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Abstract—We present an overview of the detection of point
scatterers in ultrasound images and suggest strategies for evalu-
ating and measuring the detection performance. We use synthetic
aperture Field II simulations of a point scatterer in speckle
background and evaluate how common imaging techniques
affect point target detectability. We discuss how to compare
different methods and calculate confidence intervals. In general,
applying speckle reduction methods reduces the point detection
performance. However, the results show that it is possible to
smooth the speckle background and preserve relatively high
performance with a suitable and optimized method. The different
detection performances of the advanced beamforming methods
Coherence Factor (CF), Phase Coherence Factor (PCF), and
Capon’s Minimum Variance (MV) are presented and bench-
marked with standard Delay-and-Sum (DAS). The results show
that CF achieves slightly better detection performance than DAS
for weak point scatterers, whereas PCF and MV perform worse
than DAS. Choice of apodization window and adaptive aperture
size affects the probability of detection. Results show that
methods that preserve spatial resolution have better detection
performance of point scatterers.

Index Terms—advanced beamformers, detection performance,
point scatterer, ultrasound.

I. INTRODUCTION

Detection of point scatterers in ultrasound images can be
challenging due to peaks in the speckle background. Point
scatterers are small, highly coherent targets, and there are sev-
eral applications in medical ultrasound in which their detection
is essential. Breast microcalcifications are small, hard calcium
deposits in soft tissue that behave as point scatterers in an
ultrasound image and can be an early indicator for cancer [1]–
[5]. Ultrasound can detect kidney stones, but accurate sizing
and diagnosis can be difficult due to background clutter [6],
[7]. Point tracking, use of contrast microbubbles, and biopsy
needle tracking are other examples where detection of point
targets is crucial [8]–[10]. Point scatterers are also of interest
in other fields, such as radar [11] and sonar [12].

Detection of a point scatterer in speckle can be viewed as a
classical binary detection problem [12]–[16]. In 1983, Smith
et al. [17] developed a statistical model for image quality by
connecting contrast and lesion detection. Lesion detectability
using contrast is now well established in medical ultrasound
[18]–[23]. However, the statistical properties of a lesion area
are different from a point scatterer. In 1997, Anderson et al. [1]
studied the effects of aperture geometry and phase aberration
on point detection performance. In [2], they conclude that
frequency and spatial compounding slightly improve point
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target detectability. They summarize their findings on the effect
of phase aberration, sound speed errors, array aperture size,
transducer center frequency, speckle reduction by compound-
ing, and logarithmic compression in [3]. In [24], Ouyang et
al. reviewed many ultrasound methods for microcalcification
detection. Huang et al. [25] created a detection algorithm based
on coherence factor. Torp et al. [26] applied detection theory
to create a beamformer (BF) for signal detection.

In this paper, we present an overview and framework for
the detection of point scatterers in ultrasound images. The
motivation for this paper is to present strategies for calculating
the detection performance for point scatterers in speckle, how
to compare detection performance between different methods,
and how common techniques in ultrasound affect the point
detection performance. We discuss how to measure the de-
tection performance and calculate confidence intervals. We
establish an optimal intensity threshold detector based on stan-
dard Delay-And-Sum (DAS) beamforming. Using synthetic
aperture Field II simulations [27]–[29], we create images with
a point scatterer in uniform speckle background. We vary the
applied apodization, aperture size, beamforming, and speckle
reduction method. We wish to evaluate how these common
ultrasound techniques affect point detection performance. We
apply the same detection strategy to the different images and
measure the overall detection performances.

Applying an apodization window on the received channel
echoes is a common approach to reduce sidelobes at the cost
of spatial resolution [30, p. 178] [31, p. 322]. Changes in
aperture geometry are expected to give changes in detection
performance [1]. We study aperture size to establish how
reduced resolution degrades detection.

Speckle reduction methods are often applied on ultrasound
images to improve contrast [30, ch. 8.4.6]. Our results show
that such methods reduce point detection performance, but
the effect varies depending on the chosen method. A suitable
speckle reduction method may retain high performance while
still applying some smoothing to the background. However, an
increased amount of smoothing degrades both the resolution
and the detection performance.

Adaptive BFs are applied to improve image quality, and they
affect the point detection performance. Using DAS as a refer-
ence, we examine several adaptive BFs presented in literature;
Coherence Factor (CF) [32], Phase Coherence Factor (PCF)
[33], and Capon’s Minimum Variance (MV) [34]. Our results
show that CF achieves slightly better detection performance
than DAS for weak point scatterers, whereas the other two
perform worse than DAS.

The following chapter presents classical detection theory for
point scatterers and strategies for calculating point detection
performance. We then introduce the background theory for
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the BFs. Section IV presents the different choices for spatial
resolution, apodization, and speckle reduction. Section V
shows the results, and in Section VI we discuss the effects
on detection performance.

II. BACKGROUND - DETECTION THEORY

In this section, we present the background theory for how
to measure and evaluate detection performance and introduce
general detection theory as presented in [12], [13], [16]. We
reduce the case to its simplest form and study the detection of a
single point scatterer in uniform speckle background. Speckle
is caused by interference in the echoes from many random
scatterers within a resolution cell [35, ch. 8.2.1], whereas point
scatterers are small and highly coherent targets. The objective
is to decide between two hypotheses: speckle background
without (H0) or with (H1) a point signal present.

A. Point Target Detection Strategies

The probability of false alarm PFA is estimated on sequences
containing only speckle and the probability of detection PD is
estimated on sequences containing one point scatter in speckle.
We count the number of intensity values above threshold γ in
each scenario to find the number of false alarms and true posi-
tives. By comparing them to the total number of realizations R,
we get PFA and PD. There is a choice in the type of strategy
to use when calculating point detection performance. When
presented with an ultrasound image, one assumes the strongest
scatterer is the most likely point target candidate. However, the
measured probability when picking the maximum point target
will depend on how many independent pixels we consider. We
can check if the chosen location is correct and the point is an
actual true positive in a simulated environment. The overall
detection performance depends on how we choose to count
false alarms and true positives. In this section, we present the
theory behind the five possible detection strategies listed in
Table I. Based on the results, we choose which strategy to use
when measuring the detection performance of the different 2D
ultrasound imaging methods.

Table I: Point Detection Strategies

Strategy Description

A Consider each pixel in the image when counting false alarms
and only known point pixel when counting true positives.

B Consider only the maximum value in the image when counting
both false alarms and true positives.

C Consider the maximum value within a small image search
window around the known point location when counting both
false alarms and true positives.

D Consider only the maximum value in the image when counting
false alarms and only known point pixel when counting true
positives.

E Consider only the maximum value in the image, but addition-
ally check if the chosen maximum is an actual true point when
counting true positives.

The probability distribution of an ideal point signal in addi-
tive white Gaussian noise in complex sequences is statistically
equivalent to an ideal point in a critically sampled, fully

developed speckle scene. To illustrate the detection theory,
we consider a simple one-dimensional (1D) speckle sequence
constructed as the complex sum of two normally distributed
sequences. Under hypothesis H1, we add a point scatterer
with intensity ip at a discrete, random location. We estimate
expressions for the detection probabilities of the different
strategies using this ideal 1D case.

As a measure of the point’s intensity relative to the speckle
background, we calculate the point’s SNR metric as

SNR = 10 log10

(
ip
β

)
, (1)

where ip is the point scatterer intensity, and β is the average
speckle intensity. In this ideal 1D study, β = 2.

B. Probability of False Alarm

The probability density function (PDF) for speckle in an
ultrasound image is Rayleigh distributed in amplitude a [36]
[11, p. 88] [13, p. 30]

p(a)Rayleigh =

{
a
σ2 exp(− a2

2σ2 ) if a > 0

0 if a < 0.
(2)

Here σ is the scale parameter and σ
√
π/2 is the mean value.

When searching for a point target, one assumes the point has
a higher intensity than the surrounding background. To find
candidate points, we apply a threshold on the intensity image
[11, ch. 10]. Intensity i = a2 has a negative exponential PDF
[12, p. 261] [11, p. 88] [35, p. 502]

p(i)neg.exp. =
1

β
exp

(
− i
β

)
, (3)

where β is the mean intensity value and β = 2σ2 = 2.
The threshold γ can be found by integrating the PDF for
observation t of hypothesis H0 to the chosen PFA value [13,
p. 30]

PFA =

∫ ∞
γ

p(t;H0)dt. (4)

Inserting (3) into (4), we get

PFA(γ) = exp (−γ/β) , (5)

where γ is the chosen intensity threshold. When measuring the
PFA(γ), we simply count the number of false alarms above the
threshold γ compared to the total number of realizations.

C. Probability of False Alarm for Maximum Intensity Value

Strategies B-E selects the maximum value for false alarm
calculation. The maximum value of speckle increases however
with the number of independent pixels N considered. This
increases or inflates the PFA for a given threshold, as shown
in Fig. 1. Following [15, ch. 2.11], the probability is such that
Pr{imax ≤ γ} = (Pr{i ≤ γ})N . The PFA for the maximum of
N random independent variables then becomes [15, ch. 2.11],
[13, p. 283], [12, p. 587]

PFA(γ)max = 1−(1−PFA(γ))
N = 1−(1−exp (−γ/β))N . (6)
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Fig. 1. Theoretical PFA(γ)max vs. threshold values. The max-
imum value of a speckle sequence increases with sequence
length. The theoretical mean value β is 2.

D. Probability of Detection

When a signal from a point scatterer is added to a speckle
background, the PDF becomes Rician [13, p. 31], [11, p. 113]

p(a)Rician =

{
a
σ2 exp

(
− (a2+α2)

2σ2

)
I0
(
αa
σ2

)
if a > 0

0 if a < 0,
(7)

where I0(u) is the modified Bessel function of the first kind
and zeroth order, and α2 equals the point scatterer intensity
ip. If α = 0, the PDF reduces back to Rayleigh. The right-tail
probability can be shown to be related to that of the noncentral
χ2 random variable and must be evaluated numerically [13,
App. 2D] [14, ch. 6.4]. The theoretical PD for threshold γ can
be estimated as [13, p. 283]

PD(γ) ≈ Qχ′2
2 (τ)

(
2γ

β

)
, (8)

where Qχ′2
2 (τ) is the right-tail probability or complementary

cumulative distribution function related to a noncentral χ2

variable. PD is estimated using τ =
2ip
β , and it is therefore

dependent on point SNR. By combining (5) with (8), PD can
be expressed in terms of PFA as

PD(γ) ≈ Qχ′2
2 (τ)

(
2ln

1

PFA(γ)

)
. (9)

By combining (6) with (8), PD given by PFA(γ)max is

PD(γ) ≈ Qχ′2
2 (τ)

(
−2ln

(
1− (1− PFA(γ)max)

1
N

))
. (10)

The PD of the maximum value can be found as [12, p. 588]

PD(γ)max = 1− (1− PD(γ))(1− PFA(γ)max)
(1− 1

N ). (11)

Scalloping loss occurs when signals arrive between two
samples [37]. A slight shift in location can cause a reduction in
amplitude and energy leakage to the nearby pixels. Oversam-
pling can help reduce this loss and ensure that the maximum
achievable resolution is retained [38, ch. 6.7]. The increase in
PFA(γ)max when N increases is less than the alternative loss
in signal-to-noise ratio (SNR), and oversampling is therefore
beneficial for detection [12, p. 497].

As with PFA(γ)max, PD(γ)max also increases with N . Fig. 2
shows the different methods for calculating PD. One can

consider the known true point location, pick the maximum
intensity peak of the whole vector, or pick the maximum
within a small search window at the known point position.
Since the maximum intensity peak may be in the background
for low point SNRs, an option is to additionally check if
the found candidate is the true point target. For weak point
scatterers, the found candidate may be false, and PD(γ)true max
will consequently not converge to 1 for low thresholds.

Fig. 2. Theoretical PD(γ)max vs. threshold values and varying
sequence length. Point SNR is 12 dB. The theoretical mean
value β is 2. PD(γ)max finds the maximum intensity point
within the sequence. N = 1 signifies PD calculated using
known true point position only, N = 7 corresponds to a
±3 pixel search window, and N = 500 signifies picking the
maximum out of 500 pixels. PD(γ)true max additionally checks
if the found maximum has correct position, and for weak point
scatterers it will not converge to 1.

In Table II, we summarize the theoretical formulae cor-
responding to the five strategies in Table I. The formulae
are for ideal signals in additive white Gaussian noise in
complex sequences, which is statistically equivalent to ideal
points in fully developed speckle and corresponds to DAS
beamforming.

Table II: Summary of Theoretical Formulae for the Strategies

Strategy Theoretical Formulae for PFA and PD
A (5), (8) and (9).
B (6) and (11).
C (6) and (11) with a small number of independent pixels N .
D (6), (8) and (10).
E (6).

E. Evaluation of Detection Performance

A Receiver Operating Characteristics (ROC) curve is a stan-
dard method of displaying detection performance. It compares
PD to PFA for a given threshold γ. By increasing γ, a lower
PFA can be obtained, but then PD will also decrease. All points
on the ROC curve should satisfy PD ≥ PFA [16, ch. 2.4.2] [13,
p. 74]. Fig. 3 presents theoretical ROC curves for the strategies
in Table I, applied to a random vector of length 500 and a point
scatterer placed at random position with 12 dB SNR. Strategy
C applied a ±3 pixel search window (N = 7 independent
pixels).
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Fig. 3. ROC curves for the different strategies for calculating
point detection performance.

Tabulating Area Under the Curve (AUC) is also a way to
present ROC results [12, p. 315]. AUC for a diagonal line
with PD = PFA is 0.5. Another way to present detection
performance is to plot PD as a function of SNR for a fixed PFA
value [14, ch. 7.3.2]. From Fig. 4 we can see that the detection
performance of strategy C varies quite a lot in the range
SNR = [8, 14] dB. When testing the detection performance
of different methods, the SNR-range where PD varies greatly
is the most interesting to analyze. Tabulating PD for a chosen
PFA value, for example PFA = 1%, is another way to compare
detection performance.

Fig. 4. The PD increases with point SNR. PD is shown for five
PFA values and calculated using strategy C with a ±3 pixel
search window.

F. Choice of Point Target Detection Strategy

Strategy A considers only the known point location for
detection and can be vulnerable when imaging effects slightly
alter the point target’s location. Picking the maximum intensity
is the natural choice when searching for a point target in
speckle background. Strategy A does not pick the maximum
value. Strategy B uses maximum for both PFA and PD, but
ignores the fact that the found maximum might not be the true
point target. Strategies D and E pick the maximum intensity
peak of the entire image for PFA. Two downsides of strategy D
are that we ignore false detections when the maximum is not
in the correct position, and only PFA is inflated by maximum.

Strategy E resembles what we would apply in practice if
searching for one point scatterer in an image. However, it has
the disadvantage that PD does not converge to 1 for PFA = 1
in the ROC curve if the SNR is low. As such, strategy E does
not fulfill the properties of a valid ROC curve [16, ch. 2.4.2].

Strategy C stands out as the optimal choice, a combination
of strategies A and B. It resembles a realistic, practical
approach the most and gives valid ROC curves. It evaluates a
search window around the known point location and picks
the maximum value for both false alarm and true positive
detection. Fig. 2 shows how PD for a small search window
only slightly deviates from PD at the known point position. At
the same time, evaluating an image selection will give some
inflation of PFA due to the number of pixels considered, as
shown in Fig. 1. Picking the maximum gives dependence on
N and reduces R compared to using all the pixels.

In the 2D study, we set the size of the search window to
be twice the -6 dB spatial resolution for the DAS image.
The probability of detecting the true point target as the
maximum is high within such a small window, even when
scalloping loss or other imaging effects cause a slight shift
in pixel location. We also evaluate how the imaging method
affects the speckle background and corresponding false alarms
by applying a search window. For detection studies with
experimental images, we can fit the search window size to
the confidence interval of the known point location. Strategy
C can be applied if the detection of several point scatterers
is of interest. However, we must note that the choice of
search window size relates to the separability of detected point
scatterers. If two point targets are located within the same
search window, only one detection will be registered. With
nonuniform backgrounds, we can apply a form of constant
false alarm rate detection with local adaptive thresholding [12],
[16]. In our study, we only consider a single point scatterer in
homogeneous background speckle.

G. Number of Required Realizations and Confidence Interval

The number of realizations R will affect the accuracy of the
measured performance results. If the true probability is small,
for example PFA = 0.1%, only one in a thousand realizations
is expected to exceed the threshold. In such a case, R must be
much larger than a thousand to ensure an accurate probability
estimate. As presented in [13, p. 37], if we wish to have a
relative absolute error ε for probability P for 100(1−b)% of
the time, then the required number of realizations Rreq is

Rreq ≥
(Q−1(b/2))2 (1− P )

ε2P
. (12)

Here Q−1(b/2) is the inverse right-tail probability function
of a standard normal distribution evaluated at b/2. For very
small values such as PFA = 10−3, a 10% relative accuracy for
80% of the time requires R = 164070 and it can be difficult
or impractical to get enough data. On the other hand, if we
wish to analyze a probability of P = 0.05 for 80% of the time
and have R = 6500, we get an error of ε = 7%. Confidence
intervals for the ROC curve can be plotted by calculating the
relative error for both PFA and PD at each threshold value using
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(12). The coefficient of variation of the estimated probability
P , i.e. the ratio of the standard deviation (STD) to the mean
of the estimate, is a similar quantity used to express Rreq [12,
p. 314].

As presented by Hanley and McNeil [39], we can compute
the confidence interval for the AUC. For large samples, the
distribution of AUC is approximately normal. A 100(1− b)%
confidence interval for sample AUC-value θ may be computed
using the standard error (SE) as follows

θ ± Q−1(b/2) SE(θ), (13)

where

SE(θ) =

√
θ(1−θ) + (Rp−1)(Q1−θ2) + (Rs−1)(Q2−θ2)

RsRp
.

It is worth noting that SE(θ) is inversely proportional to
√
R.

Quadrupling R only reduces SE(θ) by a factor of two. SE(θ) is
small for high θ values close to 1. The number of realizations
with and without a point scatterer present is Rp and Rs
respectively. Q1 and Q2 are distribution-specific quantities
expressed as functions of θ and give a conservative estimate
of SE(θ) [39].

Q1 =
θ

2− θ
, Q2 =

2θ2

1 + θ
. (14)

H. Practical Detection Performance in Ultrasound Images

The theoretical formulae for detection performance in this
section are for ideal signals in additive white Gaussian noise
in complex sequences. This is statistically equivalent to ideal
points in fully developed speckle. In practical ultrasound
imaging, several factors that potentially affect detection:

• Additive noise on channel data. The effect of noise causes
the SNR to vary with depth.

• Finite probe size causes targets positioned far off-center
not to be as well represented as centered point targets.

• The spatial resolution is determined by the aperture size
and transmitted pulse bandwidth. It typically varies for
depth and angle, and oversampling is common.

• Scalloping loss can cause a reduction in amplitude and
leakage in energy to nearby pixels.

• Apodization changes resolution and reduces side lobes.
• Speckle reduction methods are often applied on ultra-

sound images and alter the statistics.
• Advanced beamforming methods alter both the speckle

statistics [40] and the point-plus-speckle statistics.

In the 2D study, we evaluate how common imaging techniques
affect the detection performance of point scatterers.

III. BACKGROUND - ADVANCED BEAMFORMING

This section briefly introduces the theory for the following
beamforming methods: DAS, MV, CF, and PCF. See The
Ultrasound Toolbox (USTB) [41] for implementation.

A. Conventional Delay-And-Sum (DAS)
Conventional DAS consists of applying a delay and an

amplitude weight to the output of each sensor, then summing
the resulting signals [31, ch. 4.1]. DAS for image pixel [z, x]
is defined as

SDAS[z, x] =
M−1∑
m=0

wmym[z, x], (15)

where M is the number of elements, ym[z, x] is the delayed
signal received at element m, and wm is a predefined weight.
DAS is the oldest and simplest array signal processing algo-
rithm but remains a powerful approach today [31, ch. 4.1].

B. Capon’s Minimum Variance (MV)
Capon’s Minimum Variance (MV) [34] calculates for

each pixel a data dependent set of weights www =
[w0, w1, . . . , wM ′−1]

T that minimizes power while maintain-
ing unity gain in the steering direction [42]. To calculate the
weights, the spatial covariance matrix needs to be estimated
for each pixel. To do this, we apply spatial averaging with sub-
arrays yyyl[z, x] = [yl, yl+1, . . . , yl+L−1]

T , l ∈ [0,M ′ −L− 1],
where M ′ is the length of the active receive aperture and
L =M ′/2. We apply time averaging with 1.5λ range (λ being
the wavelength), a diagonal loading factor of 1/100, and the
steering vector as a vector of ones [43]. The MV weights are
used in (15) and the final image becomes

SMV [z, x] =
1

M ′ − L+ 1

M ′−L∑
l=0

wwwH [z, x] yyyl[z, x]. (16)

MV can achieve low sidelobe levels and a narrow beamwidth,
increasing the spatial resolution of closely spaced point scat-
terers. See [43] for a discussion on the parameters.

C. Mallart-Fink Coherence Factor (CF)
The Coherence Factor (CF) calculates the ratio between

coherent and incoherent energy across the aperture [32]

CF[z, x] =
|
∑
ym[z, x]|2

M
∑
|ym[z, x]|2

. (17)

It has the potential to give increased contrast and resolution
when applied as an adaptive weight to the DAS image [44]

SCF = SDAS[z, x] CF. (18)

D. Camacho-Fritsch Phase Coherence Factor (PCF)
The Phase Coherence Factor (PCF) [33] calculates for each

pixel an adaptive weight based on the phase of the receive
data. It is a method proposed to improve resolution [45]

PCF[z, x] = max
{
0, 1− γ∗

σ0
f [z, x]

}
, (19)

where γ∗ is a parameter provided to adjust the sensitivity of
PCF to out-of-focus signals [33], and σ0 = π/

√
3 is the STD

of a uniform distribution between −π and π [41]. The function
f [z, x] calculates the minimum STD of the instantaneous
phase across the aperture. PCF is applied as an adaptive weight
to the DAS image

SPCF = SDAS[z, x] PCF. (20)
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IV. METHODS

In this section, we describe the simulation, processing, and
test setups in our study. We used Field II to generate raw
channel data and USTB to beamform the data, as illustrated
in Fig. 5. We varied the following: the simulated phantom,
the point data intensity, the aperture size, the apodization, the
speckle reduction, and the BF.

Fig. 5. Overview of the acquisition and processing stage for
producing simulated ultrasound images. We use Field II to
produce channel data and USTB to beamform the data.

A. Synthetic Transmit Setup and Image Reconstruction

We designed the phantom as a simple scenario of a single
point scatterer in speckle background to establish a baseline
detection. We simulated synthetic transmit aperture datasets
in Field II to obtain synthetic focus and uniform resolution
for all pixels. We used a 128 element, λ pitch, linear array
with 5.1 MHz center frequency (L11-4v). We added white
Gaussian noise to the channel data at 10 dB channel SNR. We
kept the additive channel noise fixed and below the speckle
background level and instead varied the point intensity relative
to the combined speckle and noise background. The speed
of sound in the medium was 1540m/s, the transmitted pulse
bandwidth was 65 % of the center frequency, the wavelength
λ was 0.3mm, and the aperture size was 38.1mm.

We simulated 200 speckle realizations, each consisting of
91000 point scatterers and at least 20 scatterers per resolution
cell. The speckle pattern is considered well developed if the
number of scatterers per resolution cell is larger than ten
[46] [47, ch. 2.9]. We simulated one point scatterer at 65
image positions (13×5 matrix grid), chosen to ensure varying
straddle loss. To reduce the number of Field II simulations,
we simulated radio frequency channel data for the point
scatterers and the speckle background separately. Afterward,
we combined the channel data such that we could change the
point intensity and position. For a given method and point SNR
value, we created and analyzed 65× 100 images. To improve
the statistical accuracy at low PFA values, we additionally
analyzed 100 speckle images. With detection strategy C, this
corresponds to 6500 realizations for PD calculation and 13000

realizations for PFA calculation. To ensure uniform average
background intensity, we calculated correction maps from
the average of all speckle background realizations for each
advanced BF and apodization method and applied them to the
images before detection. The beamforming was performed in
MATLAB (Mathworks, Natick, MA) using USTB.

The reconstructed image scene was 20mm wide and 40mm
deep. We oversampled the images to ensure full gain and top
performance for the high-resolution adaptive BFs. The −6
dB theoretical and measured spatial resolution for a center
point scatterer in DAS with hamming transmit apodization
corresponded to approximately 5 × 7 pixels. The total image
size was 512 × 256. For the detection search, we applied a
search window grid size two times the spatial resolution. The
window ensured we would not miss a detection due to straddle
loss or a slight shift in pixel location and also caught some of
the method’s effect on detected false alarms.

We calculate the point’s SNR metric using (1) with the
average maximum point intensity and the average intensity of
the speckle region around center focus depth without the point
scatterer present. SNR was calculated for the point scatterer
positioned in the center of the image scene, beamformed by
the DAS method. By varying the point’s intensity, we tested
three SNR values in the range SNR = [10, 14] dB. Detection
performance in this range varied greatly and signified rela-
tively weak point scatterers in speckle. Note that the choice
of point detection strategy and search area affects which SNR
interval to choose.

B. Adaptive Aperture Size and Spatial Resolution

The ratio between imaging depth z and size of active
aperture D is termed F-number or f# = z/D. Uniform
resolution in the final image can be ensured by having a
constant f#. It ensures a range-independent beamwidth by
increasing the active aperture with increasing range z [30, p.
381]. For pixels close to the edges, the active aperture will be
reduced since the physical aperture has finite size. We used
f# = 1.75 in this study unless otherwise described. The two-
way -6 dB lateral resolution with fixed f# and rectangular
apodization can be approximated as [47, p. 12] [37]

xres ≈
1.21√

2
λf#. (21)

We compared three different f# values to establish how image
resolution affects the detection performance.

C. Apodization

In medical ultrasound, applying an apodization window is
standard practice for reducing sidelobe levels [30, p. 178] [31,
p. 322]. Windowing is always a trade-off between resolution
and contrast [37]. We applied the following apodization meth-
ods to study the effect on detection: rectangular, Hamming
only on transmit, and Hamming on both transmit and receive.
Excepting the apodization study, we applied the same apodiza-
tion for all simulations; hamming apodization on transmit and
rectangular on receive.
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D. Speckle Reduction

Speckle reduction or noise suppression is often applied on
medical ultrasound images to improve contrast [30, ch. 8.4.6].
Speckle reduction using filters can greatly improve the contrast
between grayscale tissue areas but simultaneously reduce the
the point scatterer’s resolution. In this study, we analyzed
the effect of common denoising filters on the detection of
point scatterers. We studied the following filters: Wiener, non-
local means, bilateral, anisotropic diffusion, and simple block
averaging. Table V in App. A presents the filter settings
used in this study. Speckle reduction can be applied on the
intensity or log-intensity images, but we applied it on the
amplitude DAS image for this study [48]–[50]. Based on visual
inspection, we chose filter settings giving a mild background
smoothing. For all methods, we found parameter settings
giving in approximately 0.3 STD vs. mean µ of the speckle
background. A detailed study on optimal parameters for each
filter was not performed.

The Wiener filter is also referred to as the minimum mean
square error filter or the least square error filter [51, ch. 5.8].
The method assumes that noise and image are uncorrelated,
tailoring itself to the local image variance. We tested four
window sizes with an increasing amount of speckle reduction.
We also tested four window sizes for simple block averaging.

A non-local means filter removes noise from an image while
preserving the sharpness of strong edges [52]. We used the
technique first implemented by Buades et al. [52], but for
computational efficiency omitted to convolve the Euclidean
distance between two comparison windows with a Gaussian
kernel. We varied the degree of smoothing with respect to the
STD of the image. We present four filters with an increasing
amount of speckle reduction.

An anisotropic diffusion filter also tries to denoise an image
while still preserving the sharpness of edges. It is a technique
presented by Perona and Malik [53]. We tested several filters
by varying the number of iterations used in the diffusion
process and the gradient threshold value with respect to STD
of the image. The threshold value controls the conduction
process by classifying gradient values as edges or noise, and
increasing the value smooths the image more.

A bilateral filter applies an edge-preserving Gaussian filter.
It was presented by Tomasi and Manduchi [54]. We varied the
degree of smoothing with respect to the image variance and
the STD of the spatial Gaussian smoothing kernel. The value
of the degree of smoothing corresponds to the variance of the
Range Gaussian kernel of the bilateral filter [54]. The Range
Gaussian is applied on the Euclidean distance of a pixel value
from the values of its neighbors.

E. Advanced Beamforming Methods

We analyzed the four BFs presented in Section III and will
refer to them as DAS, MV, CF, and PCF. The input to all
the methods was identical. We applied Hamming window on
transmit and uniform apodization on receive. The point SNR
value was calculated from the DAS images.

V. RESULTS

A. Spatial Resolution and Apodization

Fig. 6. ROC curve for DAS using three adaptive aperture sizes,
giving different spatial resolutions. PFA is shown up to 0.1.

Fig. 7. ROC curve for DAS using different apodization
methods: rectangular, Hamming only on transmit (tx), and
Hamming on both directions. The input data is the same for all
methods, but the different windows alter the spatial resolution
and the final point SNR values. PFA is shown up to 0.1.

Fig. 6 presents the detection performance of three adaptive
aperture sizes. As seen from the results, increasing the f#
degrades the detection performance. The performance differ-
ence between f# = 7 and f# = 3.5 illustrates how doubling
the adaptive aperture greatly improves point detectability. We
applied hamming apodization on transmit and rectangular on
receive for all f#s. Fig. 7 shows the ROC curve for DAS using
different apodization schemes: rectangular, Hamming only on
transmit, and Hamming on both transmit and receive. Applying
a uniform rectangular window gives the highest probability
of point detection. A nonuniform window reduces resolution
and slightly alters the measured point SNR value. The three
methods have final SNR values of 13.0, 12.5, and 11.7 dB.

B. Speckle Reduction

Fig. 8 shows speckle-reduced images of a sample speckle
realization with a point scatterer. Fig. 9 presents AUC results
for the methods with respect to STD vs. the mean of the
smoothed speckle background. The images in Fig. 8 corre-
spond to the bars with σ/µ ≈ 0.3 in Fig. 9. Fig. 10 shows
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Fig. 8. Speckle reduction methods applied on an image with a point located at [z, x] = [40, 0]mm, indicated by the yellow
circle. Point SNR is 10.3 dB. All images are normalized by maximum and presented with -35 dB dynamic range. A center
depth cut is presented below each image. The filters have speckle backgrounds with σ/µ ≈ 0.3. Thresholding the DAS image
at −3 dB corresponds to 10% PFA and 84% PD. For this specific DAS image, thresholding at 2% PFA gives eight false alarms.

Fig. 9. Tabulated performance results for the speckle reduction methods with 10.3 dB point SNR. The bars present the filter
parameters giving high AUC with respect to STD vs. mean of the speckle background.

Fig. 10. ROC curves for speckle reduction methods compared
to DAS with 10.3 dB point SNR. PFA is shown up to 0.1.
The filters give speckle backgrounds with σ/µ ≈ 0.3. The bi-
lateral and Wiener filter have partially overlapping confidence
intervals.

the corresponding ROC curves. We can see that some speckle
reduction methods perform very close to the original DAS
image, and all perform better than simple block averaging. The
ROC curves for the bilateral and Wiener filters have partially
overlapping confidence intervals. The differences in the ROC
curves for the other filters are statistically significant since the
separations between the curves are larger than the individual
confidence intervals. 80% confidence intervals were calculated
using (12) with 6500 and 13000 realizations for PD and PFA.

C. Advanced Beamforming Methods

Fig. 11 shows beamformed image scenes where the point
scatterer is located in the center. The figure visually compares
the effect of the BFs. Fig. 12 presents ROC curves for three
SNR values. Tabulated performance statistics are shown in
Table III and IV. Confidence intervals for the ROC curves
were calculated using (12) at each threshold value, with 6500
realizations for PD, 13000 realizations for PFA and an 80%
confidence interval. Confidence intervals for the tabulated
AUC values were calculated similarly using (13).
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Fig. 11. Four BFs applied on image scene with a point located
in center at x = 0mm and z = 40mm depth. The yellow
circle indicates the point location. We analyzed 65 different
point locations for each speckle background, resulting in 6500
images per beamforming method per SNR value. Point SNR
is 10.3 dB here. All images are normalized by maximum and
presented with a -35 dB dynamic range to be comparable for
the detectability of the point scatterer. A center depth cut
is presented below each image to visualize how much the
point stands out in log-intensity from peaks in the surrounding
speckle background.

Fig. 12. ROC curves for advanced BFs compared to DAS.
Three SNR values are presented; 10.3 dB (dotted), 12.5 dB
(solid), and 13.7 dB (dashed). PFA is shown up to 0.1. 80%
confidence intervals are also shown for a rectangular section
of the graph, calculated using 6500 realizations for PD and
13000 realizations for PFA.

Table III: AUC for Beamforming Methods

BF 10.3 dB SNR 12.5 dB SNR 13.7 dB SNR
DAS 94.1 ± 0.3 99.4 ± 0.1 99.9 ± 0.04
CF 94.1 ± 0.3 99.4 ± 0.1 99.9 ± 0.04
PCF 93.5 ± 0.3 99.2 ± 0.1 99.8 ± 0.05
MV 91.9 ± 0.3 98.4 ± 0.1 99.4 ± 0.09

Table IV: PD for Beamforming Methods

BF 10.3 dB SNR 12.5 dB SNR 13.7 dB SNR
DAS 62.2 ± 0.8 94.7 ± 0.4 98.9 ± 0.2
CF 63.6 ± 0.8 94.6 ± 0.4 98.9 ± 0.2
PCF 59.8 ± 0.8 93.4 ± 0.4 98.6 ± 0.2
MV 53.4 ± 0.8 87.2 ± 0.5 95.3 ± 0.3

VI. DISCUSSION

A. Spatial Resolution and Apodization

Reducing the size of the aperture degrades the spatial reso-
lution of the image. From Section II, we know that reducing
the number of independent pixels lowers PFA(γ)max. Increasing
the size of the resolution cell will change the point signal to
speckle level within the cell. A loss in resolution is accordingly
a loss in point SNR. Fig. 6 shows how reducing the aperture
size degrades the detection, as also found in [1]. The effect is
substantial compared to the other methods in this study. We
conclude that it is ideal to have high spatial resolution and high
point SNR in terms of detection performance. Techniques that
trade-off spatial resolution to obtain better contrast resolution
will therefore degrade point detection.

Similarly, we can conclude from the results in Fig. 7
that when we mainly wish to detect point scatterers, the
ideal method is to apply uniform apodization. Applying a
nonuniform window will suppress some probe elements and
thereby reduce the resolution and the maximum point intensity.
Apodization with a nonuniform window results in lower point
detection performance, though general contrast in the final
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image might have improved. It is also worth noting that point
scatterers at the edges can be more challenging to detect since
the edges may not have full aperture coverage.

B. Speckle Reduction

Applying any speckle reduction will smooth the back-
ground, but unfortunately also degrade the image resolution
[31, p. 322]. This signifies a reduction in point SNR. Based
on our results, speckle reduction depletes the number of false
alarms but reduces PD even more. In general, speckle reduc-
tion thereby degrades the overall point detection performance.

However, the results also show it is possible to smooth
the background and keep detection performance close to the
original. In this study, the bilateral, Wiener, and non-local
means filters outperformed the others and managed to preserve
relatively high detection performance even for a high degree
of background smoothing. Optimal parameter choices improve
detection performance, but from our experience, it is not likely
that this will do better than DAS. The anisotropic diffusion
filter did not perform as well as the non-local means and
bilateral methods. Block averaging significantly reduced the
detection performance and is a poor choice if point targets are
of interest. When choosing a method for reducing speckle,
one should consider that different methods have different
performances concerning point detection.

C. Advanced Beamforming Methods

Fig. 12 shows how CF performs slightly better than DAS for
low SNR and PFA values, though the confidence intervals are
partially overlapping. Unweighted DAS is the best detector
unless prior knowledge is included in the analysis. Point
scatterers are small, bright, and highly coherent targets. We can
expect high measurable coherence in the signal from a point
scatterer, and point detection algorithms can exploit this [25],
[55]. CF matches prior knowledge about point targets well
since it differentiates between coherent and incoherent energy.
Speckle background alone is known [32] to have an expected
mean coherence value of 2/3, though this theoretical value is
affected by specific circumstances in ultrasound imaging [56].
Since this is the average, the weights of CF will also enhance
some pointlike coherent scatterers in the speckle background.
It can be difficult to distinguish true point targets from these
peaks at low SNRs based on the weights alone. However, since
CF uses image weighting, it can achieve slightly better per-
formance than DAS. The difference in detection performance
is distinguishable at low SNR and PFA values. However, we
do not have enough realizations to state that the difference
is statistically significant since the confidence intervals are
partially overlapping in Fig. 12.

The tabulated values for PD in Table IV show higher
values for CF than DAS with statistical significance with 75%
confidence. The confidence interval curves in Fig. 12 is still
a better way to illustrate the accuracy of the results since
it shows several measurements. In general, AUC is a more
robust method than tabulating PD for a given PFA since it
integrates several measurements and is thereby less vulnerable
to limited amount of realizations. Tabulating AUC will not

catch the slight difference between CF and DAS here since it
is calculated over all PFA values, and the difference is only
distinguishable for low PFA values.

The results indicate that CF is a promising method to use
when point scatterers are of interest, especially in imaging
scenes with low SNR values. The DAS image shown in Fig. 11
is an example of such a weak point scatterer. Thresholding
the image at −3 dB below the maximum intensity retains
many false alarms. An example of a practical application is
an ultrasound image with small macrocalcifications in early
development. The points will then have low SNR values
relative to the background. In such a medical scenario, we
wish to have few false alarms. A PFA value of 1% or lower
can be applicable. Referring to the ROC curve in Fig. 12, 1%
PFA corresponds to detecting half of the weak point scatterers,
and the results show that CF is a promising alternative to DAS.

The three adaptive BFs have different PDFs from DAS [40].
The PDFs of CF and PCF resemble intensity distributions, and
in Fig. 11 they appear darker with fewer bright peaks. The
difference in PDF affects both PFA and PD. The difference in
ROC for PCF in Fig. 12 is statistically significant since the
difference between the other curves is larger than the particular
confidence interval. PCF has a statistically significant lower
detection performance than CF and DAS, but the difference in
performance decreases with increasing SNR. PCF is calculated
from the STD of the phase. A possible explanation for its
performance is that PCF disregards amplitude and thereby
retains less information about the point target and the speckle
background than CF.

In our analysis, MV has lower detection performance than
the other methods. The difference is statistically significant
for all three SNR values. MV is known to have good spatial
resolution and high separability of point targets [57]. MV is
designed for optimum performance for signal in interference
and noise. We observe more false alarms for MV, as illustrated
in Fig. 11 where the true point in the MV image is not the
maximum intensity in the image. A possible cause is the strong
dependence on the estimate of the spatial covariance matrix.
With a true covariance matrix, its performance should meet
DAS for our scenario. With parameter choices that have shown
to be robust in ultrasound imaging [43], MV enhances more of
the speckle background peaks and attains a poorer detection
performance. In the case of multiple point scatterers in speckle,
we expect MV to distinguish itself in separating weak point
scatterers in the presence of other strong point scatterers.

VII. CONCLUSIONS

In this paper, we have presented an overview of the detection
of point scatterers in ultrasound images. Based on classical
detection theory, we presented five main strategies to measure
and evaluate detection performance. We showed how the
choice of detection strategy affects the performance and gives
very different ROC curves. We showed how to compare the
effect of different imaging methods and calculate confidence
intervals for the detection performance.

We simulate many images of a point target in speckle
and apply a set of common ultrasound techniques to form
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the images. Our study shows that uniform apodization gives
the best performance when detecting a point scatterer in
speckle. Applying a Hamming window or similar suppresses
information from some probe elements. It reduces the spatial
resolution and thereby degrades the detection performance.
Similarly, a large aperture will have better spatial resolution
and higher detection performance than a smaller one.

In general, applying speckle reduction to an image will
reduce the detection performance of point targets. However,
our results show that it is possible to smooth the speckle
background while still having detection performance quite
close to the original, provided one applies a suitable speckle
reduction method with optimal parameters.

The advanced BFs PCF and MV have lower point detection
performance than DAS. Unweighted DAS is the best detector
unless prior knowledge is included in the analysis. However,
CF matches prior knowledge about point targets well. Since it
differentiates between coherent and incoherent energy across
the aperture, its weights accentuate signals from point scat-
terers. Our detection performance results show that CF has a
positive weighting scheme to the DAS image at low SNR and
PFA values.

APPENDIX A

For the speckle reduction methods in Section IV-D, we
chose to use the built-in versions in MATLAB: wiener2,
imnlmfilt, imdiffusefilt, imbilatfilt, and filter2. Table V presents
the filter settings we used in this study. The parameter values
corresponding to speckle background smoothing of σ/µ ≈ 0.3
are emphasized in bold.

Table V: Speckle Reduction Parameter Settings

Method Parameter Names Parameter Values

Wiener Window sizes 5× 7, 7× 9
9×13, 11× 15

Non-local means
DegreeOfSmoothing (×STD), [1,5,11], [1,7,13]
ComparisonWindowSize, [1,7,23], [1,9,21]
SearchWindowSize

Anisotropic NumberOfIterations, [7,1.5], [9,1.5]
diffusion GradientThreshold (×STD) [13,2], [20,2]

Bilateral DegreeOfSmoothing (×STD2), [1,5], [1,9]
spatialSigma [2,5], [3,5]

Block averaging Window sizes 5× 7, 7× 9
7×11, 9× 13
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