tend to be iterative rather than straightforward, as a lack of 
knowledge about what constitutes a so-called “good solution” might be the exact reason one 
opts for using an optimization algorithm in the first place. Finding a good fitness function is 
arguably the greatest challenge when it comes to GA and is itself, in a sense, an optimization 
problem. 

3.3.4 Fixed- and Variable-Length Chromosomes 

A typical implementation of GA will use fixed-length chromosomes [3, 5], which means 
that every solution will consist of exactly the same number of parameters. This is not ideal when 
it comes to the optimization of a scan schedule, as such an implementation would require either 
a priori knowledge or some rather major assumptions concerning the optimal amount of scan 
windows needed in a given situation. Instead, an implementation using variable-length 
chromosomes (VLC) was of interest, as this allowed for a more dynamic exploration of 
solutions.  
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4 Method 

This section contains the specifics of how GA-VLC was implemented, as well as a 
description of how the MC simulations were used for schedule testing.  

4.1 Structure of Variable-Length Chromosomes for Radar Scan Scheduling 

A radar detector scan schedule is, essentially, a description of how a radar scanner should 
divide its time between frequency channels, that is, when and for how long should the system 
switch to a given channel before moving on to the next. This can be written as an array of time-
frequency intervals, each of which describes a specific time window. A scan schedule, S, can be 
formulated as 

𝑆𝑆 = �[𝑡𝑡1,𝑓𝑓1], [𝑡𝑡2,𝑓𝑓2], … , [𝑡𝑡𝑛𝑛,𝑓𝑓𝑛𝑛]� (4.1) 

Where ti and fi correspond to a duration and a center frequency, respectively. While both 
values are real-coded, the frequency values may only take on a range of discrete values, each 
corresponding to a specific channel. In this project, the channel size was set as 250 MHz, while 
the entire frequency span ranged from 2-18 GHz, which translates into 64 possible frequency 
channels. The time variable, on the other hand, was allowed to take on a continuous range of 
values spanning from the shortest pulse width to the max scan time in the radar environment in 
question. Upon initialization, however, the time variables were sampled from the interval 
[𝑃𝑃𝑃𝑃𝐼𝐼𝑚𝑚𝑚𝑚𝑛𝑛, 3𝑃𝑃𝑃𝑃𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑃𝑃𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚], the rationale for which follows from section 4.3.1. All schedules 
were initialized to last approximately Tschedule. 

4.2 Genetic Operations 

4.2.1 Crossover 

The crossover operation in GA mixes features from two (or more) parent individuals, 
with the aim being a thorough exploration of how the solutions are affected by the various 
combinations of features. While there are several ways to implement this operation, a common 
method is k-point crossover [6]. With a fixed-length chromosome, this might involve randomly 
choosing k points along the chromosomes, splitting both chromosomes at said points, and then 
combining the cut-off parts in some manner – for instance, equally or by randomly choosing 
which parent a given section is to come from. K-point crossover is illustrated in Figure 4.1.  
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While straightforward for fixed-length chromosomes, a slight modification is necessary in 

order for this to be useful for VLC as well. In order to maintain the “variable-length” element of 
the algorithm, k-point crossover can instead be performed temporally. That is, by making use of 
the fact that the scan schedules are to last a fixed amount of time, the chromosomes can each be 
split into k (relatively equal) time intervals, combining these to create children, despite the 
sections might be of unequal length. This was the crossover operation used in this project, with 
the number of splits being randomly sampled between 1% and 10% of  𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

4.2.2 Mutation 

In order to allow the full exploration of the solution space, each time-frequency interval, 
i.e. scan window, of a mutating individual would undergo one of the following mutation 
operations: 

• Copy: the scan window remains unaltered 

• Random channel switch: the scan window switches frequency channel 

• Remove: the scan window is removed from the chromosome 

• Time change: the scan window gets a new duration, sampled using a normal distribution 

with mean equal to the original duration and standard deviation equal to 10% of the 

duration.  

The probability of an interval undergoing a given operation was set to the mutation rates 
shown in Table 4.1, in which the variable 𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚_𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 was initialized to 100 and would 
increase by one as each generation passed. These values were arrived upon through 
hyperparameter tuning. 

 
 

 

  

Figure 4.1 K-point crossover for two fixed-length chromosomes (red and blue) with 
k=5. 
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Table 4.1 Mutation operations and the corresponding mutation rates. 

Mutation Operation Probability of Operation 

Copy 
95

𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛_𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑒𝑒
  

Channel switch 
1

𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛_𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑒𝑒
  

Remove window 
1

𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛_𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑒𝑒
  

Time change 
3

𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛_𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒𝑒𝑒
  

4.3 The Fitness Function  

The purpose of the fitness function is to assess the individuals in a population, assigning 
them a measure of quality corresponding to how good they are at solving the problem in 
question. The best individuals then have a greater chance of being selected, ideally leading to an 
overall increase in quality of the next generation. The job of the fitness function is to guide the 
solutions towards optimality. The function must therefore be precisely defined in order to ensure 
an appropriate convergence, and its implementation will require a degree of problem 
knowledge. A key element is the difference in how systems with and without time-restrictions 
are handled. In the derivation below, first is assumed the latter case, as a variant of this was used 
to derive the former.  

4.3.1 Probability of Detection 

The quality of a given scan window should, for a given radar, reflect how likely it is to 
intercept the radar signal, as well as how likely it is to classify it. It was assumed that the 
probability of classification would depend on the amount of pulses the window were potentially 
able to contain, with classification being guaranteed with 3+ pulses. The window would 
therefore be given a quality measure reflecting whether it would be able to contain 0, 1, 2 or 3+ 
pulses. The quality 𝑄𝑄𝑤𝑤𝑅𝑅  of a given window w in relation to a given radar R could be calculated 
using the following equation: 

 

𝑄𝑄𝑤𝑤𝑅𝑅 = 𝑞𝑞𝑤𝑤𝑅𝑅

⎩
⎪
⎨

⎪
⎧0,                                                       𝑡𝑡𝑤𝑤 ≤  𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

𝑡𝑡𝑤𝑤 − 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

3𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 ,            𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 < 𝑡𝑡𝑤𝑤 < 3𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

1,                                         𝑡𝑡𝑤𝑤 ≥ 3𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

(4.2) 

Where 𝑡𝑡𝑤𝑤 is the duration of the scan window,  𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅  and 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅  are the PRI and PW of radar 
R, respectively (the explanations of these terms can be found in appendix A), and 𝑞𝑞𝑤𝑤𝑅𝑅  is 
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𝑞𝑞𝑤𝑤𝑅𝑅 =

⎩
⎪
⎨

⎪
⎧ 0,                                                                  𝑡𝑡𝑤𝑤 ≤ 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

0.1,                                   𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 < 𝑡𝑡𝑤𝑤 ≤ 𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅     
0.5,               𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑝𝑝𝑤𝑤𝑅𝑅 < 𝑡𝑡𝑤𝑤 ≤ 2𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅  
1,                                                  2𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 < 𝑡𝑡𝑤𝑤  

(4.3) 

Furthermore, a scan window should be judged by how likely it is to intercept a given 
radar signal, a probability which will depend on the size of the scan window. Assuming a 
window is able to contain 𝑚𝑚 ∈ [1, 3] pulses, the probability of it doing so will depend on the 
relationship between the window size and the radar parameters. This can be expressed4 by the 
effective scan window size 𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒

𝑅𝑅 , which is a measure of the time interval a scan window 
effectively spans, when considering the size of the dwell of a given radar, R. That is, because a 
radar dwell might contain more than i pulses, the probability of the scan window intercepting i 
pulses should depend in some way on both the size of the radar dwell and the size of the scan 
window. Think of it as a range of potential scan window starting positions. This time interval 
can be calculated using the equation below.  

𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
𝑅𝑅 =

�
�𝑡𝑡𝑤𝑤 − �𝑚𝑚 − 1)𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 − 𝑡𝑡𝑝𝑝𝑤𝑤𝑅𝑅 ���

𝑡𝑡𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅

𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 − (𝑚𝑚 − 1)� ,   (𝑚𝑚−1)𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 <  𝑡𝑡𝑤𝑤 < 𝑚𝑚𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

𝑡𝑡𝑤𝑤 + 𝑡𝑡𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅 − (2𝑚𝑚 − 1)𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 − 𝑡𝑡𝑝𝑝𝑤𝑤𝑅𝑅 ,                                         𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  
𝑅𝑅 ≥  𝑡𝑡𝑤𝑤 ≥ 𝑚𝑚𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

  (4.4)
 

Where  𝑡𝑡𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅  is the dwell time of radar R. Once found, 𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
𝑅𝑅  can be divided by the 

maximum effective window size, 𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  
𝑅𝑅 , i.e. the effective window size corresponding to the 

guaranteed detection of the radar system in question, in order to gain the probability of 
interception for the given scan window. 𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  

𝑅𝑅  is given by the equation below.   
 

𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  
𝑅𝑅 = 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛𝑅𝑅 − 𝑡𝑡𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅 + 𝑚𝑚𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 (4.5) 

Where 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛𝑅𝑅  is the scan time of radar R. One last coefficient needed to describe the 
quality of a scan window is a measure of scan window repetition. Due to the cyclical nature of 
many radar systems, the scan windows stand a chance of covering the same relative period of a 
radar cycle, essentially yielding no extra potential for detecting the radar system in question. 
This can be accounted for by applying an overlap reduction factor, calculated by the equation 
below.  
 

𝑚𝑚𝑤𝑤𝑅𝑅 =
𝑡𝑡𝑤𝑤 − 𝑡𝑡𝑚𝑚𝑜𝑜𝑒𝑒𝑜𝑜𝑒𝑒𝑚𝑚𝑝𝑝𝑅𝑅

𝑡𝑡𝑤𝑤
(4.6) 

Where 𝑡𝑡𝑚𝑚𝑜𝑜𝑒𝑒𝑜𝑜𝑒𝑒𝑚𝑚𝑝𝑝𝑅𝑅  corresponds to how much of 𝑡𝑡𝑤𝑤  has already been covered by previous 
windows, i.e. how much of the window w is essentially “wasted” when trying to detect radar 
system R. 𝑡𝑡𝑚𝑚𝑜𝑜𝑒𝑒𝑜𝑜𝑒𝑒𝑚𝑚𝑝𝑝𝑅𝑅  can be found by shifting all scan windows down into the interval [0, 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛𝑅𝑅 ] 
and measuring the overlap between a given scan window and all previous scan windows. 
                                                           
4 A more in-depth explanation of Equation 4.4 and 4.5 can be found in appendix B.  
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Combining the above equations yields, for all windows 𝑤𝑤 in a given frequency channel, an 
expression for the probability of detecting radar R: 
 

Φ𝐷𝐷𝑅𝑅 =  �𝑄𝑄𝑤𝑤𝑅𝑅𝑚𝑚𝑤𝑤𝑅𝑅 min�
𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
𝑅𝑅

𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  
𝑅𝑅 , 1�

𝑤𝑤

(4.7) 

Φ𝐷𝐷𝑅𝑅  then corresponds to the probability of detecting a radar R with the given schedule. 
As the aim was to maximize all detection probabilities, the minimum value of all detection 
probabilities were be added to the overall fitness value of the schedule. This was handled 
separately for each priority, p, as shown below.  
 

Φ1
D =  �𝑝𝑝Φ𝑚𝑚𝑚𝑚𝑛𝑛𝑝𝑝

𝐷𝐷

𝑝𝑝

(4.8) 

 With Φ𝑚𝑚𝑚𝑚𝑛𝑛𝑝𝑝
𝐷𝐷  being the minimum detection probability of all radar systems with priority 

p. This also made it simple to leave out low priority systems, if so desired, as these might fall 
under the category of “nice to detect” rather than being of critical importance.  

 
Lastly, as the complexity of the problem was quite large, a further method of guiding the 

optimization process was included, specifically the weighted rewarding of each detection 
probability in itself: 

Φ2
D = �

log(1 + 𝑝𝑝∑ 𝛷𝛷𝐷𝐷𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝 )
𝑁𝑁𝑝𝑝𝑝𝑝

(4.9) 

 
Where Np is the number of systems with priority p (and without time-restriction). The 

log-term is included to make sure Φ2
D is unable to dominate Φ1

D. Finally, this yields: 
 

ΦD = Φ1
D +Φ2

D (4.10) 

4.3.2 Necessary Tuning for Time-Restricted Systems 

Although the above derivation will mostly hold for time-restricted systems as well, 
certain changes are necessary to make it applicable. As these systems might show up whenever, 
and would then require quick detection, several visits to the channel needed to be encouraged. 
Furthermore, these visits had to be spread out in time, and the scan windows that perform these 
visits should be of as high a quality as possible. By considering every such radar system as a 
series of subsystems, this can be achieved by first dividing the schedule time 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 into 
smaller time windows and then calculating a separate detection probability for each of these. 
The number of desired sections 𝑁𝑁𝑒𝑒𝑠𝑠𝑅𝑅  required for a time-restricted radar system with time-
restriction 𝑇𝑇𝑜𝑜𝑒𝑒𝑠𝑠𝑅𝑅  is: 
 

𝑁𝑁𝑒𝑒𝑠𝑠𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑡𝑡 �2 × 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 �
𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑇𝑇𝑜𝑜𝑒𝑒𝑠𝑠𝑅𝑅

�+ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 �
𝑇𝑇𝑜𝑜𝑒𝑒𝑠𝑠𝑅𝑅

𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�� (4.11) 
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The above formula guarantees that scan windows contained within subsequent detection 
windows are always separated by less than 𝑇𝑇𝑜𝑜𝑒𝑒𝑠𝑠𝑅𝑅 . Within each of these sections, the probability 
of detection would have to be calculated as described in equation 4.10, although with certain 
modifications. Firstly, Φ2

D was omitted completely. Further, the remaining elements needed 
some minor altering, as certain time-restricted systems would have a scan time equal to zero.   
For systems with 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛𝑅𝑅  > 0, however, no further alteration needed to be made, and the 
probability of detecting a time-restricted radar R within a section n is given by: 
 

Φn
𝐷𝐷𝑅𝑅 =  �𝑄𝑄𝑤𝑤𝑅𝑅 min�

𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
𝑅𝑅

𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  
𝑅𝑅 , 1�

𝑤𝑤

(4.12) 

While for systems with 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛𝑅𝑅  = 0, Φn
𝐷𝐷𝑅𝑅  would reduce to: 

 

Φn
𝐷𝐷𝑅𝑅 =  �𝑄𝑄𝑤𝑤𝑅𝑅 min�

𝑡𝑡𝑤𝑤
𝑚𝑚𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃 + 𝑡𝑡𝑝𝑝𝑤𝑤

, 1�
𝑤𝑤

(4.13) 

The probabilities could then be summed and normalized. Additionally, in order to further 
incentivize the detection of time-restricted systems, the normalized probability sum, being in the 
interval [0, 1], was used as the argument in the exponential function, yielding: 
 

Φres
𝐷𝐷 = exp

⎝

⎜
⎛∑

∑ Φ𝑛𝑛
𝐷𝐷𝑅𝑅

𝑛𝑛
𝑁𝑁𝑒𝑒𝑠𝑠𝑅𝑅

𝑅𝑅

𝑁𝑁𝑜𝑜𝑒𝑒𝑠𝑠

⎠

⎟
⎞

(4.14) 

4.3.3 Time Constraint 

Finally, the fitness function needed to adhere to constraints regarding duration. A time 
constraint was added to the total fitness using the following equation: 
 

Φ𝑇𝑇 = 𝑚𝑚𝑎𝑎𝑠𝑠 � 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −�𝑡𝑡𝑤𝑤𝑖𝑖  
𝑚𝑚

� (4.15) 

Where ∑ 𝑡𝑡𝑤𝑤𝑖𝑖  𝑚𝑚 is the total duration of a given scan schedule.  

4.3.4 The Complete Fitness Function 

The total fitness value for a given schedule is then given by: 
 

Φ = ΦD + Φres
𝐷𝐷 + Φ𝑇𝑇 (4.16) 
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4.4 Monte Carlo 

The radars within a given radar environment tend to work independently of one another, 
i.e. they are not synchronized in any way. Therefore, when testing the robustness of a scan 
schedule, any simulation of a radar environment should be able to represent its inherently 
stochastic nature. Monte Carlo (MC) simulations are a useful way of achieving this. In MC, the 
relevant parameters for describing the relative state of a radar system in relation to the scan 
schedule can be (pseudo-)randomly sampled, and testing the scan schedule against a wide range 
of states yields useful statistical data. The simulation was designed to take a database of radars 
and a scan schedule for radar detectors as input. It would randomly initialize every radar system 
according to their parameters, before measuring whether or not the scan schedule was able to 
detect 0, 1, 2 or 3 pulses within the schedule time (or, in the case of the time restricted systems, 
within the given time restriction). This would be performed for the desired number of 
simulation runs, ultimately yielding the detection rates for each schedule. The non-restricted 
systems, which were assumed always present in the radar environment, would be assigned a 
random dwell start time 𝑡𝑡𝑠𝑠𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑅𝑅  in a way that ensured that the entire dwell was guaranteed to 
appear within the first scan time of the radar system. It would then repeat cyclically at intervals 
equal to the size of the scan time until Tschedule. These dwells were then compared with the scan 
schedule windows, yielding detection statistics by calculating the overlaps between them. The 
time-restricted systems were similar in that they repeated cyclically once present. These 
systems, however, were assigned a random start time 𝑡𝑡𝑠𝑠𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑅𝑅  within the entire schedule time, i.e. 
a time of sudden appearance, from which point they repeated cyclically at intervals equal to the 
scan time. This would repeat, not until schedule end, but from time of appearance until it had 
been present for a duration equal to the time restriction, i.e. from 𝑡𝑡𝑠𝑠𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑅𝑅  to 𝑡𝑡𝑠𝑠𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑅𝑅 + 𝑇𝑇𝑜𝑜𝑒𝑒𝑠𝑠𝑅𝑅 . If the 
duration from appearance until schedule end was less than this, the schedule – which was 
assumed to repeat once it reached its end – was assumed to start over. 
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5 Results 

The optimization algorithm was performed for five randomly initialized radar databases 
of five different sizes: 50, 100, 250, 500 and 1000. These were initialized as described in section 
2.3. Each radar database was used in a GA-VLC optimization process, as well as a random 
search (RS) one. In the interest of fairness, and for making sure optimization is actually taking 
place when using GA, the RS optimization process generated the same amount of schedules as 
were generated in total by GA-VLC. These were evaluated using the fitness function and the 
best were used for comparison with the best ones generated by GA-VLC.  

As the goal of this project was to explore the feasibility of using GA-VLC for scan 
schedule optimization, i.e. examine it as a method for guiding scan schedule design, 
convergence was not a necessary criterion in order for the feasibility to be demonstrated. A 
relatively low number of generations was therefore used. Each optimization process ran for 500 
generations for all databases, with a population size equal to the radar database in every case. 
Three elite individuals were copied from one generation to the next. Mutation- and crossover 
rates were both set equal to 50%, meaning a child individual were equally likely to be produced 
through either crossover or mutation. Rank selection was used, as was temporal k-point 
crossover. After optimization, every schedule underwent 104 runs of an MC simulation. Below 
is presented the mean detection rates for 3+ pulses for time-restricted systems, top priority 
systems, and all systems. Each table and figure show the results for schedules generated by both 
RS and GA-VLC. 

5.1 Time-Restricted Systems 

Table 5.1 shows the mean detection percentages for all the time-restricted radar systems, 
obtained through 104 runs in an MC simulation. Detections statistics are shown for the best 
schedules achieved by both RS and GA-VLC. Upon comparison, the rates achieved by the GA-
VLC optimized schedules are greater than those that are achieved by those achieved through 
RS. This is demonstrated graphically in Figure 5.1.  
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Table 5.1 Mean detection rates for time-restricted systems achieved by RS and GA-VLC 
generated schedules. 

Mean Detection Rates [%] for Time-Restricted Systems 

# Radars RS GA-VLC 

50 94.40 98.67 

100 91.80 97.29 

250 92.59 96.83 

500 89.20 94.10 

1000 89.83 95.39 

  

 

Figure 5.1 Comparisons of the mean detection rates for time-restricted radar systems achieved by 
RS and GA-VLC generated scan schedules. 
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5.2 Top Priority Systems 

The mean detection percentages for all the top priority radar systems, i.e. radar systems 
with priority equal to 1, including the time-restricted ones, are presented in Table 5.2. As with 
the time-restricted results shown in the previous section, the GA-VLC rates are, for every radar 
database, greater than those found through RS. This is illustrated in Figure 5.2. 

Table 5.2  Mean detection rates for top priority systems achieved by RS and GA-VLC 
generated schedules. 

 

 

 

 

 

 

Mean Detection Rates [%] for Top-Priority Systems 

# Radars RS GA-VLC 

50 70.81 76.69 

100 64.53 70.26 

250 67.09 70.49 

500 62.44 66.78 

1000 65.00 68.49 
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5.3 All Systems 

Table 5.3 shows the mean detection percentages for all radar systems, regardless of 
priority and time-restriction. As with the time-restricted and top priority systems, the detection 
rates achieved by the GA-VLC generated schedules are greater than those achieved by RS. The 
data is plotted in Figure 5.3.  

 
 
 
 
 
 
 

Figure 5.2  Comparisons of the mean detection rates for top-priority radar systems achieved by RS 
and GA-VLC generated scan schedules. 
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Table 5.3 Mean detection rates for all radar systems achieved by RS and GA-VLC generated 
schedules. 

 

 

 

Mean Detection Rates [%] for All Systems 

# Radars RS GA-VLC  

50 29.32 30.33 

100 23.67 25.02 

250 23.75 24.61 

500 22.33 23.84 

1000 22.73 23.45 

Figure 5.3  Comparisons of the mean detection rates for all radar systems achieved by RS and GA-
VLC generated scan schedules. 
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6 Discussion and conclusion 

The aim of this project was not to generate a perfect schedule for a specific situation, but 
rather to examine whether GA-VLC could be used to generate schedules subject to a certain set 
of restrictions and considerations. In other words, the key elements of interest are not the 
solutions themselves, as the test cases in this report are generic and simplified, but rather 
whether or not the algorithm is capable of sufficiently capturing the underlying solution space in 
order to guide the scan schedule design process automatically. The algorithm was therefore not 
required to converge upon any final solution, but instead, it needed to be able to structure the 
solutions according to the target objectives. The degree to which this was achieved could be 
assessed by comparing the results of the GA-VLC optimized schedules with the results of the 
RS schedules, as the results of such a comparison would yield an indication as to whether the 
fitness functions had the ability to guide the GA algorithm towards optimality.  

As seen in Table 5.1, 5.2 and 5.3, and the respective figures to which they correspond, the 
optimized schedules were, for every radar database, capable of producing greater detection rates 
than were achieved by RS. This suggests that the fitness function is capable of guiding the 
optimization process, given the problem parameters. Of special note, then, is the manner in 
which the time-restricted cases are considered, i.e. as a sum of subsystems, as this method does 
not necessarily require the radar parameters to remain constant. This indicates that, as the radar 
systems take on aspects of real systems, such as a varying frequency, scan pattern or any other 
parameter variation, the optimization algorithm should be able to be expanded in order to 
accommodate these changes.  

In conclusion, GA-VLC can be used as a tool for capturing the underlying structure of the 
solution space of radar detector scan schedules and seems to be capable of guiding candidate 
solutions towards optimality.  
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Appendix 

A Overview of Radar Theory 

A radar (radio detection and ranging) is a detection system that transmits radiofrequency 
(RF) waves, i.e. electromagnetic (EM) waves with frequencies below 300 GHz, toward a region 
of interest, using the reflections of these to gather information about the region in question [2]. 
The system will generate an electrical signal that can be transmitted into space using an antenna, 
with which the return signal can later be received as well (assuming a monostatic system, i.e. 
the transmitter and receiver is located at the same place). The time delay, relative strength, 
direction and potential frequency- and phase shift of the return signal can then be used to gain 
information about the surrounding environment and the objects and entities within it. A radar 
antenna can be either omnidirectional or directional, and the RF waves can be transmitted 
continuously or as a series of pulses. In the latter case, the pulse width then describes the 
duration of the pulse, i.e. how long the radar was transmitting, and the time between pulse 
transmissions is described by the pulse repetition interval (PRI). This is visualized in Figure 
A.1.  

Figure A.1 Plot of three subsequent pulses of pulse width TPW and pulse repetition interval (PRI) 
 



  

    

 

 30 FFI-RAPPORT 23/00688 
 

While this report considers pulsed, directional radars, it is worth noting, in the interest of 
thoroughness, that although the radars considered are thought to be directional, the nature of EM 
waves will cause some energy to be transmitted in other directions as well. The energy 
transmitted in such secondary directions are contained in the side lobes of the antenna radiation 
pattern, while the main part of the energy is contained in the main lobe. An example of a typical 
antenna radiation pattern is presented in Figure A.2. Although relevant at shorter ranges, the 
side lobes become harder to detect at long ranges, as they tend to contain significantly less 
energy than the main lobe. Consequently, if a large distance between a radar and a radar 
detection system can be assumed, as it is in this project, only the main lobe is detectable and of 
interest.  
 

 
 
 

Figure A.2 Antenna radiation pattern with marked main- and side lobes. 
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Although dependent upon its task and properties, a directional radar system will often 
scan its main lobe around in some way rather than having it point in one fixed direction at all 
times. While the exact scan pattern and mode of operation of a radar will vary from system to 
system, the consequence of scanning is that the various regions of interest will be illuminated 
sequentially, as opposed to constantly. The time a given region is illuminated by the main lobe 
is called the dwell time and the time interval between the start of subsequent dwells is called the 
scan time. This is illustrated in Figure A.3.  
 

 

During a pulsed radar dwell, which can be said to consist of a series of PRIs, the target 
region will be illuminated by the number of pulses that corresponds to the dwell time in 
question. Scan- and dwell times, PRI and pulse width are all among the characteristic features of 
a given radar system and the measurements of these parameters can therefore aid in radar 
classification. 
 

 

 

Figure A.3 Plot of two subsequent scan times of duration Tscan containing dwells of duration Tdwell. 
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B Explaining the Equations for Effective Scan 
Window Sizes 

This appendix contains an explanation of the reasoning behind Equations 4.4 and 4.5, 
which together can yield the probability that a given scan schedule window of size 𝑡𝑡𝑤𝑤 intercepts 
i pulses from radar R.  

A convenient starting point is this general assumption: there might be several useful 
placements of a given, eligible scan schedule window relative to a radar dwell, each of which 
would be able to contain the desired number of pulses. How many such placements there are 
would depend on the radar parameters and the scan schedule window size.  

Now, assume that the range of possible placements can be expressed as one or more 
time intervals. Furthermore, assume that, at some point, a scan schedule window will be so large 
that it is guaranteed to contain the desired number of pulses, that is, there is a maximum (or, 
rather, a “sufficient”) range of placements. From this follows the need for Equations 4.4 and 4.5, 
the former of which yields the size of the time interval(s) corresponding to possible scan 
window placements (𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒

𝑅𝑅 ), while the latter yields the size of the maximum/sufficient time 
interval (𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  

𝑅𝑅 ).  

B.1 Effective Scan Window Size 

Equation 4.4 is presented below. 
𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
𝑅𝑅 =

�
�𝑡𝑡𝑤𝑤 − �𝑚𝑚 − 1)𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 − 𝑡𝑡𝑝𝑝𝑤𝑤𝑅𝑅 ���

𝑡𝑡𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅

𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 − (𝑚𝑚 − 1)� ,   (𝑚𝑚−1)𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 <  𝑡𝑡𝑤𝑤 < 𝑚𝑚𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

𝑡𝑡𝑤𝑤 + 𝑡𝑡𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅 − (2𝑚𝑚 − 1)𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 − 𝑡𝑡𝑝𝑝𝑤𝑤𝑅𝑅 ,                                         𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  
𝑅𝑅 ≥  𝑡𝑡𝑤𝑤 ≥ 𝑚𝑚𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅

  (4.4)
 

As the equation shows, there are two possible situations one might encounter, 
depending on whether or not 𝑡𝑡𝑤𝑤 is smaller than 𝑚𝑚𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 . Simply put, these two cases reflect 
whether the possible placements of the scan schedule windows can be found in a series of 
discrete intervals (henceforth referred to as “Case 1”) or along a continuous interval (“Case 2”). 
Case 1 refers to the first line in Equation 4.4, while Case 2 refers to the second.  

B.1.1 Case 1 
So consider Case 1, where 𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒

𝑅𝑅  is the product of the two terms contained within the 
outermost parentheses. The first of these terms corresponds to the size of a single time interval 
of possible scan window placements within a radar dwell, while the second term is an integer 
value corresponding to how many such time intervals there are for the dwell in question. 
Deriving the second term is relatively straightforward (it is simply the number of groups 
containing i consecutive pulses that can be formed within a dwell). The first term is slightly less 
straightforward, but the basic idea is this: place a scan window so that it ends just behind the 
edge of a pulse (for simplicity, assume i=1 – the principle remains the same regardless) and 
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then just slide the window forwards until the start of the window is just before the start of the 
pulse. The length the window has been slid is then the interval of possible start positions.  

This can be understood through Figure B.1. Here, the red intervals (equal in size, as they 
refer to the same scan window) correspond to the first and last possible placements of a given 
scan window in order for it to be capable of containing the first pulse in the figure. 𝑡𝑡𝑤𝑤𝑒𝑒𝑚𝑚𝑠𝑠𝑚𝑚 is 
basically just 𝑡𝑡𝑤𝑤𝑓𝑓𝑚𝑚𝑜𝑜𝑠𝑠𝑚𝑚 after sliding it towards the right. The green interval can then be thought of 
as the interval of possible start positions for the scan schedule window in question, if the 
window is to contain the first pulse. The green interval, which is described by the first term in 
Case 1 (in this case with i=1), would then be multiplied by the number calculated by the second 
term, which in this case would be equal to 2, as there are only two pulses present in this 
particular dwell.  
 

 

 

 

 

 

Figure B.1  How discrete window placement intervals are calculated for a scan schedule window 𝑡𝑡𝑤𝑤 
and i=1. The two red intervals correspond to the first and last possible placements of the 
scan schedule window if it is to detect the first pulse. The green interval is the range of all 
possible start positions for the window. 
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B.1.2 Case 2 
Case 2 is very much the same as Case 1, the only difference being that there is a 

continuous interval of positions from which the scan schedule windows might start rather than 
several smaller ones, i.e. there are no jumps between discrete intervals within the dwell and so 
no interval multiplication is needed. The scan window is large enough to always contain i pulses 
as it is slid across the dwell. This is illustrated in Figure B.2. Here, i is still equal to 1, but the 
scan schedule window is now large enough to always contain a pulse, no matter where it is set 
to start within the green interval. The green interval is given by the second line in Equation 4.4. 
 

B.2 Max Effective Window Size 

Equation 4.5 is presented below. 
𝑡𝑡𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  
𝑅𝑅 = 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛𝑅𝑅 − 𝑡𝑡𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅 + 𝑚𝑚𝑡𝑡𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅 + 𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 (4.5) 

This expression yields the maximum effective window size, i.e. the largest window 
needed in order to guarantee detection of i pulses. The derivation goes like so: 

Imagine placing a large scan window that just misses a radar dwell. That is, imagine it 
starting at the end of a radar dwell and ending just before the beginning of the next one. It 
currently has size 𝑡𝑡𝑤𝑤 = 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚𝑛𝑛𝑅𝑅 − 𝑡𝑡𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅  and there are no pulses contained within it. 

Then, if one wants to expand the window so that it always contained the desired number 
of pulses (in this case, say i=1), one can imagine stretching the window slightly on both sides, 
letting each side expand until a whole pulse is contained on either side. The size of the 

Figure B.2 How a continuous window placement interval is calculated for a scan schedule window 
𝑡𝑡𝑤𝑤 and i=1. The two red intervals correspond to the first and last possible placements of 
the scan schedule window if it is to detect the i=1 pulse. The green interval is the range of 
all possible start positions for the window. 
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expansion required at the right side of the window is equal to one pulse width, while the left 
side should be expanded by a PRI. There are now 2 (or i+1) pulses contained within the 
window, from different dwells, at the edges of the scan window, which now has size equal to 
Equation 4.5. If the window now is slid slightly to the right, the pulse at the leftmost edge will 
no longer be contained, but the pulse on the right side will be. Meaning, there are now i pulses 
in the scan window. The same would be true if the window was slid towards the left instead. No 
matter how the window is shifted, there will always be (at least) i pulses within the scan 
window.  
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