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Summary 
The purpose of this work was to explore how the so-called inoperability input-output model (IIM) can be used 
as a tool for investigating scenarios and resilience aspects in a Total Defence perspective. The results show 
that IIM with its dynamic formulation can provide insight to critical infrastructure resilience aspects not easily 
gained otherwise. To allow further exploitation of IIM for national resilience analyses, it is recommended to 
build a database of interdependency matrices for the functions and critical infrastructures that constitute the 
Total Defence system. This database should be applicable for a broad range of scenarios, in particular scenar-
ios that are used for security and defence planning.  
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1 Introduction 

The defence of Norway is built upon three main lines of effort: (i) national defence, (ii) the col-
lective defence provided through NATO and (iii) bilateral support and reinforcement arrange-
ments with close allies (Norwegian Ministry of Defence, 2020, p. 4). These three lines of efforts 
are underpinned by a modern and well-prepared Total Defence concept that builds national re-
silience (Norwegian Ministry of Defence & Norwegian Ministry of Justice and Public Security, 
2018). 

Looking out towards 2040, the security situation is characterised by global challenges like cli-
mate change and long-term effects of the Covid-19 pandemic, fragmentation and contestation 
within communities, states and the international system as well as mismatch between the chal-
lenges and the ability to deal with them (Beadle, Diesen, Nyhamar, & Bostad, 2019; National 
Intelligence Council, 2021, pp. 1-3; NATO, 2020, pp. 16-21; Sellevåg et.al., 2020). The situa-
tion is exacerbated not only by the proliferation of emerging and disruptive technologies that 
continue to add complexity to our critical infrastructures, but also by the historically fragmented 
governance of risks spanning several government departments (Helbing, 2013; Oughton, Usher, 
Tyler, & Hall, 2018). Conventional strategies where risks are analysed, evaluated and treated 
individually, leading to siloed risk management, are therefore becoming insufficient (Helbing, 
2013). 

The new security situation where nation states may face more intense and cascading challenges 
(National Intelligence Council, 2021, p. 1), calls for strengthened national and collective resili-
ence (NATO, 2021). It has, however, been acknowledged for decades that understanding the 
fragilities induced by multiple interdependencies is generally considered as one of the major 
challenges when it comes to improving national resilience, including the resilience of critical 
infrastructures (Chang, 2009; Rinaldi, Peerenboom, & Kelly, 2001; Vespignani, 2010). The 
2020−2021 Covid-19 pandemic has just reminded us of this fact. Future strategies for meeting 
the challenges should therefore build on the principles of resilience and adaptation (Hollnagel, 
Woods, & Leveson, 2006; National Intelligence Council, 2021, p. 3; Schulman, 2021; Woods, 
2020). 

In order to strengthen resilience efforts, there is a need to better understand the potential cascad-
ing consequences that follow disruptive events. For this purpose, several modelling and simula-
tion approaches have been proposed (Ouyang, 2014). So-called network flow-based and agent-
based methods allow for detailed modelling of critical infrastructures with substantial accuracy, 
but come with great computational cost and need large amounts of data that are not easily avail-
able. Holistic approaches, on the other hand, model how the service degradation within one in-
frastructure influence other infrastructures’ ability to operate, but in an abstract and strategic-
oriented manner with little computational cost (Ouyang, 2014; Setola, Rosato, Kyriakides, & 
Rome, 2016, p. 29).  
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One of the most successful holistic approaches is the economic theory-based inoperability1 in-
put-output model (IIM) (Haimes et al., 2005b; Haimes & Jiang, 2001; Lian & Haimes, 2006; 
Santos & Haimes, 2004). The IIM has been successfully applied to cases like terrorism (Santos, 
2006; Santos & Haimes, 2004), the impact of high-altitude electromagnetic pulse (Haimes, 
Horowitz, Lambert, Santos, Crowther, & Lian, 2005a), blackouts (Anderson, Santos, & Haimes, 
2007), hurricanes (Crowther, Haimes, & Taub, 2007), cyber-attacks (Santos, Haimes, & Lian, 
2007) and pandemics (Santos, 2020). IIM has also been used to analyse interdependencies be-
tween economic sectors in Italy (Setola, 2008) and Norway (Sellevåg, 2021). 

The purpose of this work is to explore the usability of IIM to elucidate cascading consequences 
from disruptive events. On the basis of the findings, recommendations are made for how IIM 
can be used as a tool for investigating scenarios and resilience aspects in a Total Defence per-
spective.  

This short report is organised as follows: A short review of the theory for IIM is provided in 
chapter 2. Then, the results from the application of the IIM with its dynamic formulation are 
presented and discussed in chapter 3. Finally, conclusions and recommendations for further 
work are presented in chapter 4. 

 

  

                                                           
1 The term “inoperability” refers to “the inability of the system to perform its intended natural or engineered func-
tions” (Haimes, Horowitz, Lambert, Santos, Lian, & Crowther, 2005b). 
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2 Theory 

2.1 Infrastructure Dependencies and Interdependencies 

Before discussing the IIM for modelling of cascading effects, it is worthwhile to review some of 
the literature on infrastructure interdependencies since cascading effects results from such inter-
dependencies. Although several definitions for dependencies and interdependencies exists 
(Ouyang, 2014), one of the most widely accepted are the definitions provided by Rinaldi et al. 
(2001): 

• Dependency: “A linkage or connection between two infrastructures, through which the 
state of one infrastructure influences or is correlated to the state of the other” 

• Interdependency: “A bidirectional relationship between two infrastructures through 
which the state of each infrastructure influences or is correlated to the state of the 
other” 

The concepts of infrastructure dependency and interdependency are illustrated in Figure 2.1. 

 

  

first order dependency second order dependency interdependency 

Figure 2.1 Illustration of dependency and interdependency (after Setola et al., 2016, p. 22) 

 

On the basis of the abovementioned definitions, Rinaldi et al. (2001) proposed the following six 
dimensions for describing infrastructure dependencies: 

• Types of interdependencies 
• Infrastructure environment (e.g. economic, technical, social/political) 
• Coupling and response behaviour (e.g. loose/tight) 
• Infrastructure characteristics (e.g. organisational, operational) 
• Types of failures (e.g. common cause, cascading, escalating)  
• State of operation (e.g. normal, stressed/disrupted) 

A B A B

C

A B
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When it comes to types of interdependencies, such types can in its simplest case be character-
ised as functional (i.e. the operation of one infrastructure system is necessary for the operation 
of another system) or spatial (i.e. relating to the proximity of infrastructure systems) 
(Zimmerman, 2001). Rinaldi et al. (2001) characterised infrastructure types as: 

• Physical; two infrastructures are physically interdependent if the state of each is de-
pendent on the material output(s) of the other 

• Cyber; the state of an infrastructure depends on information transmitted through the in-
formation infrastructure 

• Geographic; infrastructures are geographically interdependent if a local environmental 
event can create state changes in all of them 

• Logical; two infrastructures are logically interdependent if the state of each depends on 
the state of the other via a mechanism that is not a physical, cyber, or geographic con-
nection 

Other types of interdependencies have been defined as well (Ouyang, 2014). Common for many 
of them, including the types proposed by Rinaldi et al. (2001), is that they can be characterised 
as cause-based interdependencies. Recently, Goldbeck, Angeloudis and Ochieng (2019) have 
argued that an effect-based classification is more important for modelling purposes since inter-
dependencies can yield similar effects despite having different causes. For this purpose, 
Goldbeck et al. (2019) proposed the following four types of effect-based dependency relations: 
(i) stochastic failure propagation, (ii) logic, (iii) asset utilisation and (iv) resource input depend-
encies. Stochastic failure propagation can for instance be caused by spatial proximity, while re-
source input dependencies relates to physical inputs or cyber dependencies. When it comes to 
logic dependencies or asset utilisation, we refer to Goldbeck et al. (2019) for details. For the 
purpose of applying the IIM, the interdependency types proposed by Zimmerman (2001), i.e. 
functional and spatial, provides sufficient understanding. 

2.2 Dynamic Inoperability Input-Output Model 

IIM for interdependent infrastructure sectors with its dynamic formulation has been described 
elsewhere (Haimes et al., 2005b; Haimes & Jiang, 2001; Lian & Haimes, 2006; Santos & 
Haimes, 2004), so only brief details are given. The Leontief input-output model is given in Eq. 
(2.1). Here, 𝑥𝑥𝑖𝑖  is the total production output of industry 𝑖𝑖, 𝑎𝑎𝑖𝑖𝑖𝑖 is the Leontief technical coeffi-
cient, i.e. the proportion of industry 𝑖𝑖’s input to 𝑗𝑗 with respect to the “as-planned” total produc-
tion of j (𝑥𝑥𝚥𝚥� ), and 𝑐𝑐𝑖𝑖  is the final demand for 𝑖𝑖’s output (Haimes et al., 2005b; Santos & Haimes, 
2004). 
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𝒙𝒙 = 𝑨𝑨𝑨𝑨 + 𝒄𝒄 ⇔ �𝑥𝑥𝑖𝑖 =  �𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑐𝑐𝑖𝑖
𝑗𝑗

�  ∀ 𝑖𝑖 (2.1) 

In the static demand-reduction IIM, Eq. (2.1) is transformed into Eq. (2.2) (Haimes et al., 
2005b; Santos & Haimes, 2004): 

𝒒𝒒 = 𝑨𝑨∗𝒒𝒒 + 𝒄𝒄∗  ⇒  𝒒𝒒 = (𝑰𝑰 − 𝑨𝑨∗)−1𝒄𝒄∗ = 𝑺𝑺𝒄𝒄∗, (2.2) 

where 𝑰𝑰 is the identity matrix. The inoperability 𝒒𝒒 ∈ [0, 1]𝑛𝑛 is a vector specifying the normal-
ised production losses for each of the 𝑛𝑛 infrastructures that can be potentially realised after a 
prolonged demand-side perturbation 𝒄𝒄∗ ∈ [0, 1]𝑛𝑛 (Haimes et al., 2005b; Santos & Haimes, 
2004). An inoperability of 𝑞𝑞𝑖𝑖 = 0 means that the production output of 𝑖𝑖 is “as planned”, while 
𝑞𝑞𝑖𝑖 = 1 implies that 𝑖𝑖 is 100% inoperable (Santos & Haimes, 2004). Thus, infrastructure disrup-
tions (which typically occur at the supply side) are modelled as a forced demand-reduction with 
impacts cascading to other sectors by backwards linkages (Kelly, 2015; Oosterhaven, 2017). 

The 𝑛𝑛 × 𝑛𝑛 matrix 𝑨𝑨∗ describes the interdependencies between the different infrastructure sec-
tors. Each matrix element 𝑎𝑎𝑖𝑖𝑖𝑖∗  represents the fraction of inoperability that is transmitted by the  
𝑗𝑗-th infrastructure to the 𝑖𝑖-th infrastructure, i.e. the first-order impact of 𝑗𝑗 on infrastructure 𝑖𝑖 
(Setola, De Porcellinis, & Sforna, 2009). Since 

𝑺𝑺 =  (𝑰𝑰 − 𝑨𝑨∗)−1 = 𝑰𝑰 + 𝑨𝑨∗ + 𝑨𝑨∗𝟐𝟐 + 𝑨𝑨∗𝟑𝟑 + ⋯, (2.3) 

we see that cascading (i.e. second- and higher-order) effects are captured by the IIM as long as 
(𝑰𝑰 − 𝑨𝑨∗) is not singular. 

To address the temporal behaviours of the infrastructure sectors in the response and recovery 
phases following a perturbation, a dynamic IIM (DIIM) has been formulated (Haimes et al., 
2005b; Lian & Haimes, 2006). In the dynamic Leontief input-output model, Eq. (2.1) takes the 
form given in Eq. (2.4) (Haimes et al., 2005b): 

𝒙𝒙(𝑡𝑡) = 𝑨𝑨𝑨𝑨(𝑡𝑡) + 𝒄𝒄(𝑡𝑡) + 𝑩𝑩𝒙̇𝒙(𝑡𝑡), (2.4) 

where 𝑩𝑩 is a so-called capital coefficient matrix that measures the willingness to invest in re-
sources for speeding up the recovery process, and 𝒙̇𝒙(𝑡𝑡) is the derivative of 𝒙𝒙 with respect to 
time (𝑡𝑡). If we define a matrix 𝑲𝑲 such that 𝑲𝑲 = −𝑩𝑩−1 (Haimes et al., 2005b), Eq. (2.4) yields: 

𝒙̇𝒙(𝑡𝑡) = 𝑲𝑲[𝑨𝑨𝑨𝑨(𝑡𝑡) + 𝒄𝒄(𝑡𝑡) − 𝒙𝒙(𝑡𝑡)], (2.5) 

or in the discrete form: 

𝒙𝒙(𝑘𝑘 + 1) − 𝒙𝒙(𝑘𝑘) = 𝑲𝑲[𝑨𝑨𝑨𝑨(𝑘𝑘) + 𝒄𝒄(𝑘𝑘) − 𝒙𝒙(𝑘𝑘)], (2.6) 
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where 𝑘𝑘 is the time step parameter. Transforming Eqs. (2.5) and (2.6) into the inoperability form 
yield the following equations: 

𝒒̇𝒒(𝑡𝑡) = 𝑲𝑲[𝑨𝑨∗𝒒𝒒(𝑡𝑡) + 𝒄𝒄∗(𝑡𝑡) − 𝒒𝒒(𝑡𝑡)], (2.7) 

𝒒𝒒(𝑘𝑘 + 1) − 𝒒𝒒(𝑘𝑘) = 𝑲𝑲[𝑨𝑨∗𝒒𝒒(𝑘𝑘) + 𝒄𝒄∗(𝑘𝑘)− 𝒒𝒒(𝑘𝑘)], (2.8) 

If the final demand 𝒄𝒄∗(𝑡𝑡) is stationary (i.e. 𝒄𝒄∗(𝑡𝑡) = 𝒄𝒄∗) and given the initial condition 𝒒𝒒(0), it 
can be shown (Haimes et al., 2005b; Lian & Haimes, 2006) that the solution of Eq. (2.7) is: 

𝒒𝒒(𝑡𝑡) = (𝑰𝑰 − 𝑨𝑨∗)−1𝒄𝒄∗ + 𝑒𝑒−𝑲𝑲(𝑰𝑰−𝑨𝑨∗)𝑡𝑡[𝒒𝒒(0)− (𝑰𝑰 − 𝑨𝑨∗)−1𝒄𝒄∗] (2.9) 

2.3 Demand-Reduction Dynamics and Dynamic Recovery 

As argued by Lian and Haimes (2006), the two basic DIIM applications are demand-reduction 
dynamics and dynamic recovery following disruptive events. These two applications will be dis-
cussed in the following.  

2.3.1 Demand-Reduction Dynamics 

DIIM can be used to model how the demand-reduction varies with time following an initial per-
turbation until equilibrium is achieved. Under normal conditions, i.e. in the pre-event phase, the 
infrastructure sectors will be in their business-as-usual state. At 𝑡𝑡 = 0 of the disruptive event, it 
is assumed that the infrastructure sectors are fully operational, i.e. 𝒒𝒒(0) = 0, but there are per-
turbation to the normalised final demand (𝒄𝒄∗ > 0). It can be shown (Lian & Haimes, 2006) that 
Eq. (2.9) becomes: 

𝒒𝒒(𝑡𝑡) = �𝑰𝑰 − 𝑒𝑒−𝑲𝑲(𝑰𝑰−𝑨𝑨∗)𝑡𝑡�(𝑰𝑰 − 𝑨𝑨∗)−1𝒄𝒄∗ (2.10) 

When 𝑡𝑡 → ∞, Eq. (2.10) takes the form of the static IIM (Eq. (2.2)): 

𝒒𝒒(∞) = (𝑰𝑰 − 𝑨𝑨∗)−1𝒄𝒄∗ (2.11) 

However, this only holds if the system governed by Eq. (2.7) is stable. This requires that the ab-
solute value of the dominant eigenvalue of 𝑨𝑨∗ is smaller than 1. 

2.3.2 Dynamic Recovery 

In the recovery phase of an incident, the operational level of the infrastructure sectors will be 
reduced. Consequently, 𝒒𝒒(0) > 0. Under the assumption that the final demand of each sector is 
constant (𝒄𝒄∗ = 0) (Lian & Haimes, 2006), Eq. (2.9) is reduced to: 

𝒒𝒒(𝑡𝑡) = 𝑒𝑒−𝑲𝑲(𝑰𝑰−𝑨𝑨∗)𝑡𝑡𝒒𝒒(0) (2.12) 
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As 𝑡𝑡 → ∞, it is seen from Eq. (2.12) that 𝒒𝒒(𝑡𝑡) → 0; that is, the infrastructure sectors return to 
their business-as-usual status. 

2.3.3 Infrastructure Resilience Coefficient Matrix 

The matrix 𝑲𝑲 = diag(𝑘𝑘𝑖𝑖);𝑘𝑘𝑖𝑖 ∈ [0, 1)𝑛𝑛 introduced in Eq. (2.5) is characterised as an infrastruc-
ture resilience coefficient matrix (Haimes et al., 2005; Lian & Haimes, 2006). This matrix has 
different, yet related, interpretations in the response phase and in the recovery phase. In the re-
sponse phase, the 𝑲𝑲 matrix provides a measure for how fast each sector adjusts to an imbalance 
in supply and demand. Thus, a greater 𝑘𝑘𝑖𝑖 value implies a more prompt adjustment of sector 𝑖𝑖’s 
output in response to a change in final demand.  

In the recovery phase, on the other hand, each element 𝑘𝑘𝑖𝑖 measures the recovery rate of infra-
structure sector 𝑖𝑖. The recovery rate can be assessed as follows: Let us assume that sector 𝑖𝑖 is 
experiencing a disruptive event (𝑞𝑞𝑖𝑖(0) > 0), and all other sectors are initially unaffected 
(𝑞𝑞𝑗𝑗(0) = 0, 𝑗𝑗 ≠ 𝑖𝑖). By applying Eq. (2.12), the recovery of sector 𝑖𝑖 becomes (Lian & Haimes, 
2006): 

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑒𝑒−𝑘𝑘𝑖𝑖�1−𝑎𝑎𝑖𝑖𝑖𝑖
∗ �𝑡𝑡𝑞𝑞𝑖𝑖(0) (2.13) 

From Eq. (2.13) it can be shown that the infrastructure recovery rate can be estimated in accord-
ance with Eq. (2.14) (Lian & Haimes, 2006): 

𝑘𝑘𝑖𝑖 =
ln[𝑞𝑞𝑖𝑖(0) 𝑞𝑞𝑖𝑖(𝜏𝜏𝑖𝑖)⁄ ]

𝜏𝜏𝑖𝑖
�

1
1 − 𝑎𝑎𝑖𝑖𝑖𝑖∗

� = �
𝜆𝜆𝑖𝑖
𝜏𝜏𝑖𝑖
� �

1
1− 𝑎𝑎𝑖𝑖𝑖𝑖∗

� (2.14) 

Here, 𝜏𝜏𝑖𝑖 is the time it takes for the inoperability of sector 𝑖𝑖 to reduce to some value 𝑞𝑞𝑖𝑖(𝜏𝜏𝑖𝑖) and 
𝜆𝜆𝑖𝑖 = ln[𝑞𝑞𝑖𝑖(0) 𝑞𝑞𝑖𝑖(𝜏𝜏𝑖𝑖)⁄ ] is a recovery constant (see also Figure 2.2). The ratio (𝜆𝜆𝑖𝑖 𝜏𝜏𝑖𝑖⁄ ) can be esti-
mated by experts by assessing, e.g., how long time it will take sector 𝑖𝑖 to recover from 100 % 
inoperability (𝑞𝑞𝑖𝑖(0) = 1) to 5 % inoperability (𝑞𝑞𝑖𝑖(𝜏𝜏𝑖𝑖) = 0.05). If for example it takes 30 days 
for sector 𝑖𝑖 to recover from 100 % inoperability to 5 % inoperability and 𝑎𝑎𝑖𝑖𝑖𝑖∗ ≪ 1, 𝑘𝑘𝑖𝑖 ≈
ln[1.0 0.05⁄ ] 30 ≈ 0.0996⁄ . From Eq. (2.14) it is also easily seen that 𝑘𝑘𝑖𝑖 increases with increas-
ing 𝑎𝑎𝑖𝑖𝑖𝑖∗  value. Thus, if the interdependency index 𝜃𝜃𝑖𝑖 = 1 − 𝑎𝑎𝑖𝑖𝑖𝑖∗  of sector 𝑖𝑖 can be decreased in a 
particular scenario, it will increase the recovery rate (Lian & Haimes, 2006). The same is the 
case if the 𝜏𝜏𝑖𝑖 value can be decreased. The recovery rate 𝑘𝑘𝑖𝑖 of sector 𝑖𝑖 is therefore influenced by 
both its own recovery rate and its interdependency with other sectors (Lian & Haimes, 2006). In 
many cases, however, it can be assumed that 𝑎𝑎𝑖𝑖𝑖𝑖∗ ≪ 1, thus 𝜃𝜃𝑖𝑖 ≈ 1. The recovery rate is there-
fore primarily determined by the 𝜏𝜏𝑖𝑖 value. 
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Figure 2.2 Illustration of the exponential recovery of infrastructure sector 𝑖𝑖 as governed by 
Eq. (2.13) following a disruptive event at time 𝑡𝑡 = 0, where 𝜏𝜏𝑖𝑖 is the recovery time 
to 95 % operability (marked with dotted lines). The operability of sector 𝑖𝑖 is de-
fined as 1 − 𝑞𝑞𝑖𝑖(𝑡𝑡), where 𝑞𝑞𝑖𝑖(𝑡𝑡) is the inoperability. 

 

2.4 Estimation of Interdependency Parameters 

Several approaches have been proposed in the literature for estimating the IIM interdependency 
parameters (𝑎𝑎𝑖𝑖𝑖𝑖∗ ). Approaches based on physical connectivity (Haimes & Jiang, 2001), national 
account data (Haimes et al., 2005b; Santos & Haimes, 2004) and expert assessments (Setola et 
al., 2009) will be presented and discussed briefly in the following. 

2.4.1 Physical-Based Model 

In the original physical-based IIM that was developed by Haimes and Jiang (2001), infrastruc-
ture interdependencies were described on the basis of the physical connections between infra-
structures 𝑖𝑖 and 𝑗𝑗. If there are no physical connections between infrastructures 𝑖𝑖 and 𝑗𝑗, 𝑎𝑎𝑖𝑖𝑗𝑗∗ =
𝑎𝑎𝑗𝑗𝑗𝑗∗ = 0. If there is a deterministic connection between 𝑖𝑖 and 𝑗𝑗 and a failure of infrastructure 𝑗𝑗 
definitely lead to a failure of infrastructure 𝑖𝑖, then 𝑎𝑎𝑖𝑖𝑖𝑖∗ = 1. Similarly, if a failure of 𝑗𝑗 only leads 
to a 50 % drop in 𝑖𝑖’s performance, then 𝑎𝑎𝑖𝑖𝑖𝑖∗ = 0.5. However, if the connection between 𝑖𝑖 and 𝑗𝑗 is 
stochastic,2 all scenarios must be analysed and a statistical average must be taken to obtain 𝑎𝑎𝑖𝑖𝑖𝑖∗  
and 𝑎𝑎𝑗𝑗𝑗𝑗∗  (Haimes & Jiang, 2001). Except for the simplest systems, enormous efforts are therefore 

                                                           
2 That is, the connections appear to vary in a random manner. 
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required to collect such information. The application of the physical-based IIM is therefore 
hampered by the lack of data. 

2.4.2 National Account Data 

To account for the limitations of the physical-based IIM, it was therefore proposed to utilise 
economic data for interdependency analysis (Haimes et al., 2005b; Santos & Haimes, 2004). At 
the national level, such data are readily available through national account data3 provided by bu-
reaus like Statistics Norway or the Bureau of Economic Analysis (BEA) in the United States. 
The assumption made is that the level of economic interdependency is the same as the level of 
physical and/or cyber interdependency (Haimes et al., 2005b). Thus, the 𝑎𝑎𝑖𝑖𝑖𝑖∗  values can be cal-
culated from the Leontief technical coefficients (𝑎𝑎𝑖𝑖𝑖𝑖) and the “as planned” total production (𝑥𝑥𝚤𝚤� ) 
values from the national account data (Eq. (2.15)): 

𝑎𝑎𝑖𝑖𝑖𝑖∗ = 𝑎𝑎𝑖𝑖𝑖𝑖
𝑥𝑥𝚥𝚥�
𝑥𝑥𝚤𝚤�

 (2.15) 

The advantage of using national account data is the thoroughness and quality of the data. Use of 
such data also allow for economic impact assessments (albeit with some limitations). The disad-
vantage of using national account data is that large disruptions may change the underlying struc-
ture of the economy and consequently also the Leontief technical coefficients (Kelly, 2015). To 
avoid such problems, the upper limit of 𝒄𝒄∗ is therefore often limited to 0.1 (Santos & Haimes, 
2004; Sellevåg, 2021; Setola, 2008). Thus, the effects of, e.g., large-scale power outages or loss 
of telecommunication services will not be properly addressed. A second limitation is that eco-
nomic interdependencies are only one dimension of infrastructure interdependencies (cf. section 
2.1). A third limitation is that use of national account data only allows studies of the sectors that 
are included in the national account. 

2.4.3 Expert Assessments 

To address the limitations with the use of national account data, researchers have proposed to 
compute the 𝑎𝑎𝑖𝑖𝑖𝑖∗  values from sector-specific expert assessments (Setola et al., 2009). In this ap-
proach the 𝑎𝑎𝑖𝑖𝑖𝑖∗  values are evaluated based on the direct (first order) consequences of an outage in 
infrastructure 𝑗𝑗 on the operability of infrastructure 𝑖𝑖. For this purpose, an impact estimation table 
has been developed (Table 2.1). Consistent with the demand-reduction IIM assumptions, this 
approach takes advantage of the infrastructure operators’ knowledge of the impacts of outages 
on their own infrastructures.4 Thus, 𝑎𝑎𝑖𝑖𝑖𝑖∗  values can be estimated with rather good confidence. 
Furthermore, because the impact depends on the duration of inoperability, the approach pro-
posed by Setola et al. (2009) is suited for addressing the temporal aspects of a disruptive event 
for different durations of the outage.  

                                                           
3 National account data are tables describing the production and consumption of commodities of various economic 
sectors. 
4 Related to this, it is often difficult for infrastructure operators to estimate the downstream effects following a degra-
dation or loss of their services.  
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Although infrastructure operators are knowledgeable about the effects of outages on own ser-
vices, the expert assessments of the 𝑎𝑎𝑖𝑖𝑖𝑖∗  values will be affected by uncertainty. Setola et al. 
(2009) therefore proposed to use so-called fuzzy5 numbers to capture this uncertainty from in-
formation on how confident the expert is in his or her assessment. Another approach would be 
to use the Delphi method (Helmer-Hirschberg, 1967).  

Table 2.1 Impact estimation values (adapted from Setola et al., 2009) 

Impact Description Value 

Nothing Event does not induce any effect on the infrastructure 0.000 

Negligible Event induces negligible and geographicallybounded  
consequences on services that have no direct impact on  
infrastructure operability 

0.005 

Very limited Event induces very limited and geographicallybounded  
consequences on services that have no direct impact on  
infrastructure operability 

0.008 

Limited Event induces limited and geographicallybounded  
consequences on services that have no direct impact  
on infrastructure operability 

0.010 

Some  
degradation 

Event causes some degradation of the ability of the  
infrastructure to provide services in a geographic region 

0.020 

Modest  
degradation 

Event causes modest degradation of the ability of the  
infrastructure to provide services in a geographic region 

0.030 

Significant  
degradation 

Event causes significant degradation of the ability of the  
infrastructure to provide services in a geographic region 

0.050 

Provide only 
some services 

Event causes the infrastructure to provide only some essential 
services in a geographic region 

0.100 

Nearly stop Event causes the infrastructure to provide only some essential 
services nationwide 

0.300 

Complete stop Event causes the infrastructure to be unable to provide services  0.500 

                                                           
5 In two-valued logic statements are either true or false. Fuzzy logic is an extension of two-valued logic such that 
statements may have a degree of truth between 0 and 1 (cf. https://mathworld.wolfram.com/FuzzyLogic.html).  

https://mathworld.wolfram.com/FuzzyLogic.html
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3 Results and Discussion 

In the following, the use of DIIM for modelling cascading consequences following a disruptive 
event will be explored in a total defence perspective using a fictitious case study.  

3.1 Case Description 

The critical infrastructure sectors included in the case study are listed in Table 3.1. The case 
study is built on the basis of the Italian infrastructure case investigated by Setola et al. (2009), 
but where the defence, health and food supply sectors have been added. The interdependency 𝑨𝑨∗ 
matrix for the critical infrastructure sectors is given in Table 3.2 and was generated from the im-
pact values provided in Table 2.1 for an outage duration between six to twelve hours. As an ex-
ample on how to interpret the 𝑎𝑎𝑖𝑖𝑖𝑖∗  values in Table 3.2, an outage of electricity that lasts between 
six to twelve hours will lead to some degradation of the ability of the health sector to provide 
services in a geographic region (𝑎𝑎HEALTH,ELEC

∗ = 0.02). The network topology for the case 
study is displayed in Figure 3.1. For simplicity, 𝜏𝜏𝑖𝑖 = 7 days and 𝜆𝜆𝑖𝑖 = 0.01 were chosen for all 
sectors for computing the infrastructure resilience coefficient matrix (Eq. (2.14)). 

 

Table 3.1 Critical infrastructure sectors included in case study 

ID Sector 
DEFENCE Defence sector (Armed Forces) 
HEALTH Health services 
ELEC Electricity supply 
ECOM Electronic communication and digital infrastructure services 
FOOD Food supply 
WATER Drinking water supply 
FUEL Fuel supply 
FINANCE Banking and financial market infrastructure services 
LAND Land transportation 
SEAPORT Port facilities 
RAIL Rail transportation 
AIR Air transportation 
SAT Satellite-based services 
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Table 3.2 IIM interdependency matrix (A* matrix) for an outage period of 6 to 12 hours. 

 DEFENCE HEALTH ELEC ECOM FOOD WATER FUEL FINANCE LAND RAIL SEAPORT AIR SAT 

DEFENCE 0.020 0.008 0.008 0.010 0.005 0.010 0.020 0.005 0.008 0.008 0.005 0.020 0.050 

HEALTH 0.000 0.020 0.008 0.010 0.008 0.050 0.010 0.005 0.020 0.005 0.005 0.050 0.005 

ELEC 0.000 0.000 0.005 0.008 0.000 0.005 0.000 0.005 0.005 0.005 0.005 0.005 0.005 

ECOM 0.000 0.000 0.050 0.050 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

FOOD 0.000 0.000 0.050 0.020 0.008 0.020 0.005 0.050 0.020 0.010 0.008 0.008 0.005 

WATER 0.000 0.000 0.010 0.010 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

FUEL 0.000 0.000 0.100 0.050 0.000 0.005 0.005 0.050 0.020 0.020 0.020 0.005 0.005 

FINANCE 0.000 0.000 0.100 0.100 0.000 0.005 0.005 0.050 0.005 0.005 0.005 0.005 0.005 

LAND 0.000 0.000 0.008 0.008 0.000 0.005 0.030 0.008 0.050 0.008 0.005 0.005 0.008 

RAIL 0.000 0.000 0.050 0.050 0.000 0.030 0.010 0.008 0.008 0.008 0.005 0.005 0.005 

SEAPORT 0.000 0.000 0.100 0.050 0.000 0.005 0.005 0.010 0.008 0.050 0.008 0.005 0.005 

AIR 0.000 0.000 0.100 0.100 0.000 0.030 0.030 0.010 0.008 0.020 0.005 0.050 0.300 

SAT 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 
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Figure 3.1 Network topology for the case study described by the interdependency matrix in 
Table 3.2. The arrows shows the dependency relations 𝑗𝑗 → 𝑖𝑖 (thick lines symbolise 
dependency values for which 𝑎𝑎𝑖𝑖𝑖𝑖∗ ≥ 0.05). 
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3.2 Dependency Index and Influence Gain 

The role of each infrastructure sector can be assessed by calculating the so-called dependency 
index (𝛿𝛿𝑖𝑖) and the influence gain (𝜌𝜌𝑗𝑗). The dependency index is defined as given in Eq. (3.1) 
(Setola et al., 2009): 

𝛿𝛿𝑖𝑖 =
1

𝑛𝑛 − 1
�𝑎𝑎𝑖𝑖𝑖𝑖∗
𝑛𝑛

𝑗𝑗≠𝑖𝑖

 (3.1) 

while the influence gain is defined as (Eq. (3.2)) (Setola et al., 2009): 

𝜌𝜌𝑗𝑗 =
1

𝑛𝑛 − 1
�𝑎𝑎𝑖𝑖𝑖𝑖∗
𝑛𝑛

𝑖𝑖≠𝑗𝑗

 (3.2) 

Thus, the dependency index provides a measure of the fragility of the 𝑖𝑖-th sector to failures in 
the other sectors, while the influence gain expresses the 𝑗𝑗’s ability to propagate inoperability to 
the other sectors (Setola et al., 2009). 

The dependency indices and influence gains for the case study are displayed in Figure 3.2 and 
Figure 3.3, respectively. As can be seen, air transportation is the most fragile sector towards 
failures in the other sectors for this fictitious case, while the electricity sector, electronic com-
munications and satellite-based services exercise largest influence.  

 

 

Figure 3.2 Dependency index for the case study described by the network topology given in 
Figure 3.1. 
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Figure 3.3 Influence gain for the case study described by the network topology in Figure 3.1. 

 

3.3 Modelling of the Response Phase 

Figure 3.4 shows the modelling results of the response phase following a notional disruption of 
electricity supply, electronic communications services, satellite-based services and banking and 
financial services. A 𝑐𝑐𝑘𝑘∗ value of 0.5 was used in all experiments, where 𝑘𝑘 is the perturbed sec-
tor. Only one sector was perturbed in each experiment.  

The impact for each critical infrastructure sector (𝑄𝑄𝑖𝑖) can be calculated in accordance with Eq. 
(3.3): 

𝑄𝑄𝑖𝑖 = � 𝑞𝑞𝑖𝑖(𝑡𝑡)d𝑡𝑡
𝑡𝑡R

0
 (3.3) 

where 𝑡𝑡R is the duration of the response phase (here taken as the duration of the outage period, 
i.e. twelve hours). Thus, the total impact (𝑄𝑄tot) for the whole system can then be calculated as 
(Eq. (3.4)): 

𝑄𝑄tot = �𝑄𝑄𝑖𝑖
𝑖𝑖

 (3.4) 

The impact values (𝑄𝑄𝑖𝑖 and 𝑄𝑄tot) are displayed in Table 3.3. The largest 𝑄𝑄tot value during the 
response phase occurs when the electronic communications sector is perturbed, followed by the 
financial sector. It is somewhat surprising that the 𝑄𝑄tot is larger when the financial sector is per-
turbed compared to the electricity supply and satellite-based services sectors since the latter two 
exercise larger influence than the financial sector (Figure 3.3). This illustrates the importance of 
including second- and higher order interdependencies for understanding cascading effects. 
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(a) (b) 

  

(c) (d) 

Figure 3.4 Inoperability as a function of time during the response phase following a notional 
disruption of (a) electricity supply, (b) electronic communications services,  
(c) satellite-based services and (d) banking and financial services (𝑐𝑐𝑘𝑘∗ = 0.5 was 
used in all experiments). The response phase equalled the twelve hour outage  
period for the 𝑘𝑘-th sector, where 𝑘𝑘 is the perturbed sector. 
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Table 3.3 Impact for each infrastructure sector in the response phase following a twelve 
hours outage of the 𝑘𝑘-th sector.  

Sector Impact (𝑸𝑸𝒊𝒊) 
𝑘𝑘 = ELEC 𝒌𝒌 = ECOM 𝒌𝒌 = SAT 𝒌𝒌 = FINANCE 

DEFENCE 0.001 0.001 0.004 0.001 
HEALTH 0.001 0.001 0.001 0.001 
ELEC 0.902 0.001 0.000 0.000 
ECOM 0.004 0.945 0.001 0.001 
FOOD 0.004 0.002 0.000 0.004 
WATER 0.001 0.001 0.000 0.000 
FUEL 0.009 0.005 0.000 0.004 
FINANCE 0.009 0.009 0.001 0.945 
LAND 0.001 0.001 0.001 0.001 
RAIL 0.004 0.004 0.000 0.001 
SEAPORT 0.009 0.005 0.000 0.001 
AIR 0.009 0.009 0.027 0.001 
SAT 0.000 0.000 0.905 0.000 
𝑸𝑸𝐭𝐭𝐭𝐭𝐭𝐭 = ∑𝒊𝒊𝑸𝑸𝒊𝒊 0.953 0.983 0.941 0.959 

 

3.4 Modelling of the Recovery Phase 

The recoveries of the critical infrastructure sectors for the four different experiments are shown 
in Figure 3.5, while the impacts are given in Table 3.4. The impact for each critical infrastruc-
ture sector was calculated from Eq. (3.3), except the integral was now over the whole period of 
the disruptive event, i.e. until the sectors were fully recovered. 

Some noticeable effects can be observed for this fictitious case. Firstly, it takes in general more 
than 100 hours before the inoperability of the perturbed sector is less than 0.01 (1%). Thus, the 
recovery phase is significantly longer than the response phase. Secondly, even though the out-
age period ended after twelve hours, the inoperabilities of the sectors that are indirectly affected 
reach their maximum around 40 to 80 hours after the disruptive event started. Thus, the different 
sectors will be in different phases of the crisis due to the dynamics involved. Lastly, the total 
impact for the critical infrastructure system (Table 3.4) during the whole period of the disruptive 
event (i.e. when 𝑡𝑡 → ∞) follows the trends suggested by the influence gains of the sectors (Fig-
ure 3.3). 
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(a) (b) 

  

(c) (d) 

Figure 3.5 Inoperability as a function of time during the response and recovery phases follow-
ing a notional disruption of (a) electricity supply, (b) electronic communications 
services, (c) satellite-based services and (d) banking and financial services  
(𝑐𝑐𝑘𝑘∗= 0.5 was used in all experiments). The response phase equalled the twelve 
hour outage period for the 𝑘𝑘-th sector, where 𝑘𝑘 is the perturbed sector. 
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Table 3.4 Impact for each infrastructure sector until fully recovered following a twelve hours 
outage of the 𝑘𝑘-th sector. 

Sector Impact (𝑸𝑸𝒊𝒊) 
𝑘𝑘 = ELEC 𝒌𝒌 = ECOM 𝒌𝒌 = SAT 𝒌𝒌 = FINANCE 

DEFENCE 0.073 0.078 0.293 0.036 
HEALTH 0.083 0.091 0.095 0.037 
ELEC 5.913 0.051 0.033 0.028 
ECOM 0.283 6.193 0.036 0.032 
FOOD 0.301 0.145 0.042 0.278 
WATER 0.064 0.063 0.034 0.030 
FUEL 0.569 0.311 0.040 0.278 
FINANCE 0.576 0.581 0.040 6.189 
LAND 0.070 0.063 0.052 0.054 
RAIL 0.286 0.286 0.037 0.050 
SEAPORT 0.553 0.297 0.039 0.062 
AIR 0.601 0.601 1.644 0.071 
SAT 0.027 0.028 5.921 0.000 
𝑸𝑸𝐭𝐭𝐭𝐭𝐭𝐭 = ∑𝒊𝒊𝑸𝑸𝒊𝒊 9.398 8.786 8.305 7.144 

 

3.5 Risk-Cost-Benefit Analysis for Improving Resilience 

In the following, we will investigate how the resilience of the critical infrastructure system as a 
whole can be increased by taking costs of different risk management options into consideration. 
We will do this by investigating how the recovery rate can be increased. Following Lian and 
Haimes (2006), a two-objective optimisation problem can be formulated for the risk-cost-benefit 
analysis (Eq. (3.5)): 

minimise
𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑖𝑖,…,𝑟𝑟𝑛𝑛

𝑄𝑄tot =��� 𝑞𝑞𝑗𝑗�𝑡𝑡,𝑲𝑲(𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑖𝑖, … , 𝑟𝑟𝑛𝑛)�d𝑡𝑡
∞

0
�

𝑗𝑗

 

minimise
𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑖𝑖,…,𝑟𝑟𝑛𝑛

𝐶𝐶 = 𝐶𝐶(𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑖𝑖, … , 𝑟𝑟𝑛𝑛) 

(3.5) 

Here, 𝑟𝑟𝑖𝑖 is a finite set of 𝑛𝑛 risk management options and 𝐶𝐶 is the corresponding cost function for 
each option. Furthermore, the time is taken as zero (𝑡𝑡 = 0) when the outage period (twelve 
hours) is finished. 

In the following, the risk-cost-benefit analysis will be illustrated by using disruption of electric-
ity supply as an example. From Table 3.4 we see that the electricity supply and air transporta-
tion sectors suffer the largest impacts. A reasonable risk management strategy would then be to 
improve the recovery of these two sectors. Say for instance that the cost functions associated 
with reducing the 𝜏𝜏𝑖𝑖 values from seven days to five days are 75 and 25 for the electricity supply 
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and air transportation sectors, respectively (the costs have arbitrary units). We can now define 
three different risk management options: 𝑟𝑟ELEC, 𝑟𝑟AIR and 𝑟𝑟ELEC+AIR, having cost functions of 75, 
25 and 100, respectively. The results from the risk-cost-benefit analysis are shown in Figure 3.6. 
As can be seen, little is gained for the critical infrastructure system as a whole by reducing the 
recovery time of the air transportation sector in addition to recovery time of the electricity sup-
ply sector for this fictitious case. 

 

 

Figure 3.6 Risk-cost-benefit analysis of three different risk management options for reducing 
the recovery time after a disruption of the electricity supply sector. 

 

3.6 Modelling of Multiple Disruptive Events 

DIIM can also be used to model multiple disruptive events, e.g. malicious actions that are a part 
of a hybrid threat campaign (Cullen & Reichborn-Kjennerud, 2017).6 Such events can occur 
simultaneously or there can be a time lag between two or several events.7 Modelling results for 
each of the two types of scenarios are provided in Figure 3.7. In both cases the electricity supply 
and electronic communications sectors were perturbed with 𝑐𝑐𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶∗ = 0.3 and 𝑐𝑐𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸∗ = 0.2, re-
spectively. In the first case, the electricity supply and the electronic communications sectors 
were perturbed simultaneously (Figure 3.7a), while in the second case there was a time lag be-
tween the perturbation of the two sectors (Figure 3.7b). From this, analyses similar to those 
made in sections 3.3−3.5 can for instance be carried out. 

                                                           
6 This follows from 𝒄𝒄∗ ∈ [0, 1]𝑛𝑛, where different disruptive events are described by different 𝑐𝑐𝑘𝑘

∗  values. 
7 In terms of hybrid threats, incidents occurring simultaneously can be considered as a so-called vertical escalation, 
while incidents that are separated in time would constitute a so-called horizontal escalation (Cullen & Reichborn-
Kjennerud, 2017). 
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(a) (b) 

Figure 3.7 Inoperability as a function of time for two disruptive events that (a) occur simulta-
neously or (b) with a time lag. The electronic supply and electronic communica-
tions sectors were perturbed in both experiments with 𝑐𝑐𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶∗ = 0.3 and 𝑐𝑐𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸∗ =
0.2, respectively. 
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4 Conclusions 

A few conclusions can be made based on this exploratory work. As is evident from the model-
ling results, the cascading consequences following a disruptive event cannot easily be elucidated 
without the support of a modelling tool due to the second- and higher-order effects. For this pur-
pose, DIIM is a simple, yet powerful tool for gaining cross-sectoral situational awareness. Fur-
ther, DIIM can be used to inform risk-cost-benefit analyses when improving the resilience of the 
system of critical infrastructures.  

The DIIM presented in this work is, however, affected by limitations. Firstly, only parts of the 
six infrastructure dependency dimensions proposed by Rinaldi et al. (2001) are covered by the 
model. Secondly, given that it is a linear model, nonlinear behaviours are not addressed. 
Thirdly, the 𝑎𝑎𝑖𝑖𝑖𝑖∗  technical coefficients are treated as constant in time. This is not a very good ap-
proximation for large-scale, long-term disruptive events since such events can change the sys-
tem of critical infrastructures to such an extent that the 𝑎𝑎𝑖𝑖𝑖𝑖∗  coefficients also will change. Lastly, 
temporal behaviours are addressed, but using an exponential model which may not be an appro-
priate approximation for all cases. Care should therefore be exercised when interpreting the re-
sults.  

Despite these limitations, DIIM can provide insight to critical infrastructure resilience aspects 
not easily gained otherwise. This is particularly the case for severe malicious actions that pose a 
threat to national security and target vulnerabilities across different sectors of the society since it 
is difficult to predict the consequences of such events. It is therefore recommended to continue 
to exploit DIIM as a tool for analysing scenarios that require a Total Defence approach.  

To this end, it is recommended to build a database of interdependency matrices (𝑨𝑨∗ matrices) 
for the functions and critical infrastructures that constitute the Total Defence system. This data-
base should be applicable for a broad range of scenarios, including security challenges, crises, 
military confrontations and armed conflicts, and in particular for scenarios that are used for se-
curity and defence planning. Furthermore, the database of interdependency matrices should take 
into account different outage periods for the services provided by the functions and critical in-
frastructures. To investigate the effect of existing and new preparedness efforts, such outage pe-
riods could for instance be: (i) less than 2 hours; (ii) 2−6 hours; (iii) 6−12 hours; (iv) 12−24 
hours; (v) 24−72 hours; (vi) 3−7 days; (vii) more than 7 days. It is recommended that the inter-
dependency matrices are generated using the methodology outlined in section 2.4.3. 
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