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Summary

The subject of this report, is the physics of underwater explosions (undex). The report has several
goals:

• Develop FFI’s basic knowledge of undex phenomena as part of the project ”1581, Våpen-
virkningsmekanikk”.

• Provide a general resource for any researcher interested in learning more about undex.
• Perform preliminary undex simulations in Impetus to evaluate its current simulation capabilities.
• Provide concrete benchmarks for the Impetus team in order to improve the code.

The first part (Chapters 2–4) of the report is a detailed literature study of several important undex
phenomena, which are useful for benchmarking purposes. In the second part (Chapter 5) we
describe our attempts at modeling undex with the numerical code Impetus. Given that Impetus was
not designed with undex phenomena in mind, the simulation capabilities are beyond what could
reasonably be expected. Impetus is able to describe both the bubble dynamics and shock wave
propagation qualitatively, although quantitatively there are still some discrepancies. However, it
seems likely that these shortcomings can be overcome with updates to the Impetus code. A range
of such improvements are suggested.
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Sammendrag

Denne rapporten omhandler fysikken som ligger til grunn for fenomener assosiert med undervannsek-
splosjoner (undex). Rapporten har flere mål:

• Forbedre FFIs grunnkunnskap om undex-fenomener, som ledd i prosjektet ”1581, Våpen-
virkningsmekanikk”.

• Fungere som en generell ressurs for enhver som ønsker å lære mer om undex.
• Dokumentere resultatene av innledende undex-simuleringer i Impetus, og evaluere dets
kapabilitet til å modellere den relevante fysikken.

• Dokumentere konkrete eksperimentelle data og teoretiske fysiske formler, som vil hjelpe
impetusutviklerne med å forbedre programvaren.

Rapportens første del (kapittel 2–4) er et detaljert litteraturstudium av undex-fenomener. Studiet
vil være nyttig for videreutvikling av programvaren. I rapportens andre del (kapittel 5) beskriver vi
fenomener vi har forsøkt å modellere i Impetus. Simuleringsresultatene er bedre enn forventet, om
en tar i betraktning at Impetus ikke primært er utviklet med tanke på undex-fenomener. Impetus klarer
å beskrive både bobledynamikken og sjokkbølgedynamikken kvalitativt korrekt. Det er likevel noen
kvantitative avvik mellom simuleringer og eksperimentelle formler. Dersom koden videreutvikles
ser det ut til at den kan bli et godt verktøy for å beskrive undex i framtiden. Vi foreslår konkrete
utviklingsstrategier.
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1 Introduction
A long term goal at the Norwegian Defence Research Establishment (FFI) is to develop a model
that can simulate the physics associated with underwater explosions. A well–functioning model
is of importance for the military as well as offshore and subsea industries, because it allows for
a description of the loading on structures of interest. The loading mechanisms are important to
understand, not only from an attack point of view, but also from a protection point of view. In
addition, the removal of WWII naval mines is still a relevant issue in the European coastal waters.
To facilitate the safe removal of naval mines, it is necessary to first understand the scale and physical
effects of the explosion and then decide on appropriate protection measures.

This report has two goals. Firstly, to provide a detailed reference reviewing important aspects of
the physics governing underwater explosions. This will make it easier for any interested researcher
to pursue underwater explosions in the future. Secondly, our goal is to investigate well–known
undex effects both qualitatively and quantitatively using Impetus, to evaluate its modeling suitability.

In Chapters 2–4, the theory of undex is developed and discussed. There is seen to be a range
of both analytical formulas and empirical data for describing important aspects of the physics
involved. In Chapter 5 we describe our attempts to perform numerical simulations of relevant
undex phenomena using the Impetus code. The simulations are compared with the previously
developed analytical theory and empirical data. Based on these comparisons, we discuss whether
Impetus is suitable for simulations of this kind and finally provide some suggestions for further
development of the code. At the time of writing, this is the first work that attempts to model undex
phenomena in Impetus. Therefore, we have focused our modeling efforts on the simplest possible
undex phenomena with well–established empirical relations.
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2 Physical phenomena of underwater explosions
In general, an underwater explosion (undex) initiates several different physical phenomena that are
interesting both from a purely scientific and military point of view. The physics of an undex event
can be divided into a shockwave phase and a gas bubble pulsation phase. The two phases are often
described independently, because they occur on separate timescales. In the following we concisely
summarize these phenomena.

The charge detonation converts the solid explosive material into gaseous reaction products, with
an exceedingly large pressure and temperature. The explosion results in a pressure shock wave
propagating outwards from the point of detonation. The amplitude of this shock wave is typically
several orders of magnitude larger than the amplitude of a similar detonation in air, and the shock
can therefore have a considerable effect on structures such as ships or submarines. In general,
the net shockwave loading on a structure may consist of three contributions: direct shockwaves,
reflected shockwaves from a rigid surface, and reflected rarefaction waves from a free surface. In
particular, the rarefaction waves close to the air–water surface can result in local cavitation at the
surface. If the cavitation region forms beneath a ship, close to its midsection, the damage may be
severe. The underlying reason is that in the cavitation region the water is converted to vapor bubbles
which results in a local decrease in buoyancy. Consequently, the ships midsection may literally
fall into a crater, while the bow and stern are still floating on water. As shown in Fig. 2.1 (a) the
situation may cause severe stress on the ships midsection.

A perhaps less obvious physical phenomena is that the gas produced in the explosion forms a
pulsating underwater bubble, acting as a source of secondary pressure waves. Initially, the density
and pressure of the gas bubble is much higher than the surrounding water pressure leading to
volume expansion. During the expansion the gas pressure eventually becomes smaller than the
surrounding water pressure, but due to the high inertia of water the gas continues to expand. A
non-negligible portion of the expansion actually occurs while the gas pressure is smaller than
the surrounding water pressure. Eventually the expansion comes to a halt, and the gas begins
to contract while simultaneously increasing its internal pressure. When the gas pressure again
becomes significantly larger than the surrounding water pressure, the gas will expand once again.
Under realistic conditions the gas bubble can expand and contract several times, before its energy
is depleted. The length and time scale of the bubbles maximum radius and pulsation period is
determined by the power of the initial explosive, the depth of detonation, and the potential proximity
to surfaces. The pulsating gas bubble is strictly speaking also present in air, leading to secondary
shock waves. Yet, due to the small density of air the secondary shock waves and pulsation period is
much smaller than in water.

A closely related damage mechanism is the so–called whipping effect, see Fig. 2.1 (b). If
the underwater explosion occurs under the keel of a ship, the oscillating bubble excites violent
and dangerous transverse vibrations, especially if the oscillation frequency matches the ships
corresponding resonance frequencies. If the ships girder strength is not sufficient to handle this
loading, the ship will be severely damaged. If the bubble is sufficiently close to the ship, the bubble
may also physically lift the ships keel, potentially resulting in severe deformation as illustrated in
Fig. 2.1 (c).

Gravity introduces a pressure variation from the top to the bottom of the bubble, affecting the
bubble shape which in contraction resembles a kidney instead of being spherical. Further, gravity
also leads to a buoyancy force pushing the bubble upwards towards the surface (bubble migration).
Upwards bubble motion means that water must be pushed out of the way, resulting in a drag
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force opposite to the buoyancy force. Consequently, the bubbles upward migration is considerable
when the bubble contracts, and minute when the bubble expands. Figure 2.2 summarizes the
aforementioned features.

Note that when the pressure variation across the bubble is substantial, the bubbles bottom moves
faster than its top. If the bottom catches up with the top before re-expansion, the bubble becomes a
torus with a jet flowing through the hole. This phenomenon is referred to as jet formation. The jet
velocity may be several kilometers per second and can cause significant damage to a structure, e.g.
a ship as illustrated in Fig. 2.1 (d).

Figure 2.1 An illustration of some of the various damagemechanisms an underwater explosion
can cause to a ship. (a) The initial shock wave is reflected as a rarefaction wave
at the free surface resulting in a cavitation region of low buyoancy. (b) The
bubble oscillation gives rise to an oscillating pressure field, which may excite
the normal modes of the ship. (c) As the bubble expands the water surface may
deform, which causes stress on the ship. (d) Bubble oscillations sufficiently close
to the ship may lead to jet formation. The impact of the jet and ship may cause
severe damage.
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Figure 2.2 A qualitative description of bubble displacement, bubble radius, and the emitted
pressure waves as a function of time. The water pressure is measured at a fixed
distance from the bubble. The figure is based on [1].
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3 Empirical relationships
At the time of writing, the most extensive and complete work on underwater explosions is Cole’s
textbook [2], where several properties discussed in the previous section is derived from first
principles. The work on underwater explosions at the Norwegian Defence Research Establishment
(FFI) is limited. Detailed analytical work can be found in [3, 4], a concise introduction to some
undex phenomena can be found in [5], and an in-house numerical model for underwater explosions
have been developed in [6] and [7]. In this section we will summarize the existing empirical
relationships and data that are available and well documented for underwater explosions. We
emphasize that all of the empirical relationships are based on 70-80 year old data, and therefore
should be viewed with a healthy bit of skepticism.

3.1 The similitude equations for the pressure history

The equations of motion and the Rankine-Hugoinot relations governing the bulk fluid and shockwave
properties respectively, are invariant under the simultaneous scaling of space and time of the form
(r, t) → (λr, λt), where λ is a scalar. This scale invariance has enabled the formation of the
so-called similitude equations of the form

Parameter = K
(
W 1/3

R

)α
. (3.1)

Here K and α are empirical constants, while W and R are the charge mass and stand-off distance
respectively. A derivation of the functional dependence can be found in App. A. In Eq. (3.1) the
parameter can be either the peak shockwave pressure pm, the reduced time constant θ/W 1/3, the
reduced impulse I/W 1/3, or the reduced energy flux density E/W 1/3.

The pressure history at the point of measurement (r, t) right after the shockwave has passed can
be expressed as [8]

p(r, t) = pme−t/θ . (3.2)

From Eq. (3.2) the impulse and energy-flux density is defined implicitly through the pressure
history as

I (r) =
∫ 5θ

0
p(r, t)dt, and, E =

1
ρ0c0

∫ 5θ

0
p2(r, t)dt (3.3)

respectively. Here ρ0 and c0 refer to the density and speed of sound in the undisturbed water. The
upper limit of integration 5θ is chosen by convention. The similitude equations, summarized in
Table 3.1, were developed by the Naval Ordnance Laboratories (NOL) in the 1940-1960s. Note
that the experimental parameters K and α are very similar for the various types of explosives. In
practice, this means that the choice of explosive is not too important for shockwave phenomena as
shown in Fig. 3.1.
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Table 3.1 The empirical constants in the similitude equations for various explosives. Addi-
tional data can be found in [1, 9] and the refereces therein. The original source
publication is [10].

Explosive
pm θ/W 1/3 I/W 1/3 E/W 1/3 Range of validity, pm

[MPa] [ms/kg1/3] [kPa s/kg1/3] [m kPa/kg1/3] [MPa]
K α K α K α K α

TNT 52.4 1.13 0.084 -0.23 5.75 0.89 84.4 2.04 3.4-138
Pentolite 56.5 1.14 0.084 -0.23 5.73 0.91 92.0 2.04 3.4-138
H-6 59.2 1.19 0.088 -0.28 6.58 0.91 115.3 2.08 10.3-138

HBX-1 56.7 1.15 0.083 -0.29 6.42 0.85 106.2 2.00 3.4-60
HBX-1 56.1 1.37 0.088 -0.36 6.15 0.95 107.2 2.26 60-500
HBX-3 50.3 1.14 0.091 -0.22 6.33 0.90 90.9 2.02 3.4-60
HBX-3 54.3 1.18 0.091 -0.22 6.70 0.80 114.4 1.97 60-350

Figure 3.1 The peak pressure pm, decay constant θ, impulse I, and energy flux density E as
a function of stand–off distance R, for a shockwave emitted from various 100 kg
explosive charges.
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After the initial shockwave, the pressure at the point of measurement (r, t) drops rapidly, to
values below the hydrostatic pressure. The phase where the pressure stays below the hydrostatic
pressure is called the negative phase. Eventually, when the bubble is at its smallest a new pressure
pulse is emitted, resulting in a new, albeit smaller, peak in the pressure history, followed by another
rapid decay and subsequent negative phase. These features are sketched in Fig. 3.2. The relevant
parameters obey the modified similitude equations

Parameter = K Zα0

(
W 1/3

R

)β
, (3.4)

where Z0 = Z + 10. Here Z is the initial depth of the explosive in meters1. The experimental
parameters and constants are given in Table 3.2

Figure 3.2 A qualitative sketch of the pressure history at a fixed point of measurement.

Table 3.2 The table presents the pressure-history characteristics of deep TNT explosions.

Parameter Definition K α β Range of validity
Pm Max. pres. – 1st positive phase 50.4 0 1.13 79 < R/W 1/3 < 5500
PB Max. pres. – 2nd positive phase 9.03 0 1.00 152 < Z0 < 1219
PB " 2.917 1/6 1.00 1219 < Z0 < 4572

Pmin Min. pres. - 1st negative phase -312.94 1/3 1.00 1372 < Z0 < 4267
Pmin " -28.987 2/3 1.00 152 < Z0 < 1372

I+/W 1/3 Imp. – 1st positive phase 36.2 -1/3 0.97 198 < R/W 1/3 < 5500
IB/W 1/3 Imp. – 2nd positive phase 86.2 -2/5 1.00 198 < R/W 1/3 < 3174
E+/W 1/3 En. flux den. – 1st positive phase 214.9 -1/5 2.07 198 < R/W 1/3 < 5500
τ+/W 1/3 1st positive phase duration 0.368 -5/6 0.00 152 < Z0 < 1372
τ+/W 1/3 " 0.0117 -2/5 0.00 1372 < Z0 < 6708
τ−/W 1/3 1st negative phase duration 1.499 -5/6 0.00 198 < Z0 < 4267
τB+/W 1/3 2nd positive phase duration 0.532 -5/6 0.00 198 < Z0 < 1372
τB+/W 1/3 " 0.099 -3/5 0.00 1372 < Z0 < 6706
T/W 1/3 1st period 2.098 -5/6 0.00 196 < Z0 < 4267

1In American units this is often written Z0 = Z + 33, representing the fact that 1 atm weighs the same as 33 feet (10
meters) of sea water. Every 33rd feet (10th meter) down into the water the pressure increases by 1 atm. This observation
is informally known as the scuba dive rule.
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3.2 Bubble pulsation and the Willis formula

There are also well-established empirical formulas for the first maximum radius Rm and first
pulsation period T for free-field underwater explosions,

Rm = J
(

W
Z + 10

)1/3
, and T = K

W 1/3

(Z + 10)5/6 . (3.5)

Here the detonation depth Z is expressed in meters, and J and K are dimensional empirical constants.
The exponents are derivable from first principles as shown in App. B. The empirical constants vary
from explosive to explosive as shown in Table 3.3. We emphasize that Eq. (3.5) is only valid for
the first pulsation, while the subsequent pulsations have smaller radii and shorter periods. In Fig.
3.3 we plot the maximum radius and period for various 100 kg explosive charges as a function of
detonation depth.

Table 3.3 The empirical constants for various explosives, based on several experiments after
the second world war.

TNT Pentolite (PETN + TNT) HBX-1 HBX-3 H-6

K
[

sm5/6

kg1/3

]
2.11 2.11 2.41 2.63 2.62

J
[

m4/3

kg1/3

]
3.38 3.52 3.96 4.27 4.09

Figure 3.3 The maximum radius and period as a function of detonation depth, during the
first oscillation of a bubble resulting from a 100 kg explosive charge.

The bubble pulsation is damped, in the sense that the bubbles internal energy decays with time.
The primary mechanism causing this damping is compressibility effects of the surrounding water.
In particular, the radiation of secondary pressure waves has been identified as a key energy loss
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mechanism. Other possible damping mechanisms are irreversible energy transfer to the surrounding
water, creation of turbulence, jet formation, and the partly breakup of the bubble surface into spray
jets which cool the gas (Taylor instability).

Nevertheless, for subsequent pulsations the equations above should hold if the initial charge
weight W is replaced by the residual energy of the nth pulse En. In that case, the nth maximal
bubble radius, and oscillation period can be expressed as

Rmax,n = J1

(
En

Zn + 10

)1/3
, and, Tn = K1

E1/3
n

(Zn + 10)5/6 (3.6)

respectively. In the above, we have implicitly assumed that the explosive energy is proportional to
the charge weight E ∝ W and absorbed the conversion factor into new constants J1 and K1. The
empirical constants can be eliminated by forming the following recursive relations

Rmax,n+1

Rmax,n
=

(
En+1
En

)1/3 (
Zn + 10

Zn+1 + 10

)1/3
, and

Tn+1
Tn
=

(
En+1
En

)1/3 (
Zn + 10

Zn+1 + 10

)5/6
. (3.7)

By then inverting Eq. (3.7) we obtain an expression which relates the bubble’s energy loss directly
to its period, radius, and detonation depth,

En+1
En
=

(
Rmax,n+1

Rmax,n

)3 (
Zn+1 + 10
Zn + 10

)
=

(
Tn+1
Tn

)3 (
Zn+1 + 10
Zn + 10

)5/2
. (3.8)

Equation (3.8) permits an estimate of energy losses in successive contractions from the easily
measurable ratio of periods. For deep undex, the ratio of detonation depths can often be set to unity,
compared to the ratio of periods, simplifying the expression even further.

Rather surprisingly, there does not seem to be a single well-established empirical expression for
the free-field migration ∆z of the bubble. Particularly in [2] and [11] two different expressions

∆zReid = 13.2
W 11/24

(Z + 10)5/6 , and ∆zCole = 12.2
W 1/2

Z + 10
(3.9)

are given for TNT respectively. In Fig. 3.4 we have plotted the migration as a function of water
depth for a 100 kg explosive charge.
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Figure 3.4 The empirical formulas for the migration of a 100 kg TNT charge as a function of
detonation depth.

3.3 Modern experiments

After the second world war, due to political tension, high–costs, confidentiality, and safety
concerns, real–scale undex experiments have become increasingly scarce. Therefore modern undex
experiments are usually limited to a much smaller scale. Typically, small explosives (1–10 grams)
are detonated in small water tanks (1–10 m3). The bubble motion and pressure history is recorded
with a high–speed camera, and with pressure sensors respectively. In Table 3.4 we provide references
to modern papers with experimental data.

There are also modern experiments which generate bubbles via other than explosive means, such
as electric sparks and lasers. However, there are fundamental differences between explosion bubbles
and spark/laser bubbles. The most obvious difference is that the explosion bubbles are typically
larger, and therefore buoyancy plays a more important part in the evolution of the bubble shape.
Furthermore, the contents of an explosive bubble contains the detonation products, originating from
the explosive, which usually are unable to dissolve in water. On the other hand, the contents of a
spark or laser bubble is usually steam which may dissolve as the bubble oscillates. Furthermore, the
initial shock wave and subsequent pressure waves originating from an explosion bubble is usually
much stronger than those generated by a laser or spark. The larger pressures associated with an
explosion can cause changes in the bubble characteristics, either by reflections from the tank walls
affecting the pressure in the water or by affecting nearby structures that interact with the bubble.
Therefore, for the purposes of mimicking the bubble dynamics of a large scale underwater explosion,
small–charge underwater explosions remain the only alternative. We emphasize that the formulas
and calculations presented in this report are limited to explosion bubbles only.
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4 Overviewof theoretical approaches to free–field bubble
dynamics

Accurately modeling the dynamics of a gas bubble formed by an undex is a complicated, as of
yet, unresolved issue in modern physics. In this chapter we will briefly summarize some of the
important milestones that has been reached at the time of writing. Historically, it is natural to
consider three phases:

(I) In the initial approaches, the gas bubble was assumed to remain spherical with zero migration,
and was completely decoupled from the shockwave phase. This allowed the bubble motion to
be described by relatively simple non–linear differential equations (ODEs). The research
culminated in an analytical derivation of the Lamb–Rayleigh–Plesset equation, whose solution
describes a pulsating bubble without any energy loss. In practice, this means that the solution
describes the first oscillation of the bubble well, but fail to model subsequent oscillations
where the bubble motion becomes damped, due to energy loss.

(II) In the intermediate approaches, the goal was to identify the dominant energy lossmechanism(s)
in the bubble motion. Several additional effects was included to the Lamb–Rayleigh–Plesset
equation through perturbation theory. Concretely, the perturbative analysis included effects
such as compressibility, viscosity, migration due to gravity, and small deviations from
spherical bubble shape. Of these, the dominant energy loss mechanism is considered to be
the compressibility of water.

(III) In modern approaches, we have moved away from the semi–analytical approaches of phase I
and II. Instead we focus on solving the Navier–Stokes equations2 numerically with as few
assumptions as possible. For example, it is no longer necessary to assume spherical symmetry
of the gas bubble, allowing for the description of jet formation. The field of such numerical
approaches, are referred to as computational fluid dynamics (CFD). There are several
different numerical methods that can be used, including the finite element method (FEM), the
finite volume method (FVM), the boundary integral method (BIM), and smoothed–particle
hydrodynamics (SPH).

For completeness, we will in the next three sections briefly discuss some concrete aspects of the
aforementioned phases. However, we will wherever possible avoid complicated mathematical
derivations to keep this report to a modest length. Instead we will refer to either the references or
the appendix that hopefully provides sufficient mathematical detail.

4.1 Phase I: The Lamb–Rayleigh–Plesset equation

Due to its historical importance, mathematical simplicity, and because it provides physical insight
even in today’s more modern approaches we will in the following introduce the equation of motion
that was initially utilized to describe bubble dynamics. A detailed derivation can be found in App.
C.1.

The equation of motion governing the bubble oscillation follows directly from the conservation

2The Navier–Stokes equations are the governing equations of motion for fluid dynamics. They are incredibly difficult
to solve, despite their wide range of practical use. As of yet it has not been proven whether or not smooth solutions
always exists in three dimensions. This is called the Navier–Stokes existence and smoothness problem. It is recognized
as one of the most important open problems in mathematics, earning it a place among the seven millenium problems for
which the Clay Mathematics Institute offer $1 million USD for a proof or counterexample.
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of mass, momentum, and force balance at the bubble–liquid interface. The necessary assumptions
are that the bubble retains spherical symmetry, is surrounded by an incompressible fluid, and that
the thermodynamics inside the bubble is uniform. The equation of motion then takes the form

2γ
Rρ
+ RR̈ +

3
2

Ṙ2 + 4
ν

R
Ṙ =

pb − p∞
ρ

where, (4.1)

• The equation is solved for R(t), the time–dependent bubble radius.

• The constants ρ and ν are the density and kinematic viscosity of the liquid respectively.

• The constant γ is the surface tension at the bubble–liquid interface.

• The time dependent driving term pb − p∞, is the pressure difference between the bubble and
external liquid far away from the bubble.

Equation (4.1) is widely known as the Rayleigh–Plesset equation, due to Rayleigh’s work on
imploding cavities [19] and Plessets work on bubble dynamics [20]. Nevertheless, the first actual
appearance of the equation in a scientific paper was made by Lamb in 1923 [21]. We shall avoid
misattribution and refer to it as the Lamb–Rayleigh–Plesset equation.

Note that the Lamb–Rayleigh–Plesset equation is not restricted to gas bubbles formed by undex3.
The equation can be used to determine the bubble radius as a function of time R(t), for in principle
any gas bubble satisfying the underlying assumptions. The dynamics of the bubble is governed by
its pressure difference with its surroundings. In general, the external pressure p∞ can either be a
constant or be a time–dependent function thus acting as a driving term. For the undex it is customary
to choose p∞ = patm + ρgz as the hydrostatic pressure at the depth of detonation z. The bubble
pressure pb (t) is given by the physical processes occurring inside the bubble. From a physical point
of view it has been customary to consider the pressure inside the bubble to consist of two terms

pb (t) = pv + C/Vγ
B (t). (4.2)

Here pv represents the pressure for vapour–liquid equilibrium such that no gas escapes from the
bubble. The second term requires the gas to obey an adiabatic4 gas law, where γ is the adiabatic gas
constant (also known as the heat capacity ratio). The time–dependent bubble volume is taken to be
VB (t) = 4π

3 R3(t). More complex constituent relations, such as the Jones–Wilkins–Lee equation of
state for explosives [22], are of course possible.

Being non–linear the Lamb–Rayleigh–Plesset equation is by nomeans trivial to solve analytically.
A discussion of its several properties and applications other than undex can be found in [23]. To
illustrate the solutions relevant to undex we have solved Eq. (4.1) numerically, with the constituent

3In the static case (R = const) the Rayleigh–Plesset equation simplifies to the Young–Laplace equation

pb − p∞ =
2γ
R
.

Its physical interpretation is that even though the pressure inside the bubble is larger than the external pressure the bubble
does not expand because the outward force is exactly balanced by the surface tension.

4More accurately, the process is polytropic. A polytropic process is a thermodynamic process that obeys the relation
pVK = C. If K = 1 the process is isothermal and if K = γ = CP/CV the process is adiabatic. For gases arising from
explosions γ is usually replaced by an appropriate K . The value of K lies somewhere between 1 (isothermal ideal gas)
and 1.4 (diatomic ideal gas/air).
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Figure 4.1 The experimental data (Cole) and numerical solution of the Lamb–Rayleigh–
Plesset (LRP) equation for a 0.25 kg tetryl charge detonated 91.44 m below
the water surface. The pressure is normalized with respect to the atmospheric
pressure patm. The horizontal line corresponds to p∞ = patm + ρgz.

relation in Eq. (4.2). The technical details of the numerical solution can be found in App. C.2. To
asses the validity of the Lamb–Rayleigh–Plesset equation we will compare the radius–time curve
with an empirical one given on p. 271, Fig. 8.1 in Cole’s book [2]. The case is a 0.25 kg tetryl
charge detonated 91.44 m below the water surface.

The numerical solution and experimental data is plotted in Fig. 4.1. Note that despite its
simplicity, the numerical solution captures many of the qualitative features relevant for undex. The
period, maximum radius, and general behaviour fits nicely with the experimental values for the first
oscillation. For subsequent oscillations, the theory deviates from the experiment. The most serious
qualitative issue is that the damping in the numerical solution occurs on a surrealistically long time
scale. This is interesting given that both viscosity and surface tension is present in the surrounding
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water, and indicates that neither viscosity nor surface tension are the causes of damping of the radial
motion for large bubbles.

Finally, we comment on the pressure distribution in the surrounding liquid. In terms of the
bubble volume VB (t) = 4/3πR3(t) the pressure distribution at a point (r, t) outside of the bubble
can be expressed as

p(r, t) = p∞ + ρ


V̈B (t)
4π |r|

−
V̇ 2
B (t)

32π2 |r|4

. (4.3)

In Fig. 4.1 we have, for illustrative purposes, plotted the pressure history in Eq. (4.3) at the fixed
point |r| = 10 m. The volume acceleration term dominates near the minimum of the bubble, and it
accounts for the pressure in the primary shock wave and the subsequent pressure peaks. The volume
velocity term is known as the ”afterflow” pressure. The afterflow dominates between pressure peaks,
but is suppressed at large distances from the bubble.

Note that there is an instantaneous response between the bubble motion and the emitted pressure
waves a finite distance away from the bubble. This is evident in Eq. (4.3) as both the response (left
hand side) and disturbance (right hand side) occurs at the same time t. This is a consequence of that
we have assumed the liquid to be incompressible such that the speed of sound is infinite.

4.2 Phase II: Perturbative corrections

The most significant assumptions of the Lamb–Rayleigh–Plesset equation is that compressibility,
gravity, and deviations from spherical form are neglected. The Lamb–Rayleigh–Plesset equation
was the inspiration for several subsequent publications attempting to add various complexities to
the equation, through appropriate perturbations. Several of the most important perturbations are
discussed in Cole’s book [2], but there are also significant works after this. Due to the large number
of publications we will here attempt to discuss the result of the most important perturbations only
qualitatively.

4.2.1 Effects of gravity

As mentioned previously gravity leads to a buoyancy force pushing the bubble upwards, and a
deviation from spherical shape. By assuming the correction for gravity to be small, the velocity
potential, pressure, and bubble radius vector can be expanded in powers of the acceleration of
gravity g. Since, the unperturbed state exhibits spherical symmetry, the spherical harmonics are
used as basis functions in the expansion. The first order correction to the bubble radius vector
simply becomes an equal upward displacement for all points on the bubble surface, without any
distortion of the spherical shape. The velocity of each point on the bubble surface during the
uniform upward displacement is given by the Herring migration formula

U =
2g
R3

∫ t

0
R3dt . (4.4)

Note that the velocity increases with time, and attains its maximum value when the bubble is at its
smallest due to the term 1/R3. Hence, consistent with our discussion in the introduction, the bubble
migrates the most during the contraction phase and the least when the bubble is relatively large. A
similar kind of perturbative analysis reveals that the shape of the bubble deviates the most from a
sphere during its contraction phase.
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4.2.2 Effects of compressibility

One of the most serious issues, with the Lamb–Rayleigh–Plesset equation is the lack of damping,
despite the inclusion of viscosity, as illustrated in Fig. 4.1. The discussion of bubble motion so far
has been based on the assumption that the surrounding water is incompressible. Energy conservation
dictates that in this scenario the explosive energy left after emission of the shock wave is assumed
to be distributed entirely into potential and kinetic energy of the water flow plus the internal energy
of the gas. In this approximation, the undamped solution for the bubble radius indicates that there
is no substantial mechanism of energy loss, so that the total energy is reversibly transferred back
and forth between the gas bubble and the surrounding water. The energy losses actually occurring
during the motion cannot be described without taking into account new mechanisms by which
energy can be dissipated.

The primary mechanism responsible for the energy loss turns out to be the compressibility
of water. As the bubble expands the water particles close to the bubble interface are squished
together, forming a local region of high density known as a compression wave. Unlike the bulk of
the fluid, the compression wave never reverses its velocity, but travels to infinity continously loosing
energy through heat dissipation. Energy is therefore lost from the system, because the gas bubble
performed work to create the compression wave. Each bubble cycle produces one compression
wave, leading to a gradual loss of bubble energy with each subsequent pulsation. The principle
is illustrated in Fig. 4.2. In other areas of fluid mechanics, this effect is known as the acoustic
radiation5 of sound since the compressed wave propagates at the speed of sound.

Figure 4.2 The formation of compression waves by the bubble expansion due to finite water
compressibility. In an incompressible fluid, there would not be a build up of
particles close to the bubble interface.

In technical terms, incorporating a compressible fluid modifies the conservation of mass

from ∇ · v = 0 to ∇ · v = −
(

1
ρ

dρ
dt

)
= −

(
1

c2ρ

dp
dt

)
, 0. (4.5)

Here c2 = (dp/dρ)S is the surrounding liquids speed of sound, and we must find an appropriate
equation of state relating the pressure and density of the liquid.

5The use of the word radiation most likely stems from electromagnetic theory, where an accelerating electric charge
produces pulses of EM waves, travelling at the speed of light, which we call radiation.
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A direct consequence of the inclusion of a finite speed of sound, is the introduction of a finite
response time. In a compressible model, a disturbance (in the origin) emitted at time t propagates
with a constant velocity c and reaches a point r > 0 in a time r/c. Consequently, there is a delayed
response time t − r/c between cause and effect, which we call the retarded time. This effect is
perhaps the most visible in the expression for the pressure field in the surrounding liquid

p(r, t) = p∞ + ρ


V̈B (t − r/c)
4π |r|

−
V̇ 2
B (t − r/c)

32π2 |r|4

+ . . . , (4.6)

where the dots (. . . ) denote higher order terms that vary depending on the specific formulation
(e.g. equation of state) of the model. Importantly, note that although Eqs. (4.6) and (4.3) formally
look very similar, the time dependence of VB (t) is fundamentally different due to the presence of
damping.

A concrete example for a model describing the oscillation of a bubble in a compressible liquid
is the Keller–Kolodner equation [24, 25] of the form

RR̈
(
1 −

Ṙ
c

)
+

3
2

Ṙ2
(
1 −

Ṙ
3c

)
=

pb − p∞
ρ

(
1 −

Ṙ
c

)
+

R
ρc

ṗb . (4.7)

Note that in the limit c → ∞, corresponding to an incompressible fluid, the Keller–Kolodner
equation reduces to the Lamb–Rayleigh–Plesset equation. Physically, it is natural that higher order
terms in the Lamb–Rayleigh–Plesset equation should be proportional to factors of 1/c, because in
undisturbed water the speed of sound (1480 m/s) is relatively high. The term proportional to ṗb
is the most important, as it physically represents the acoustic radiation of energy. In Fig. 4.3 we
present the numerical solution of Eq. (4.7) and compare with the previously discussed experiment,
as well as the corresponding solution of the Lamb–Rayleigh–Plesset equation. We observe that
including compressibility significantly improves the correlation between theory and experiment.
This supports the current consensus, which is that the compressible nature of the liquid accounts for
the most significant portion of the energy loss during the bubble pulsation.

However, as we see from Fig. 4.3, there is still deviation between theory and experiment for
subsequent oscillations even when incorporating compressibility. Most likely, the explanation is
that there are additional energy loss mechanisms than just compressibility. Examples of possible
energy loss mechanisms are turbulence, heat transfer, and jet formation. The jet formation is a
particularly promising candidate because it is the most dramatic event that occurs close to the end
of the bubble motion. Thus it is reasonable to expect that it should account for a large energy loss
during the final pulsations of the bubble. Furthermore, none of the semi–analytical approaches
discussed in this section are able to incorporate it because the relevant perturbation theory breaks
down during strong deviations from spherical symmetry.

There are several other semi–analytical models incorporating bubble dynamics of varying
degrees of complexity in addition to the Keller–Kolodner equation. In Tab. 4.1. we provide a
list of alternative formulations and briefly comment on some of their differences. A particularly
interesting point, is that bubble models describing both dilational and translational modes typically
treat the surrounding water as incompressible. We speculate that the reason for this is that the
mathematics quickly becomes rather unwieldy if both effects are included simultaneously, despite
the number of simplifying assumptions being made. This unavoidable mathematical complexity
suggests that pure numerical simulations are the way of the future. In App. D we provide a concise
mathematical overview of some of the most important semi–analytical models.
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Figure 4.3 The numerical solution of both the Lamb–Rayleigh–Plesset (incompressible) and
Keller–Kolodner (compressible) equation, compared with the experimental data
for a 0.25 kg tetryl charge detonated 91.44 m below the water surface.
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4.3 The Kelvin impulse and bubble–surface interaction

So far we have only looked at a free–field underwater explosion in an infinite medium, without
any nearby structures. However, of special interest is to determine exactly what happens when
the bubble interacts with a structure, say for instance a ship or submarine. In this section we will
provide a general overview of the simplest possible bubble–surface interactions. We refer the reader
to App. E where we provide the mathematical details.

If a gas bubble pulsates in the vicinity of a rigid (free) surface, the bubble will tend to be
attracted (repelled) by the surface. If the bubble is close to the surface jet formation may also
occur. Most of the migration, either towards or away from the surface, occurs when the bubble is
at its smallest. The force causing this apparent attraction or repulsion is known as the Bjerknes
force, and it is a geometrical consequence of the surface breaking translational symmetries. The
direction of the bubble migration coincides with the direction of the bubble’s so-called Kelvin
impulse [33, 34, 35] at the time the bubble is at its smallest.

The direction of the bubble migration is determined by a competition between two forces. The
buoyancy force attempts to lift the bubble towards the water surface, and the Bjerknes force tries to
attract (repel) the bubble towards a rigid (free) surface. The Bjerknes force is stronger, the closer
the bubble is to the relevant surface. Therefore, there exists a critical distance between the bubble
and surface where the Bjerknes force dominates the buyoancy force. For a bubble a distance ξ from
either a rigid or free surface with maximum radius Rmax we introduce the dimensionless distance
γ = ξ/Rmax. The buyoancy force is parameterized by the so–called buyoancy parameter which
approximately is given by

δ =

√
ρgRmax
∆p

≈

√
Rmax

Z
< 1. (4.8)

Here ρ is the density of water, g is the gravitational acceleration, ∆p is the pressure difference
driving the bubble dynamics, and Z is the depth of the explosion. The approximation holds when
we neglect the interior pressure of the gas6.

The simplest possible geometries are eloquently discussed in [36, 37] and are:
1. The bubble oscillating a distance γ above the seabed (or any other plane rigid surface).
2. The bubble oscillating a distance γ directly below the water surface (or any other plane free

surface).
For the aforementioned geometries, a detailed mathematical theory, outlined in App. E, reveals that
the line

γδ ≈ 0.442 (4.9)

separates the regions where the buoyancy force and Bjerknes force dominates. Figure 4.4 illustrates
the attraction to a rigid surface (a) or the repulsion from a free surface (b) for these simple geometries,
and serves as a concrete benchmark for development in Impetus. In the analytical derivation of,
Eq. (4.9) there are a few assumptions which makes the expression only an approximation. First,
it is assumed that the bubble retains its spherical form for the entirety of the pulsation, which is
not true during the collapse phase. Second, the migration distance is considered to be small so the
expression is not expected to be valid very close to the rigid surface. Third, the time dependence
is governed by the Lamb–Rayleigh–Plesset equation, so the expression is only valid for the first

6This is actually more of a convencience than an actual mathematical approximation, since we do not want the
buyoancy parameter to be time–dependent.
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(a) Rigid surface below the bubble. (b) Free surface above the bubble.

Figure 4.4 The partitioning of the (γ, δ) phase space for (a) a rigid boundary and (b) a free
surface. The apparent repulsion or attraction to the surface originates from a
competition between the Bjerknes and buoyancy force. The arrows indicate the
direction of migration or jet. Figure taken from [35].

pulsation. In practice, this means that the partitioning of the (γ, δ) phase space is not exact close to
the critical line, but the numerical simulations and experiments in 4.4 indicates that it is a good
approximation to describe the first pulsation.

In subsequent publications [38, 39], Eq. (4.9) has been improved by lifting certain assumptions.
The authors generalize to a wider class of possible surfaces, specifically to rigid surfaces of
revolution, two-fluid interfaces, inertial and membrane boundaries.

For benchmarking purposes it is more than sufficient to consider the bubble’s Kelvin impulse
for a geometry where the rigid surface is inclined by an angle β with respect to the horizontal, as
shown in Fig. 4.5. In such a geometry, the Bjerknes force attempts to pull the bubble towards the
rigid surface and the buoyancy force tries to lift the bubble upwards. The Kelvin impulse therefore
takes the form

IBubble = IBjerknesΓ + IBuyoancyk. (4.10)

Equation (4.10), in its full glory, is given in the App. E as Eq. (E.10). The direction of the Bjerknes
force is parallel to the normal vector (pointing away from the bubble) of the rigid surface, and is
given by

Γ =
1
γ2 (i sin β − k cos β) . (4.11)

The usefulness of Eq. (E.10) is that it can be used to determine the direction of migration for
different orientations of the rigid surface, which will be useful in our benchmarking. A concrete
example would be to investigate the direction of the bubble migration as a function of the inclination
angle of the rigid surface.
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Figure 4.5 The direction of the bubble’s Kelvin impulse in the presence of an inclined rigid
surface.

4.4 Phase III: Computational fluid dynamics

While the semi–analytical models can reproduce many undex features, full numerical solutions
should, in principle, be able to model an undex in full detail.

In general, a numerical solution typically dictates that the domain is discretized into nodes
which obeys the equations of motion locally. The characteristics of the nodes are then updated
according to the equation of motion in small time steps. The nodes are coupled to each other
through various interpolation schemes. Depending on the details of the equations of motion there
are several numerical methods that may be suitable. In broad strokes the methods can be divided
into mesh–based, particle–based, or a hybrid between the two. Well known examples are the
finite element method, finite volume method, Lattice Boltzmann method, and smoothed particle
hydrodynamics.

In the context of undex, the most frequently used numerical method is the so–called boundary
integral method. The popularity of the method stems from its history as well as numerical efficiency.
Historically, it was the first numerical method that was able to describe the bubble pulsation in a
satisfactory manner. The jet formation can also be described to a certain extent, but it requires
a brute force additional technical step known as the ”surgical cut”. Furthermore, the boundary
integral method is limited by the fact that the assumptions of potential flow theory must be satisfied.
Concretely, this means that it is impossible to describe real bubble–structure interactions. In App.
F we include a simplified and succinct overview of the method. For a more in–depth analysis see
the thesis by Best [37].

The restrictions on the boundary integral method has led to a surge in the investigation of
developing a good numerical procedure for describing undex. In Tab. 4.2 we provide a list of
papers where different numerical methods are used to simulate undex phenomena. As we can see
there are a large number of possible choices, each with their own advantages and disadvantages.
Typically, the shockwave and bubble dynamics are modeled as separate phenomena because they
occur on vastly different timescales. In addition, various numerical methods are usually coupled to
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each other to bring out the best of each method. Typical aspects that necessitates such a coupling
is that separate methods are used to describe the detonation process, shock propagation, bubble
dynamics, and structure deformation.

Table 4.2 A collection of articles employing different numerical methods to simulate undex
phenomena. We provide general comments to try and highlight the usefulness of
each method. Note that due to the large number of existing articles the list can not
be considered complete. Hopefully the included references will provide sufficient
technical information to the interested reader.

Numerical method References General notes

Boundary integral [37, 40, 41, 42]

2D mesh discretization
Historically the first and most frequently employed method
Computationally effective due to dimensional reduction

Must be supplemented/modified to describe structure interactions

Finite element [43] 3D mesh discretization
Useful to describe structure deformation

SPH [44, 45] Particle discretization
Suitable to describe large deformations

Boundary integral
+ Finite element [12, 46, 47] i) Boundary integral, models bubble dynamics

ii) Finite element, models structure deformation
LS–Dyna

+ Boundary integral [48] i) LS–Dyna, models detonation process
ii) Boundary integral, models bubble dynamics

Boundary integral
+ SPH [49]

i) SPH, models detonation process
ii) Boundary integral, models bubble pulsation

iii) SPH, models jet formation
Boundary integral
+ SPH shells [50] i) Boundary integral, models flow field

ii) SPH, models structure deformation
Finite volume method
+ Volume of fluid [17, 51] i) Finite volume, models water domain

ii) Volume of fluid, models water–gas interface
Finite element
+ Volume of fluid [52] i) Finite element, models water domain

ii) Volume of fluid, models water–gas interface
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5 Modeling in Impetus
Having seen the limitations of the analytical modeling of undex, we will attempt to perform full
numerical simulations. However, there are several potential pitfalls in pursuing such an endeavour.
For our purposes, some of these pitfalls may stem from that Impetus has not been developed with
undex applications in mind. Actually, to the best of our knowledge, this is the first time that Impetus
is used to model undex phenomena.

Before attempting to model a complex problem, it is very important that the numerical code
first is validated against simpler problems for which the answer is known. This presents another
challenge since, as we have seen, quite a lot of the experimental undex data is old and contains
large uncertainties, whereas the available analytical models are too simplified to approximate
the real problem. It is therefore not obvious how to determine whether discrepancies between
numerical simulation and empirical/analytical formulas is due to errors in the numerical approach
or uncertainties in the experimental data. Still, we know at least some features, given in Tab. 5.1, of
an undex process that a numerical simulation should be able to reproduce.

Table 5.1 A summary of the simplest possible undex features a general numerical simulation
should be able to model.

Phenomena Benchmark

Free–field bubble motion Characteristics described by the empirical relations in Sec. 3.2.
Jet formation for bubbles with large buyoancy parameter δ.

Free–field initial shockwave
Subsequent pressure waves Described by the similitude equations in Sec. 3.1.

Repulsion from free surface (γ, δ) plot in Fig. 4.4.
Attraction to rigid surface (γ, δ) plot in Fig. 4.4.

Attraction to inclined surface Migration direction determined by Eq. (4.10).

To begin with, we will try to introduce the underlying principle underpinning the simulation
model we have used in Impetus. Being a commercial software, it is unfortunately impossible to
give an exact description of the code so a more general description must suffice.

Impetus is primarily a Finite Element code, used to describe non-linear mechanical problems
where extreme loadings can lead to large deformations. The code was initially developed to model
detonation of buried charges under vehicles, but has later grown to include many other uses. Impetus
has much in common with Autodyn, but is better suited for certain problems, while at the same
time lacking some of the opportunities in Autodyn (no Euler solver for instance).

One of the advantages of Impetus is that it has been explicitly written to run on GPUs. In
many cases GPUs are able to calculate very much faster than CPUs. Additionally, Impetus has a
unique particle model that can be used to model sand and air, and which is not affected by technical
problems of the standard methods (interaction between Euler and Lagrangian grids) in Autodyn and
similar codes.

At FFI the calculation part of Impetus is run on a dedicated server with a number of GPUs. This
gives considerably larger computing power and speed than Autodyn on a normal PC. Pre- and post
processing of the Impetus simulations are done on a normal PC. During the covid-19 pandemic,
another server was added enabling the possibility of running unclassified simulations on the internet
from home.
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5.1 Smoothed–particle hydrodynamics

To model underwater explosions in Impetus we have used the so–called smoothed–particle
hydrodynamics (SPH) model. The SPH method was originally developed for applications in
astrophysics by Gingold and Monaghan [53] and independently by Lucy [54]. The general idea is
rather simple. The computational domain is discretized into a finite number of interacting particles.
Each particle occupies a small volume, and carries information about the relevant field variables
such as position, velocity, density, and stress. The field variable of a specific particle is determined
by a weighted interpolation of the surrounding neighbouring particles. The weighting function is
called the kernel function, and determines the strength of the particle–particle interactions. A more
detailed mathematical description is given in App. G.

Compared to the well–established boundary element method, there are relatively few works
utilizing the SPH method to describe underwater explosions. Unlike the boundary–element method,
an advantage of the SPH method is that it is meshless and does not rely on the potential flow theory.
In principle, this means that it is possible to describe large deformations, such as jetting, of the
gas bubble without any need of modifying the equations of motion. In addition, it should also be
possible to describe bubble–structure interactions in a relatively straightforward manner. A relevant
disadvantage of the SPH method is that there does not exist a standard way to enforce reflectionless
boundary conditions.

5.2 Simulations of free–field bubble dynamics

To the best of our knowledge and at the time of writing, no one has attempted to model underwater
explosions in Impetus before this report. The problem was therefore very challenging and we
were lucky to receive good support directly from the Impetus development team. We attempted a
lot of different approaches, some of which did not go as planned. In the report we only include
the approaches that we consider successful. During our numerous attempts at modeling undex
phenomena, we discovered several bugs in the code which, with the help of the developers, have
now been corrected.

In the following sections we compute the time dependence of the period and radius in Impetus
and compare them to the empirical expressions discussed in section 3.2. For convenience, we
restate the empirical relations here:

Rm = J
(

W
Z + 10

)1/3
, and, T = K

W 1/3

(Z + 10)5/6 . (5.1)

5.2.1 Coupled smoothed–particle hydrodynamics and finite element method

In the numerical simulation we consider a spherical TNT charge placed at a various water depths Z .
The water surrounding the charge is discretized into a finite element (FE) mesh, with a cylindrical
cavity that is filled with SPH particles. The TNT charge is located at the centre of the cavity. The
finite element mesh is smooth close to the cylindrical cavity, and more coarse further away from it.
The geometry is shown in Fig. 5.1, and the material parameters are specified in Table 5.2.

To begin with, the goal is to calculate the time period and maximum radius during the first
bubble pulse, and check if there is a correspondence with Eq. (5.1). To this end we run simulations
utilizing spherical TNT charges with radius r = 0.5 m at various depths Z . For each simulation

FFI-RAPPORT 22/02062 31



Figure 5.1 The cross section of the geometry used to verify Eqs. (5.1). A spherical TNT
charge (red), is embedded in a sea of SPH particles (blue), which are surrounded
by a water FE mesh (lightblue). Close to the SPH particles the FE mesh is more
smooth. Both the FE mesh, and SPH particles have cylindrical form. Gravity is
acting in the −z direction.

Table 5.2 The material parameters used in the numerical simulations. Note that there are
several other parameters that are automatically specified in the input commands,
which we do not include here.

TNT charge SPH water FE water

Density [kg/m3] 1630 103 103

Particle number - 107 -
Viscosity [mPa s] - 1 1

Linear bulk modulus [GPa] - 2.1 2.1

we plot the bubbles thermal energy as a function of time, and read off the first time period. An
example of the thermal energy, as well as the vertical bubble migration is shown in Fig. 5.2, for an
initial depth of Z = 225 m. The results look physically reasonable. The thermal energy oscillates
with decaying amplitude as the bubble looses energy during each pulsation. The bubble migrates
vertically the fastest when the bubble is small, and the slowest when the bubble is large.

Figure 5.3 compares the bubble dynamics modelled in Impetus with the well–known empirical
relations. The continuous line represents the empirical expressions, and the dots represent individual
simulations. As expected, the correspondence is not exact, but the scaling of the period and radius
with the appropriate charge–depth ratio seems to be effectively captured in the simulations. Some
of the reasons for the lack of a complete correspondence could be:

1. The empirical expressions are not themselves exact. Since the experiments are dated and not
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Figure 5.2 The time dependence of the thermal energy and vertical bubble displacement for
a charge located at an initial depth of 225 m below the water surface. Over time
the thermal energy oscillates and dampens with the bubble dynamics. The bubble
is migrating slowly when it is large, and quickly when it is small.

easily accessible from open sources, it is hard to evaluate their experimental uncertainty.
2. In the simulations there is an artificial impedance mismatch between the SPH and FE region,

which causes unphysical pressure–wave reflections at the interface between the two regions,
see Fig. 5.4. To minimize the effect of this issue, a relatively large SPH region has been
utilized so that the pressure–waves become geometrically damped before they are artificially
reflected at the interface.

3. Since the bubble shrinks with time, the water mesh has a tendency to become inverted close
to the SPH water particles during subsequent pulsations. Consequently, when the elements
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become too inverted the simulation does not produce reliable results.

Figure 5.3 A comparison of the bubble dynamics, for the first oscillation, modelled in Impetus
and the empirical relations in Eq. (5.1). The radius is the most uncertain because
it is not well defined in a particle simulation.
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Figure 5.4 The impedance mismatch at the interface between the SPH region and FE mesh
results in unphysical pressure–wave reflections.
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5.2.2 Pure SPH simulation

We have also attempted to model the undex using only the built in SPH algorithm, without any FE
mesh. The idea was that this removes the unphysical reflections due to the impedance mismatch
between the SPH region and FE mesh, as well as the issues associated with the mesh becoming
inverted for subsequent pulsations. Yet, the boundary of the SPH domain acts as a rigid wall which
again leads to reflections. In an attempt to circumvent this issue we have utilized a geometry with
various layers of particle density, as shown in Fig. 5.5a. The idea is to have a high particle density
in important areas and low density where not much is expected to happen, thus enabling us to model
a larger domain without needing more particles.

The result of the simulation for an undex at an initial depth of 50 m is shown in Figs. 5.5a–5.5i.
In total, the particle domain is 400 m × 400 m × 250 m, and filled with 107 particles. Overall
there is good qualitative agreement, and the method is able to simulate subsequent pulsations well.
The method is not perfect, as there are quantitative discrepancies between the simulations and the
empirical formula. The period is strongly dependent on the domain size, and at the time of writing
the in–house GPU does not have enough memory to perform a calculation in larger regimes where
we expect the period to converge to the empirical expression in Eq. (5.1).

36 FFI-RAPPORT 22/02062



(a) t = 0. (b) t = 0.16. (c) t = 0.36.

(d) t = 0.66. (e) t = 0.80. (f) t = 1.00.

(g) t = 1.20. (h) t = 1.40. (i) t = 1.60.

(j) Thermal energy and bubble migration as a function of time.

Figure 5.5 Simulation of an undex at a depth of 50 m, using only the SPH method. The
TNT explosive (red) is surrounded by three spherical and two cubical SPH layers
(blue and gray). As the domain size increases, the numerical simulations seems
to converge towards the theoretical period and bubble migration. The theoretical
values are drawn as horizontal and vertical lines respectively.
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5.3 Simulation of free–field shockwave propagation

Figure 5.6 shows the propagation of the initial shock wave from a detonation where we have
detonated a spherical TNT charge of radius 0.5 m at a depth of 50 m below the water surface. The
domain size is 100 m × 100 m × 100 m. The qualitative behaviour, displayed in Figs. 5.6a–5.6d, of
the shock seems physical:

• The shockwave becomes geometrically damped as it propagates through the water.
• The reflection from the free surface produces a rarefaction wave carrying an under–pressure.
• The reflections from the rigid surfaces produces shockwaves carrying an over–pressure.

Unfortunately, the shockwave amplitude is significantly smaller than the empirical expression

p(r, t) = pme−t/θ (5.2)

predicts, as shown in Fig. 5.6e. In addition, the shape of the pressure waves are more reminiscent
of large acoustic waves than actual shock waves. A discussion with the developer has indicated that
this feature might be a resolution issue. This is supported quantitively by the fact that the impulse
of the large acoustic wave seems to be similar to the expected impulse of the shockwave. Since
the shockwaves are extremely thin a very high particle density is required, to completely resolve
their singular features. Currently, the in–house GPUs are unable to model the necessary particle
densities to obtain complete convergence.
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(a) t = 8.0 ms. (b) t = 19.0 ms. (c) t = 29.0,ms. (d) t = 49.0 ms.

(e) Pressure history at the stand-off distances r = 5 m, r = 10 m, and r = 15 m.

Figure 5.6 Simulation of the shockwave originating from a 852.5 kg TNT charge placed 50 m
below the water surface. The top boundary has a free boundary condition, the
remaining ones have rigid boundary conditions.
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5.4 Summary

In this chapter we have attempted to model the free–field underwater explosion in Impetus, a
summary is given in Fig. 5.7. Given that Impetus was not built with undex applications in mind,
the results are better than expected, but not perfect. We have attempted two modeling strategies. In
the first method, the region close to the explosive is discretized by SPH particles and the region far
from the explosive is discretized by a mesh. We found however, that the mesh quickly becomes
distorted for subsequent oscillations and that the interface between the mesh and SPH region causes
unphysical reflections due to an impedance mismatch, see Fig. 5.4. In short, this modeling strategy
limits the opportunities to either small bubbles, or only the first pulsation of large bubbles where
the deformation of the mesh is minimal. That being said, the period and maximum radius for the
first pulsation are in agreement with the corresponding empirical expressions, as shown in Fig. 5.3.

To avoid the issues associated with the mesh, we also attempted a second modeling strategy
where we only utilized SPH particles. Simulations of the bubble dynamics seems to give physically
reasonable results. We find that the bubble performs damped oscillations, with symmetric expansion
and asymetric collapse. However, we do find that the period and radius depends on the size of the
domain. A complete convergence to the empirical results therefore requires a very large domain
size which is computationally expensive. Nevertheless, for large domains the simulations do come
very close to the empirical results as shown in Fig. 5.5. Another issue, is that the pure SPH method
also does not allow for reflectionless boundary conditions which means that reflected pressure
waves may affect the bubble dynamics. We emphasize that this is a general disadvantage of the
SPH method, not a flaw in the Impetus software.

Figure 5.7 A graphic summary of the phenomena we have attempted to model. Green colors
indicate successful modeling, and red colors indicate that there are issues which
makes the modeling difficult or untrustworthy.
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The description of the shockwave also has benefits and issues. The main issue is that Impetus
is not able to completely resolve the shockwaves, without having an unattainable (at least for our
GPUs) large particle density. Consequently, the shockwaves behave as large acoustic waves as
shown in Fig. 5.6. The justification is that since the shockwaves are almost discontinuous it is
easier to model large acoustic waves with similar impulse to the corresponding shockwave. On
the other hand, Impetus seems to be able to handle the reflection properties of the acoustic wave
well. Concretely, waves reflected off rigid surfaces come back as waves of overpressure and those
reflected off free surfaces come back as waves of underpressure.

5.5 Possible solutions

With a bit of code development we propose two ways to circumvent the issues related to the lack of
reflectionless boundary conditions. The first, is the introduction of ghost particles that live outside
the water domain, close to the desired boundary, and interacts appropriately with the water SPH
particles. The second, involves pausing the simulation as the shockwave reaches the boundary,
removing the shockwave, and resuming the simulation with an appropriate initial condition on the
water domain.

Another approach, may be to abandon the SPH description of the water, and instead introduce a
new discrete water particle, through a new appropriately defined PARTICLE_WATER keyword.
This may manifest similarly to the explosive (PARTICLE_HE), soil (PARTICLE_SOIL), and air
(PARTICLE_AIR) particles already implemented in the code. This proposal is primarily motivated
by the shape of the pressure histories in Fig. 5.6e, where the shape of the shockwave seems more
reminiscent of large acoustic waves, which may indicate an issue with the compressibility of water
in the current SPH description or be consequence of a resolution issue.

In addition, the Impetus team is currently working on developing a general CFD solver for
air blast problems. At the time of writing the prototype seems to work well. That being said,
the prototype only uses the Jones–Wilkins–Lee equations of state for the explosive and ideal gas
equation for air, which are the simplest possible choices. If the development continues to be
successful, we are also going to test the new solver for the application of undex problems. We believe
that the procedure will allows us to model larger water domains without being too computationally
expensive.
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6 Conclusion
The first part of this report consists of a detailed literature study of the simplest underwater
explosion phenomena. We have primarily focused on pressure characteristics through the similitude
equations, and the bubble pulsation. References that contain data that could be useful for numerical
benchmarking purposes have been included. In addition, the simplest forms of bubble–structure
interaction has been discussed.

In the second part of this report we attempted to model undex using the numerical code Impetus.
Given that the Impetus code has not primarily been developed for such applications, the results were
better than expected. In general, Impetus are able to capture the qualitative features of free–field
bubble motion and shockwave propagation. However, it remains to demonstrate quantitative
convergence towards empirical relationships, as the bubble motion was seen to depend strongly on
domain size and boundary conditions. For the shockwave, Impetus was also able to capture the
most important qualitative features, while there was still some discrepancy for the amplitude and
shape of the shock wave.

Finally, we provide a list, see Tab. 6.1, of the undex phenomena modelled in this report. We
have highlighted in color which phenomena we have attempted to model and whether they have
been successful or not. In addition, there are included several long–term effects that the FFI hopes
the Impetus code will be able to model in the future. Given a continued close conversation with
the developer we are confident many of these phenomena will be implemented in the hopefully
not–too–distant future. To be concrete, the list includes specific simulation setups and experimental
data useful for benchmarking.
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A Derivation of the similitude equations
In this appendix, we wish to show that the equations of motion

dρ
dt
+ ρ∇ · v = 0, Mass,

ρ
dv
dt
+ ∇p = 0, Momentum,

ρ
d
dt

(
E +

1
2

v2
)
+ ∇(pv) = 0, Energy,

(A.1)

and the Rankine-Hugoinot relations

ρ (U − u) = ρ0U, Mass,
p − p0 = ρ0Uu, Momentum,

E − E0
1
2
ρ0Uu, Energy,

(A.2)

governing the bulk fluid and shockwave properties respectively, are invariant under the simultaneous
scaling of space and time of the form (r, t) → (λr, λt), where λ is a scalar. For the Rankine–
Hugoinot relations the scale invariance is trivial because there are no derivatives. In the equations
of motion this is a consequence of all the derivatives having the same order. We will illustrate the
scale invariance by considering the conservation of momentum, but emphasize that all Eqs. in (A.1)
and (A.2) exhibit the same scale invariance. By writing r′ = λr and t ′ = λt we obtain

ρ
dv(r′, t ′)

dt ′
= −∇′p(r′, t ′) (A.3)

where the prime indicates differentiation with respect to the scaled coordinates. Since, all the
derivatives have the same order we can simplify to

ρ
dv(λr, λt)

dt
= −∇p(λr, λt), (A.4)

and observe that scale invariance is now manifest.
The similitude equations follow from the principle of similarity by choosing λ = 1/a0 where a0

is a length scale, for instance the radius, characterizing the charge. In the following f (·), g(·), h(·),
and u(·) denote arbitrary functions. With this choice it follows that space and time must scale like
r/a0 and t/a0 respectively. If we then consider a shockwave which has reached the point r at time
t = 0 we can draw a few conclusions. The peak of the shockwave must take the form

pm = f
( a0

r

)
(A.5)

because it is time independent. It is natural7 to consider that the shockwave decays exponentially
in time, where the time scale is set by a time constant which we denote by θ. According to the
principle of similarity the time constant must scale like

θ

a0
= g

( a0
r

)
. (A.6)

7This is proved in the Kirkwood–Bethe theory [8] which is too involved to include here.
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The impulse of the shockwave is defined as

I (r, t) =
∫ 5θ

0
p(r, τ)dτ, (A.7)

where the upper limit of integration (5θ) has been chosen by convention. The shockwave impulse
can then be written as

I =
∫ 5·g

( a0
r

)
a0

0
p
(

a0
r
,
τ

a0

)
dτ

= a0

∫ 5·g
( a0

r

)
0

p
(

a0
r
,
τ

a0

)
d
(
τ

a0

)
= a0h

( a0
r

)
.

(A.8)

This demonstrates that the shockwave impulse scales like

I
a0
= h

( a0
r

)
. (A.9)

The derivation for the energy of the shockwave is very similar to the impulse, except for a constant
prefactor and that p(r, τ) is replaced by p2(r, τ) in the relevant integral, see Eq. (3.3). This leads to
an identical scaling for the shockwave energy

E
a0
= u

( a0
r

)
. (A.10)

Equations (A.5), (A.6), (A.9), and A.10 represent the theoretical expressions for the shockwave
similitude equations. However, in an experiment it is customary to choose the cube root of the
explosive mass W instead of an actual length scale of the charge. First and foremost, this is because
it is simpler to measure the mass of the explosive than either measuring the charge radius, or
choosing an appropriate length scale for non–spherical charges. The cube root is related to that the
mass W can be expressed as a product of charge density and charge volume, and the charge volume
has dimensions of cubic length. Thus, to lowest order the similitude equations are conventionally
expressed in the form

Parameter = K
(
W 1/3

r

)α
, (A.11)

where K is a dimensional constant. The parameters K and α have been determined through
numerous experiments, summarized in [2].

We now discuss some of the assumptions that underpin the similitude equations. We mentioned
that the scale invariance of the equations of motion depends on the derivatives having the same
order. In effect, this means that any term that depends on second (or higher) order derivatives
will break the scale invariance. The prime example of such terms is the viscosity µ∇2v, and other
dissipative forces such as heat conduction. It is speculated that also chemical reactions behind the
detonation front may also violate the scale invariance. Note that, we have assumed the absence of
boundaries. In fact the similitude equations are only valid in the free–field case. Another important
force that does not scale geometrically, is the gravitational force. For shockwave dynamics gravity
causes no problems, because the time scale of the event is so small that the acceleration of water
due to gravity is negligible. At first sight, this may seem like a lot of assumptions that may be
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violated. Nevertheless, we emphasize that the similitude equations seem to describe the shockwave
physics in a fashion that agrees with experimental data.

Next, one might wonder if we also can use similitude equations to describe the bubble dynamics.
The answer is yes, but the relevant scaling relations between time and space are different. This means
that it is actually impossible to preserve both shockwave and bubble dynamics during the same
scale transformation. The primary cause of the difference in scaling behavior is the gravitational
acceleration. The time scale of the bubble dynamics is so long that gravity plays an important role
in the dynamics, causing e.g. asymmetric bubble collapse and upwards bubble migration. Since the
gravitational acceleration has dimensions of length/time2, it follows that if the length is scaled by a
factor λ, then time must be scaled with a factor

√
λ in order to preserve the value of the gravitational

acceleration during a scale transformation.
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B Derivation of the Willis formula
In this section we derive Eq. (3.5). In the simplest approximation we assume that the bubble
expansion keeps the density of water constant and only induces radial flow of the surrounding water.
We also neglect the effect of gravity. With these assumptions our starting point is the equation of
continuity

∂u
∂r
= −

2u
r

(B.1)

and motion
ρ0
∂u
∂t
+ ρ0u

∂u
∂r
+
∂P
∂r
= 0 (B.2)

in spherical coordinates. Integrating the equation of continuity we obtain u(r, t) = u1(t)/r2 where
u1(t) is a time–dependent integration constant. By substituting this into the equation of motion we
obtain

1
r2 ρ0 +

du1
dt
+

1
2
ρ0
∂u2

∂r
+
∂P
∂r
= 0. (B.3)

We can now integrate from the surface of the gas sphere (r = R) to infinity (r = ∞), with the
boundary conditions u(r = R, t) = uR = dR/dt = u1/R, P(r = R) = PR, and P(r = ∞) = P0
and u(r = ∞, t) = 0. If we then integrate with respect to time we obtain an expression for the
conservation of energy

Y =
3
2

(
4π
3
ρ0R3

) (
dR
dt

)2
+

4π
3

P0R3 + E(R). (B.4)

The first, second, and third term represents the kinetic energy, the work done against hydrostatic
pressure, and the internal energy respectively. Concretely the internal energy is defined as

E(R) =
∫ ∞

V (R)
PdV (B.5)

and is therefore determined by the equation of state. Commonly it is assumed that the expansion is
adiabatic, so that P(V/W )γ = k. Here W is the mass of explosive products and k is a constant. It
can be shown that the fraction of internal energy compared to the total energy is

F =
E(R)

Y
= 0.166P1/5

R = 0.42
(

W
R3

)1/4
. (B.6)

Estimates suggests that as a first-approximation it is okay to neglect E(R) compared to Y 8. If we
neglect E(R) we can obtain a simple expression for the energy in terms of the maximal radius
(dR/dt = 0):

Y =
4π
3

P0R3
m. (B.7)

Furthermore, by neglecting E(R) in Eq. (B.4) we can use seperation of variables to obtain an
expression for the time it takes to expand from an initial radius R0 to an arbitrary radius R(t)

t =
(

3ρ0
2P0

)1/2 ∫ R

R0

dR
[(

Rm

R

)3
− 1

]1/2 . (B.8)

8at least the equations become simpler.
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In the equation above we eliminated Y by utilizing Eq. (B.7). We can then obtain an expression for
the period of oscillation by integrating from R0 = 0 to R = am. The expression is called the Willis
formula and takes the form

T = 1.83 Rm

(
ρ0
P0

)1/2
= 1.14 ρ1/2

0
Y 1/3

P5/6
0

. (B.9)

So the period varies as the cube root of the total energy or equivalently the explosive charge weight
since Y ∝ W . It also varies as the 5/6th root of the hydrostatic pressure, which is connected to the
charge depth Z through the relation P0 ≈ Patmosphere + ρ0gZ . Dimensional analysis suggests that
despite our numerous approximations the depedence on ρ1/2

0 , Y 1/3, and P5/6
0 is more general

T ∝ ρ1/2
0

Y 1/3

P5/6
0

. (B.10)

Experiments demonstrate that the formula is valid given that the approximate number 1.14 is
adjusted suitably, which gives rise to the experimental relationship

T = K
W 1/3

(Z + 10)5/6 . (B.11)

Similarly Eq. (B.7) yields

Rm = J
(

W
Z + 10

)1/3
. (B.12)

Note that the constants K and J are now dimensional, because we utilized the relation Y ∝ W .
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C Lamb–Rayleigh–Plesset equation

C.1 Derivation

Consider an expanding or contracting spherical gas bubble of radius R(t), immersed in a fluid. The
fluid is specified by the space and time coordinates (r, t). In the following, we assume spherical
symmetry so that the fluid velocity only has a radial component vr . The pressure inside the bubble
is pb, the stress tensor in the fluid is σ, and the intrinsic surface tension is denoted by γ. The force
balance in the normal direction at the bubble interface is (evaluated at r = R)

0 = σrr + pb − γ (∇ · n)

= σrr + pb − γ
(

2
R

) (C.1)

where, n = r̂ denotes the unit normal of the bubble. To determine the equation of motion we need
to determine the stress tensor in the fluid.

To derive the stress tensor of the fluid surrounding the bubble we make some simplifying
assumptions. The density ρ and viscocity µ of the liquid are both constant, and we define the
kinematic viscocity as ν = µ/ρ. Physically this means that we consider an incompressible fluid
(infinite speed of sound), with finite viscosity. We also assume that the temperature and pressure
inside the bubble is uniform.

Continuity at the bubble interface dictates that

vr (r = R, t) =
dR
dt
. (C.2)

If the flow is incompressible, then if the bubble expands the change in bubble volume should equal
the change in fluid volume and therefore

vr (r, t) =
R2

r2
dR
dt
≡

F2(t)
r2 , (C.3)

where we defined F (t) = R2dR/dt.
In spherical coordinates the Navier–Stokes equation takes the form

∂vr
∂t
+ vr

∂vr
∂r
= −

1
ρ

∂p
∂r
+ ν

{
1
r2

[
∂

∂r

(
r2 ∂vr
∂r

)]
−

2vr
r2

}
. (C.4)

If we substitute v(r, t) = F2(t)/r2 into the Navier–Stokes equation we obtain

−
1
ρ

∂p
∂r
=

1
r2

dF
dt
−

2
r5 F2. (C.5)

Note that due to the spherical symmetry the term proportional to the viscosity ν cancelled.
Integrating Eq. (C.5) from r = r to r = ∞ gives us an equation for the pressure profile in terms of
the velocity field

p(r, t) − p∞
ρ

=
1
r

dF
dt
−

F2

2r4 . (C.6)
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In spherical coordinates the stress tensor is defined as

σrr = −p + 2µ
∂vr
∂r

= −

(
p∞ +

ρ

R
dF
dt
−

ρ

2R4 F2
)
−

4µF
R3 ,

(C.7)

where we in the final line evaluated the stress tensor for r = R.
By substituting the stress tensor in Eq. (C.7) into the dynamic boundary condition in Eq. (C.1)

we obtain the equation of motion

2γ
Rρ
+ RR̈ +

3
2

Ṙ2 + 4
ν

R
Ṙ =

pb − p∞
ρ

. (C.8)

By introducing the bubble volume VB (t) = 4/3πR3(t) we can rewrite Eq. (C.6) to obtain an
expression for the pressure distribution in the surrounding liquid,

p(r, t) = p∞ + ρ


V̈B (t)
4πr

−
V̇ 2
B (t)

32π2r4


. (C.9)

C.2 Numerical solution

To obtain a numerical solution we need to specify the set of parameters {R0, Ṙ0, p∞, k, K, ρ, µ, γ}.
In principle, this can be done by relying on empirical data, the validity of which is certainly
questionable. Alternatively, we can reduce the number of necessary parameters by expressing the
Lamb–Rayleigh–Plesset equation in dimensionless form. To this end, we set the length scale equal to
the equilibrium radius R̄ which is defined through the equation pb (R = R̄) = p∞, and introduce the
corresponding timescale as T = R̄

(
ρp−1
∞

)1/2
. The dimensionless radius, time, dynamic viscocity,

and surface tension then takes the form

a = R/R̄, τ = t/T, M =
µ

T p∞
, and S =

γ

p∞ R̄ (C.10)

respectively. Substituting the dimensionless variables in Eq. (C.10) into Eqs. (4.1) and (4.2), we
obtain the dimensionless Lamb–Rayleigh–Plesset equation

aä +
3
2

ȧ2 + 4M
ȧ
a
+

2S
a
= a−3K − 1. (C.11)

To solve the dimensionless Lamb–Rayleigh–Plesset equation we need only specify the parameters
{a0, ȧ0, M, S, K }. The benefit of the dimensionless equation, is that we no longer need to specify
the charge constant k which was the parameter with greatest empirical uncertainty.

To asses the validity of the dimensionless Lamb–Rayleigh–Plesset equation we will compare the
radius–time curve with an empirical one given on p. 271, Fig. 8.1 in Cole’s book [2]. The case is a
0.25 kg tetryl charge detonated 91.44 m below the water surface. From the data we estimated that
the equilibrium bubble radius is R̄ = 0.15 m. The first maximum bubble radius is Rmax = 0.45 m,
which corresponds to amax = 3 in our dimensionless units. We began the integration from the
first maximum using a0 = 3, ȧ0 = 0, and K = 1.25. For water, the dimensionless viscocity and
surface tension becomes M = 2 × 10−4, and S = 4.7 × 10−7 respectively. The solution as well as
the empirical data is shown in Fig. C.1.
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Figure C.1 The experimental data (Cole) and numerical solution of the dimensionless Lamb–
Rayleigh–Plesset (LRP) equation for a 0.25 kg tetryl charge detonated 91.44
m below the water surface. The radius and time scale is set to R̄ = 0.15 m
and T = 4.80 ms. The pressure is normalized with respect to the atmospheric
pressure patm. The horizontal line corresponds to p∞ = patm + ρgz.
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D Bubble oscillation models including compressibility

Herring model

In the acoustic approximation, the speed of sound in the surrounding water is constant and equal to
the undisturbed speed of sound in water c = c∞. In addition, the variations of the fluid density can
be neglected such that ρ = ρ∞. Including compressibility in this way, yields the Herring equation
[26] of the form

RR̈
(
1 − 2

Ṙ
c∞

)
+

3
2

Ṙ2
(
1 −

4
3

Ṙ
c∞

)
=

pb − p∞
ρ∞

+
R

ρ∞c∞
ṗb

(
1 −

Ṙ
c∞

)
. (D.1)

The terms responsible for compressibility effects are proportional to the 1/c∞ factors, and in the
limit c∞ → ∞ we obtain the Lamb–Rayleigh–Plesset equation. The most important effect is the
term proportional to ṗb as it represents the acoustic radiation of energy. The Herring equation was
the first successful identification of the acoustic radiation pressure as the principle loss mechanism
in underwater explosions. Nevertheless, in his orginal paper, Herring concluded that the acoustic
radiation, turbulence, and heat transfer can not alone account for the damping present in experimental
data.

Keller–Kolodner model

To numerically demonstrate the damping effect due to finite compressibility we will consider the
slightly more recent Keller–Kolodner model [25], whose dimensionless form is

(ȧ − C)
(
aä +

3
2

ȧ2 − a−3K + 1
)
− ȧ3 − (3K − 2) a−3K ȧ − 2ȧ = 0. (D.2)

The Keller–Kolodner model also utilizes the acoustic approximation9 and is therefore very
similar to the Herring model. In the above, we have introduced the dimensionless sound speed
C = c∞

(
ρ∞p−1

∞

)1/2
. As in the previous section, we wish to compare the dimensionless Keller–

Kolodner model with the dimensionless Lamb–Rayleigh–Plesset equation and the experimental
data by Cole. Again we use the case of a 0.25 kg tetryl charge detonated 91.44 m below the water
surface. To this end we solve Eq. (D.2) numerically by employing the initial conditions

a0 = 3, ȧ0 = 0, K = 1.25, C = 46.5. (D.3)

The numerical solution is plotted in Fig. 4.3. In contrast to the Lamb–Rayleigh–Plesset equation,
the Keller–Kolodner equation leads to damped oscillations due to the presence of radiation terms.
Nevertheless, we observe that the deviations between experiment and theory increases with the
number of oscillations.

Gilmore model

We also include the more general Gilmore model [28] which takes the form

RR̈
(
1 −

Ṙ
cb

)
+

3
2

Ṙ2
(
1 −

Ṙ
3cb

)
= H

(
1 +

Ṙ
cb

)
+

RḢ
cb

(
1 −

Ṙ
cb

)
, (D.4)

9In the acoustic approximation an equation of state is not explicitly utilized. Technically, the Keller–Kolodner equation
can be derived from the wave–equation where it is assumed that the speed of sound is a constant parameter. A constant
speed of sound corresponds to that the surrounding water obeys the equation of state p = c2ρ.
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Figure D.1 The numerical solution of both the Lamb–Rayleigh–Plesset and Keller–Kolodner
equation, compared with the experimental data for a 0.25 kg tetryl charge
detonated 91.44 m below the water surface. As before the radius and time
scale is set to R̄ = 0.15 m and T = 4.80 ms. The pressure is normalized with
respect to the atmospheric pressure patm. The horizontal line corresponds to
p∞ = patm + ρgz.

where cb = c(p = pb) denotes the speed of sound in the liquid infinitesimally close to the bubble
surface. The Gilmore model separates itself from both the Herring and Keller–Kolodner model
by explicitly introducing an equation of state for the surrounding water, thereby going beyond the
acoustic approximation. Concretely, the modified Tait equation of state

ρ(p) = ρ∞

(
p + B

p∞ + B

) 1
n

(D.5)
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is used. The constants B and n depend upon the particular liquid surrounding the gas bubble. For
water, B ≈ 3000 atm and n ≈ 7. Utilizing the Tait equation of state the speed of sound becomes

c = c∞

(
p + B

p∞ + B

) n−1
2n

, c∞ =

√
n
(

p∞ + B
ρ

)
. (D.6)

Note that when p, p∞ � B the density and speed of sound approaches their constant values in the
undisturbed liquid, and we expect to recover the features of the acoustic approximation. The final
ingredient in the Gilmore model is the pressure integral generally defined as

H (pb) =
∫ pb

p∞

dp
ρ
. (D.7)

For a constant density the pressure integral reduces to the driving term (pb − p∞) /ρ present in the
previously discussed models. Physically the pressure integral is identified as the enthalpy difference
between the bubble surface and the exterior. Note that in Eq. (D.7) any equation of state can in
principle be used. If we utilize the Tait equation of state we obtain

H (pb) =
c2 − c2

∞

n − 1
. (D.8)

Keller–Herring equation

A subtle, but interesting issue with models including compressibility in the acoustic approximation,
is that the equations of motion are not unique. In fact, to first order in 1/c∞ it has been demonstrated
that a one-parameter family
[
1 + (1 + Λ)

Ṙ
c∞

]
RR̈ +

3
2

[
1 −

(
Λ +

1
3

)
Ṙ

c∞

]
Ṙ2 =

[
1 + (Λ − 1)

Ṙ
c∞
+

R
c

d
dt

]
pb − p∞
ρ∞

+ O
(
c−2
∞

)
(D.9)

of approximate equations for the bubble radius exist. Here Λ is an arbitrary parameter of order
1. Equation (D.9) is called the Keller–Herring equation because it reduces to the form given by
each respective author in the limits Λ → 0 [25] and Λ → 1 [26]. We will not delve further into
these issues here, as modern approaches often does not rely on perturbative expansions in 1/c∞.
For a deeper explanation and exploration of this subtle issue, as well as higher order generalizations
beyond the acoustic approximation, see the articles by Prosperetti and Lezzi [30, 31].

Geers–Hunter model

To the best of my knowledge the most sophisticated semi–empirical model that encapsulates the
shock–wave phase, damping, and migration for a spherical bubble is the Geers–Hunter model,
originally developed in [32]. The model couples the initial shockwave phase to the bubble
oscillation phase, in the sense that the shock wave provides initial conditions for the bubble motion.
Furthermore, the model couples the evolution of the bubble radius and vertical migration during the
oscillation phase. The model also introduces new damping mechanisms due to wave propagation in
the fluid and gas. Concretely, the wave–damping terms are proportional to the radius–dependent
impedance ratio

ζ =
ρgascgas

ρwatercwater
(D.10)
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between the gas bubble and surrounding water. As a consistency check, it has been shown that the
Geers–Hunter model reduces to the previously discussed equations of motion (Lamb–Rayleigh–
Plesset, Herring, Gilmore, and Keller–Kolodner) by taking the appropriate zero–impedance limits(
1/cgas, cwater, ρwater/ρgas → ∞

)
.

In an improved version of the Geers–Hunter model [59] an attempt is made to also account for
bubble distortion on translation and dilation. Concretely, the improvement introduces an artificial
bubble drag function of the form C |v |P, where v is the translation velocity, and C and P are
parameters that are fit to empirical formulas. The recommended values are C = 0.4 and P = 1 for
charge weights between 45 - 450 kg, and depths exceeding 60 m. Unfortunately, the coupled set of
non–linear equations of motion constituting the Geers–Hunter model are far too unwieldy to be
included and discussed further in this text. Finally, we note that the improved Geers–Hunter model
is the underlying description of the implemented ”LOAD_UNDEX” command in Impetus making
it particularly useful for benchmarking purposes.
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E Kelvin Impulse and bubble–surface interaction
In this chapter we discuss the interaction between a bubble and either rigid or free surfaces. The
purpose of this chapter is twofold. Firstly, we want to introduce the interested reader to the physics
governing the apparent attractive (repulsive) force experienced by a bubble pulsating in the vicinity
of a rigid (free) surface. Secondly, we want to provide the Impetus development team with concrete
benchmarks, such that the Impetus code can be developed to incorporate bubble–surface interactions.
Consequently, this chapter is slightly more mathematically involved so that hopefully all definitions
are unambiguous. As of yet, we point out that the phenomena introduced in this chapter has not
been modeled in Impetus.

E.1 Bubble repulsion or attraction

The Kelvin impulse I of the bubble is defined [33, 34, 35] as

I = ρ
∮
S

φndS (E.1)

where S denotes the bubble surface with the normal vector n, pointing towards the interior of the
bubble. The integrand is the velocity potential defined for irrotational10 flows through the relation
v = ∇φ.

External forces F acting on the bubble, will change the Kelvin impulse according to the equation

F =
dI
dt
, or I(t) = I(0) +

∫ t

0
F(τ)dτ. (E.2)

For underwater bubbles the external forces are typically caused by gravity, and geometric surfaces
(rigid or free) which we denote by ζ . The relevant external forces can be expressed through the
velocity potential as

F = ρ
∫
ζ

{
1
2
|∇φ|2 n − (n · ∇φ) ∇φ

}
dS + ρ

∫
V

∇ΦdV, (E.3)

where the first and second term represents the Bjerknes force and buoyancy due to gravity respectively.
Here V and Φ = gz denotes the bubble volume and the gravitational potential. The second term
trivially becomes the buoyancy force ρgV , while the first term depends on the form of the velocity
potential. The velocity potential has to be chosen such that the boundary condition at the relevant
surface is satisfied. For a rigid surface the boundary condition is that the velocity should only have a
component parallel to the surface, so that the potential should satisfy n · ∇φ = 0. For a free surface
the appropriate boundary condition is that the velocity is continuous and that pressure should be
equal to the atmospheric pressure, in that case the potential should satisfy ∂φ/∂t − (∇φ)2 /2 = 0.
Satisfying the aforementioned boundary conditions can be done in a number of ways, of particular
interest is utilizing the method of images. The lowest order approximation of the Kelvin impulse

10For the case considered here, we employ the assumption of incompressible flow ∇ · v = 0, such that the velocity
potential satisfies the Laplace equation. Consequently, the potentials obey the superposition principle, so that complex
flows can be expressed as a sum of simpler flows. The mentioned linearity enables us to utilize the method of images,
where surfaces are replaced by appropriate potentials. We also assume the flow to be inviscid, both for simplicity, and to
avoid problems with boundary layers close to rigid surfaces.
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Figure E.1 Left: Geometry illustrating the balance between the bubble buoyancy and the
Bjerknes attraction to a rigid surface. Right: Strategy of the method of images,
where the rigid surface (dashed line) is removed and replaced by an imaginary
bubble. The contribution to the total potential is the same when the point of
measurement is sufficiently distant from the rigid surface.

utilizes only time-dependent point sources or sinks, one at the centre of the bubble mimicking bubble
pulsation and one at the opposite side of the corresponding surface to fix the correct boundary
condition.

A particularly well-known analytical approach is discussed elegantly in [36, 37]. The geometry
consists of a bubble located a distance ξ (t) above a horizontal semi-infinite rigid surface, as shown
in Fig. E.1. Utilizing the method of images the total velocity potential is given by

φ = −
m(t)
4πr

−
m(t)
4πr ′

, (E.4)

where r and r ′ is the distance to a point of measurement from the bubble centroid and image source
respectively. The point source strengths are denoted by m(t). The velocity potential in Eq. (E.4)
produces an external force of the form

Fz = −
ρm2(t)

16πξ2(t)
+ ρgV (t) (E.5)

where there is a competition between the buoyancy and Bjerknes force, trying to force the bubble
downwards and upwards respectively. To determine the corresponding impulse, through Eq. (E.2),
we further assume that:

1. The bubble retains its spherical form so that V (t) = 4/3πR3, and m(t) = 4πR2 Ṙ.
2. The distance between the bubble centroid and rigid surface is constant throughout the motion

and equal to its initial value ξ (t) = ξ0.
3. The time dependence of the radius is governed by the Lamb–Rayleigh–Plesset equation

m(t) = ±4πR2
[
2
3

(
∆p
ρ

) (
R3

max
R3 − 1

)]1/2

.

The positive (negative) sign is used during the expansion (contraction) phase.
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By utilizing the above assumptions and integrating the external force in Eq. (E.5) over the first
bubble period Tc we obtain the Kelvin impulse at the end of the collapse

I (Tc) =
2π

√
6ρ∆pR5

max

9ξ2
0

[
2γ2δ2B

(
11
6
,

1
2

)
− B

(
7
6
,

3
2

)
,

]
(E.6)

where B(x, y) is the complete Beta function, and we have defined γ = ξ0/Rmax > 1 as the
dimensionless distance between the bubble and rigid surface. We have also introduced the
dimensionless buoyancy parameter as

δ =

√
ρgRmax
∆p

< 1. (E.7)

The crucial point is that the direction of the Kelvin impulse at the end of the bubble lifetime
determines the direction of the centroid migration and if a jet is formed, the direction of the jet. The
competition between the buoyancy force and the attractive Bjerknes interaction leads to a line in the
(γ, δ) parameter space where the Kelvin impulse is zero. The null-line is given by

γδ =



B
(

7
6,

3
2

)
2B

(
11
6 ,

1
2

) 

1/2

≈ 0.442 (E.8)

and it partitions the parameter space into one region where the Kelvin impulse is positive (migration
away from boundary) and one region where it is negative (migration towards boundary) region.

For a geometry with a free surface above the bubble, the calculation is completely analogous
and the final expression for the Kelvin impulse becomes

I (Tc) = −
2π

√
6ρ∆pR5

max

9ξ2
0

[
2γ2δ2B

(
11
6
,

1
2

)
− B

(
7
6
,

3
2

)
,

]
. (E.9)

In the simplest approximation the only difference between a rigid and free surface is a global minus
sign in the Kelvin impulse. Therefore, the same partitioning γδ ≈ 0.442 exists also for the free
surface.

However, for our benchmarking purposes it is more than sufficient to consider the Kelvin
impulse formula for a geometry where the rigid surface is inclined by an angle β with respect to the
horizontal

I(Tc)√
ρ∆pR3

max
=

2π
√

6
9

{ [
B

(
7
6
,

3
2

)
−
µ

2
B

(
3
2
,

3
2

)]
Γ + 2δ2

[
B

(
11
6
,

1
2

)
+
µ

2
B

(
13
6
,

1
2

)]
k
}
.

(E.10)
Here the first11 and second term represents the Bjerknes force due to the rigid surface and buoyancy
force respectively. The direction of the Bjerknes force is parallel to the normal vector (pointing
away from the bubble) of the rigid surface, and is given by

Γ =
1
γ2 (i sin β − k cos β) . (E.11)

11Note that the term in square brackets, B
( 7

6,
3
2
)
−
µ
2 B

( 3
2,

3
2
)
, is always positive because γ > 1.
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(a) Rigid surface below the bubble. (b) Free surface above the bubble.

Figure E.2 The partitioning of the (γ, δ) phase space for (a) a rigid boundary and (b) a free
surface. The apparent repulsion or attraction to the surface originates from a
competition between the Bjerknes and buoyancy force. The arrows indicate the
direction of migration or jet. Figure taken from [35].

The additional terms proportional to µ = 1/ (2γ) accounts for a correction to the Rayleigh equation
in the presence of a boundary, an effect which was ignored in the simplified derivation given above.
To obtain the null-line in Eq. (E.8) one must take the limits µ, β → 0. The corrected null-line is
determined from Eq. (E.10) with finite µ and β. A comparison of the simplified and corrected
null–line is shown in Fig. E.3. Note that the corrections to the null-line partitioning the parameter
space are small and quantitative. The more interesting aspect of Eq. (E.10) is that it can be used to
determine the direction of migration for different orientations of the rigid surface, which will be
useful in our benchmarking. A concrete example would be to investigate the direction of the bubble
migration as a function of the inclination angle of the rigid surface.

E.2 Analogy to electrostatics

Interestingly, we note that the method of images allows for an analogy between bubble interactions
and Coloumb’s law for electrostatics. Concretely, from the force expressions:

FCoulomb = +
1

4πε0

q1q2

r2 , and Fz = −
1

4π/ρ
m1m2

(2ξ)2 , (E.12)

we obtain the correspondence

r ↔ 2ξ, ε0 ↔ 1/ρ, q1,2 ↔ m1,2. (E.13)

The correspondence tells us that sources pulsating in and out of phase attract and repel respectively.
From a fundamental point of view this analogy arises in the lowest order approximation because both
phenomena are governed by the Laplace equation. We should be careful in stretching this analogy
too far, but it does indicate that two sufficiently spatially separated bubbles either attract or repel
depending on the phase difference between them. For a review on the experimental investigation of
two–bubble interactions see the papers by Li and Liu [17, 60] and the references therein.
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Figure E.3 The blue line represents γδ = 0.442, the red line represents the full numerical
solution of Eq. (E.10) for the case β = 0. Note that the correction to the partition
is only quantitative and small.

E.3 A brief comment on jet–structure interaction

Finally, we will very briefly mention an approximate expression quantifying the interaction between
the bubble jet and a solid interface. Since the jet is so thin, a one dimensional description is often
sufficient. In general, when a high-speed liquid impacts a target material, a water-hammer pressure
is generated and obeys the equation [61, 62]

pwh = ρLcLvJ
ρScS

ρScS + ρLcL
. (E.14)

Here {cL, ρL }, and {cS, ρS } are the speed of sound and density of the liquid and target material
respectively. The relative impact velocity between the liquid and target material is denoted by vJ .
There are then two cases of special interest:

• During jet formation, the high–speed water first impacts the distal side of the bubble. In this
case the target material is water moving moving at a velocity vD . In this case, the relative
velocity between the jet and bubble is |vJ − vD | and ρScS = ρLcL . Thus, the water hammer
pressure becomes pwh = ρLcL |vJ − vD |/2.

• After the jet is formed it may eventually impact on a solid material, for instance steel, and the
water hammer pressure is given by (E.14). Often, the target has a much larger impedance
than water such that ρScS � ρLcL . In this case the water hammer pressure simplifies to
pwh = ρLcLvJ . If the jet is moving at a speed with scale of km/s, the water hammer pressure
will be on the GPa scale. For comparison this pressure is larger than the pressure of the peak
shockwave from the initial explosion.
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F Short overview of the boundary integral method
In the simplest possible situation, we make the standard assumptions of irrotational, inviscid, and
incompressible flow. Consequently, we can introduce the velocity potential v = ∇φ which satisfies
the Laplace equation ∇2φ = 0. The solution φ(p) to the Laplace equation, at a point p in the fluid
domain, can be expressed via the corresponding Green’s function G as an integral over the surface
boundary ∂Ω of the fluid volume Ω

c(p)φ(p) =
∫
∂Ω

(
∂φ

∂n
G − φ

∂G
∂n

)
dS, ∇2G(p, q) = δ(p − q). (F.1)

Here ∂/∂n = n · ∇ is the normal derivative at the boundary, c(p) is a geometrical parameter
associated with the solid angle, and q is a point on the bubble surface. For concreteness, we also
provide two examples of common Green’s functions. For a free–field bubble the fluid domain is
infinite and the Green’s function is

G∞ =
1

|p| − |q|
. (F.2)

In the vicinity of a rigid surface we can employ the method of images. The boundary condition at
the surface is fulfilled by placing an image of the bubble at the position |q′ |, such that the points |q|
and |q′ | are related by a reflection about the rigid boundary. We then obtain the Green’s function

Grigid surface =
1

|p| − |q|
+

1
|p| − |q′ |

. (F.3)

The integration in Eq. (F.1) has to be performed on all the relevant surfaces. Therefore, we
typically only require meshes on the surfaces of the bubble which reduces the dimension of the
problem by one. If we know the bubble geometry and the potential at some time, as well as the
Green’s function, we can solve Eq. (F.1) for the normal fluid velocity ∂φ/∂n at the bubble surface.
We can then use ∂φ/∂n to determine the bubble surface and potential at a later time, and iterate
forward in time. The mesh description of the bubble allows us to easily describe non–spherical
bubbles and to some extent incorporate bubble interactions with structures. For more details, see
the thesis by Best [37].
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G Basic interpolant of SPH
To make the idea behind smoothed particle hydrodynamics (SPH) more concrete, we will first
derive the basic–interpolant, and then state the relevant equations of motion in the SPH scheme.
Formally, we begin by considering an arbitrary local property A(r) (velocity, density, pressure, . . . ).
Through the Dirac function the general property can be expressed as

A(r) =
∫

A(r′)δ(r − r′)dr′. (G.1)

The underlying idea is now to approximate the Delta function by the so called Kernel function
W (r − r′; h). Here h represents the width of the Kernel, and a typical choice of Kernel functions
are Gaussian or spline functions. The restriction on the Kernel is that in the limit h → 0 it should
approach the Delta function. By employing the Kernel, the general property can be expressed as

A(r) ≈
∫

A(r′)W (r − r′; h)dr′ =
∫

A(r′)
W (r − r′; h)

ρ(r′)
ρ(r′)dr′. (G.2)

In the above we introduced the density such that ρdr can be interpreted as an infinitesimal mass
element. To proceed we discretize the continuous fluid into N discrete particles labeled by roman
letters (a, b, . . . ). The arbitrary property then takes its final SPH form

Aa ≈

N∑
b=1

Ab
Wabmb

ρb
. (G.3)

The physical interpretation is that at the point of interest r there is a particle (a), whose properties
are determined by the particles (b) surrounding it. The interaction between the particles is given by
the Kernel Wab, which decays as the distance between the particles increases. As a simple example,
consider the case where the general property is the density at point a, such that

ρa ≈
∑
b

Wabmb . (G.4)

Equation (G.4) states that the density at the point of interest is determined by the mass of the
particles surrounding it. Note that the derivative of A is determined by the derivative of the Kernel
in its entirety

(∇A)a ≈
N∑
b=1

Ab
mb

ρb
∇aWab . (G.5)

If A is a vector property then the divergence of the basic interpolant becomes

(∇ · A)a ≈
N∑
b=1

mb

ρb
Ab · ∇aWab . (G.6)

By now utilizing Eqs. (G.3), (G.5), and (G.6) the Euler equations, governing inviscid fluid
dynamics, can be expressed as

Dρa
Dt
≈ ρa

∑
b

mb

ρb
vab · ∇aWab,

Dva

Dt
≈ −

∑
b

mb
*
,

pa
ρ2
a

+
pb
ρ2
b

+
-
∇aWab,

Dea
Dt
≈ −

∑
b

mb
*
,

pa
ρ2
a

vb +
pb
ρ2
b

va
+
-
· ∇aWab .

(G.7)
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Here e is the sum of the kinetic and internal energy of the fluid. In the presence of viscocity
and consequently shear-stresses the Euler equations become the Navier–Stokes equations and the
pressure in the equations above become replaced by the stress tensor, as well as the inclusion of
shear–strain rate terms.
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H Impetus code

H.1 Coupled FE and SPH method

Below we provide an example of the code used to simulate underwater explosions, where the water
close to the explosion is discretized into SPH particles and the water far away from the explosion is
discretized into a FE mesh, as explained in Sec. 5.2.1.

*UNIT_SYSTEM
SI

*PARAMETER
z0 =-350, "z-min"
z1 =-300, "z-bubble center"
z2 = 0, "z-max"
R = 15, "radius of cylindircal hole in mesh"
H = 40, "height of cylindrical hole in mesh"
dx = 3, "element size"
tend = 2, "Termination time"
num_imp = 100, "number of .imp files"
num_ascii = 1000, "number of .out time steps"
rExplosive = 0.5, "radius of explosive"
Nt = 2*floor(0.25*pi*%R/%dx)

*TIME
%tend

*OUTPUT
%tend/%num_imp, %tend/%num_ascii

#--- DEFINE WATER MESH ---

*COMPONENT_CYLINDER
1, 1, [(%z1-%R-%z0)/%dx], [%Nt]
0, 0, [%z0], 0, 0, [%z1-%R], [%R]

*COMPONENT_CYLINDER
2, 1, [(%z2-%H-%z1+%R)/%dx], [%Nt]
0, 0, [%z1+%H-%R], 0, 0, [%z2], [%R]

*COMPONENT_PIPE
3, 1, [(%z1-%R-%z0)/%dx], [4*%Nt], [2*%R/%dx]
0, 0, [%z0], 0, 0, [%z1-%R], [%R], [3*%R]

*COMPONENT_PIPE
4, 1, [%H/%dx], [4*%Nt], [2*%R/%dx]
0, 0, [%z1-%R], 0, 0, [%z1+%H-%R], [%R], [3*%R]
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*COMPONENT_PIPE
5, 1, [(%z2-%H-%z1+%R)/%dx], [4*%Nt], [2*%R/%dx]
0, 0, [%z1+%H-%R], 0, 0, [%z2], [%R], [3*%R]

*MERGE_DUPLICATED_NODES
P, 1, P, 1, [%dx/10]

*CHANGE_P-ORDER
P, 1, 3, 123

*GEOMETRY_PIPE
123
0, 0, [%z1-2*%R], 0, 0, [%z1+%H], [2*%R]

*SMOOTH_MESH
P, 1, 45.0

#--- FLUID PROPERTIES ---

*MAT_FLUID #mid = 1
1, 1000, 2.1e9, 1e-3, 0, 1

*EOS_GRUNEISEN
1, 1.5, 2.0

*MAT_FLUID #mid = 2
2, 1000, 2.1e9, 1e-3
1.0e6

*PART #Combines pid=1 with mid=1 to make a mesh of water.
"Water"
1, 2

#--- DEFINE PARTICLES ---

*PARTICLE_DOMAIN
0, 0, 8.0e6, 0, 1.0e10
[-2*%R], [-2*%R], [%z1-2*%R], [2*%R], [2*%R], [%z1+%H]

*GEOMETRY_PIPE #gid = 1, to be made into water
1
0, 0, [%z1-%R], 0, 0, [%z1+%H-%R], [%R]

*PARTICLE_SPH #Particles are made of the material mid=1 (vann)
#The geometry gid=1 is then discretized into particles
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1
1, 1

*GEOMETRY_SPHERE #gid = 2, to be made into explosive
2
0, 0, [%z1], [%rExplosive]

*PARTICLE_HE
"TNT" #Particles are made of TNT material

#The geometry gid=2 is discretized into explosive particles
2, 4
TNT, 2, ,8

*PARTICLE_DETONATION
10
0, 0, [%z1]

# -- GRAVITY INITIALIZATION ---

*LOAD_GRAVITY #Includes gravity in the z-direction
Z, 123

*CURVE
123
0.0, 9.81
1.0, 9.81

*INITIAL_STRESS_FUNCTION #Defines initial hydrostatic load
DP, 1, 222, 222, 222

*INITIAL_STRESS_FUNCTION
P, 1, 222, 222, 222

*FUNCTION
222
9.81*1000*(z)

# --- MERGE PARTICLES AND MESH ---

*MERGE
DP, 1, P, 1

# --- BCs ---

*BC_MOTION
"bottom"
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101
G, 101, Z

*GEOMETRY_SEED_COORDINATE
101
0, 0, [%z0]

*BC_MOTION
"side"
102
G, 102, XY

*GEOMETRY_SEED_COORDINATE
102
[5*%R], 0, [%z1]

*END

H.2 Pure SPH method

Below we provide an example of the code used to simulate underwater explosions where the water
is only described by SPH particles, as explained in Sec. 5.2.2. In short, the explosive is surrounded
by different water geometries with individual particle densities. The particle density in a layer close
to the explosive is larger than in a layer far away from the explosive.

*UNIT_SYSTEM
SI

*PARAMETER
z1 = -50 , "z-bubble center"
tend = 2 , "termination time"
num_imp = 100 , "number of .imp files"
num_ascii = 1000 , "number of .out time steps"
rExplosive = 0.5 , "radius of explosive charge"
L = 100 , "total domain size"
rho = 1000.0 , "Density of water"
bulk = 2.1e9 , "Bulk modulus of water"
g = 9.81 , "Acceleration of gravity"

*TIME
%tend

*OUTPUT
%tend/%num_imp, %tend/%num_ascii

#--- FLUID PROPERTIES (Same result if EOS is not used) ---
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*MAT_FLUID
1, [%rho], [%bulk], 1e-3, 0, 1
*EOS_GRUNEISEN
1, 1.5, 2.0

#--- FLUID GEOMETRY ---

*PARTICLE_DOMAIN #Define particle domain and BCs
, , 1.0e7
[-%L], [-%L], [-%L/2], [%L], [%L], [%L]
2, 2, 2, 2, 2, 2

*GEOMETRY_BOX #Geometry of 1st water layer
"Water L1"
1
[-%L], [-%L], [-%L/2], [%L], [%L], [%L/2]

*PARTICLE_SPH #Discretizes the geometry above into water particles
"Water L1"
1
1, 1, 0, 0, 0.01

*GEOMETRY_BOX #Geometry of 2nd water layer
"Water L2"
2
[-%L/2], [-%L/2], [-%L/2], [%L/2], [%L/2], [%L/2]

*PARTICLE_SPH #Discretizes the geometry above into water particles
"Water L2"
2
1, 2, 0, 0, 0.02

*GEOMETRY_SPHERE #Geometry of 3rd water layer
"Water L3"
3
0, 0, 0, [40]

*PARTICLE_SPH #Discretizes the geometry above into water particles
"Water L3"
3
1, 3, 0, 0, 0.04

*GEOMETRY_SPHERE #Geometry of 4th water layer
"Water L4"
4
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0, 0, 0, [35]

*PARTICLE_SPH #Discretizes the geometry above into water particles
"Water L4"
4
1, 4, 0, 0, 0.08

*GEOMETRY_SPHERE #Geometry of 5th water layer
"Water L5"
5
0, 0, 0, [30]
*PARTICLE_SPH #Discretizes the geometry above into water particles
"Water L5"
5
1, 5, 0, 0, 0.16

*GEOMETRY_SPHERE #Geometry of 6th water layer
"Water L6"
6
0, 0, 0, [25]

*PARTICLE_SPH #Discretizes the geometry above into water particles
"Water L6"
6
1, 6, 0, 0, 0.32

*GEOMETRY_SPHERE #Geometry of TNT layer
"TNT"
7
0, 0, 0, [%rExplosive]

*PARTICLE_HE #Discretizes the TNT geometry into TNT particles
"TNT"
7, 4
TNT, 7, , 10

*PARTICLE_DETONATION #Detonation point
10
0, 0, 0

#--- GRAVITY INITIALIZATION ---

*LOAD_GRAVITY
Z, 123

*CURVE
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123
0.0, 9.81
1.0, 9.81

*INITIAL_STRESS_FUNCTION #Loads initial hydrostatic pressure load on L1
DP, 1, 222, 222, 222

*INITIAL_STRESS_FUNCTION #Loads initial hydrostatic pressure load on L2
DP, 2, 222, 222, 222

*INITIAL_STRESS_FUNCTION #Loads initial hydrostatic pressure load on L3
DP, 3, 222, 222, 222

*INITIAL_STRESS_FUNCTION #Loads initial hydrostatic pressure load on L4
DP, 4, 222, 222, 222

*INITIAL_STRESS_FUNCTION #Loads initial hydrostatic pressure load on L5
DP, 5, 222, 222, 222

*INITIAL_STRESS_FUNCTION #Loads initial hydrostatic pressure load on L6
DP, 6, 222, 222, 222

*FUNCTION #Function defining hydrostatic pressure load
222
-101325 - %g*%rho*(%L/2 - z)

*END

H.3 Shockwave propagation

Below we provide an example of the code used to simulate the shockwave propagation resulting
from an underwater explosions, as explained in Sec. 5.3.

*UNIT_SYSTEM
SI

*PARAMETER
z1 =-50,"z-bubble center"
tend = 60*0.001,"termination time"
num_imp = 100,"number of .imp files"
num_ascii = 1000,"number of .out time steps"
rExplosive = 0.5,"radius of explosive charge"
L = 100,"total domain size"
rho = 1000.0 "density of water"
bulk = 2.1e9 "bulk modulus of water"
g = 9.81 "acceleration of gravity"
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*TIME
%tend

*OUTPUT
%tend/%num_imp, %tend/%num_ascii

*OUTPUT_SENSOR #Placing pressure sensors
"5m"
1, SPH, 5, 0, 0
"10m"
2, SPH, 10, 0, 0
"15m"
3, SPH, 15, 0, 0
"20m"
4, SPH, 20, 0, 0

#--- FLUID PROPERTIES (Same result if EOS is not used) ---
*MAT_FLUID #mid = 1
1, [%rho], [%bulk], 1e-3, 0, 1

*EOS_GRUNEISEN
1, 1.5, 2.0

*PARTICLE_DOMAIN #Define particle domain and BCs
0, 0, 2.0e7
~if %L/2+%z1 < 0
[-%L/2], [-%L/2], [-%L/2], [%L/2], [%L/2], [%L/2]
2, 2, 2, 2, 2, 2

~else
[-%L/2], [-%L/2], [-%L/2], [%L/2], [%L/2], [%L/2+1]
2, 2, 2, 2, 2, 0

~end_if

#--- FLUID GEOMETRY---
*GEOMETRY_BOX
"Water L1"
1
[-%L/2], [-%L/2], [-%L/2], [%L/2], [%L/2], [min(%L/2,-%z1)]

*PARTICLE_SPH
"Water L1"
1
1, 1, 0, 0, 0.01

*GEOMETRY_BOX
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"Water L2"
2
[-%L/4], [-%L/4], [-%L/4], [%L/4], [%L/4], [min(%L/4,-%z1)]

*PARTICLE_SPH
"Water L2"
2
1, 2, 0, 0, 0.02

*GEOMETRY_SPHERE
"Water L3"
3
0, 0, 0, [24]

*PARTICLE_SPH
"Water L3"
3
1, 3, 0, 0, 0.04

*GEOMETRY_SPHERE
"Water L4"
4
0, 0, 0, [17]

*PARTICLE_SPH
"Water L4"
4
1, 4, 0, 0, 0.08

*GEOMETRY_SPHERE
"Water L5"
5
0, 0, 0, [12]

*PARTICLE_SPH
"Water L5"
5
1, 5, 0, 0, 0.16

*GEOMETRY_SPHERE
"Water L6"
6
0, 0, 0, [7]

*PARTICLE_SPH
"Water L6"
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6
1, 6, 0, 0, 0.32

*GEOMETRY_SPHERE
"TNT"
7
0, 0, 0, [%rExplosive]

*PARTICLE_HE
"TNT"
7, 4
TNT, 7

*PARTICLE_DETONATION #detoneres i et punkt (x1,y1,z1)
10
0, 0, 0

#--- GRAVITY INITIALIZATION ---
*LOAD_GRAVITY #Includes gravity in the z-direction
Z, 123

*CURVE
123
0.0, 9.81
1.0, 9.81

#--- INITIAL HYDROSTATIC PRESSURE LOAD---
*INITIAL_STRESS_FUNCTION
DP, 1, 222, 222, 222
*INITIAL_STRESS_FUNCTION
DP, 2, 222, 222, 222
*INITIAL_STRESS_FUNCTION
DP, 3, 222, 222, 222
*INITIAL_STRESS_FUNCTION
DP, 4, 222, 222, 222
*INITIAL_STRESS_FUNCTION
DP, 5, 222, 222, 222
*INITIAL_STRESS_FUNCTION
DP, 6, 222, 222, 222

*FUNCTION
222
%g*%rho*(z+%z1)
*END
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