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ABSTRACT

A long-standing problem in turbulence modeling is that the Reynolds stress tensor alone is not necessarily sufficient to characterize the
transient and nonequilibrium behaviors of turbulence under arbitrary mean deformation or frame rotation. A more complete single-point
characterization of the flow can be obtained using the structure dimensionality, circulicity, and inhomogeneity tensors. These tensors are
one-point correlations of local stream vector gradients and carry nonlocal information regarding the structure of the flow field. We explore
the potential of these tensors to improve understanding of complex turbulent flows using direct numerical simulation of flows in channels
with a smooth wall and a two-dimensional sinusoidal wavy wall. To enforce no-slip and no-penetration conditions at wavy-wall bound-
aries, an immersed boundary method for the stream vector Poisson equation was adopted within the framework of Stylianou, Pecnik, and
Kassinos, “A general framework for computing the turbulence structure tensors,” Comput. Fluids 106, 54-66 (2015). The results show that
the effects of wall waviness on the inclination and aspect ratio of the two-point velocity correlation near the wall are reproduced qualitatively
by their corresponding single-point tensor representations. In the outer layer, good quantitative agreement is achieved for both parame-
ters. Additional observations on the structural changes of turbulence due to wall waviness and their relevance to turbulence modeling with
surface roughness are discussed. The findings of this investigation suggest that single-point structure tensors can be appended to the mod-
eling basis for inhomogeneous flows with geometrically complex boundaries, such as rough-wall flows, to develop improved turbulence
models.
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I. INTRODUCTION

Many turbulent flows in engineering and environmental appli-
cations are both at high Reynolds numbers and over rough surfaces.
For example, in turbomachines, the blade surfaces undergo wear
due to pitting, erosion, deposition, etc., which changes their sur-
face roughness. Assessing the ensuing degradation in performance
requires accounting explicitly for this wear in simulations. Similarly,
accounting for the effects of ice accretion on the leading edges of air-
foils is essential to accurate prediction of airfoil performance. The
use of ablative materials on re-entry-vehicle nose cones can also
result in significant changes to their surface roughness. Computa-
tional Fluid Dynamics (CFD) simulations must therefore account
for effects of roughness to estimate accurately design parameters
such as heat transfer coefficients. In wall bounded flows, surface

roughness can lead to a substantial increase in form drag, associ-
ated with a greater intensity of pressure and velocity fluctuations. In
each of the preceding examples, the dynamics of the flow is com-
plicated further by additional factors such as pressure gradients,
unsteadiness, surface curvature, and complex geometries. Despite
rapid increases in computational resources, direct numerical simula-
tions (DNSs) of such complex engineering flows remain impractical.
At present and for the foreseeable future, the only pragmatic com-
putational approach to simulating such nonequilibrium turbulent
boundary layers is to use single-point closures in the vicinity of the
wall or throughout the boundary layer.

The ability of most single-point closures to model different
features of turbulent flows is limited by the fact that the state of
the turbulent flow field is expressed only in terms of the Reynolds
stresses, as in the case of a second-moment closure approach. This
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corresponds to a coarse-grained' description of the turbulent flow
field and limits the features of turbulence that such models can
potentially replicate. For instance, Sagaut and Cambon” have shown
that, in the presence of background rotation, Reynolds stress
anisotropy should be decomposed into directional and polariza-
tion anisotropies, each of which is affected very differently by
the pressure-velocity correlations through the action of the Cori-
olis force. Additionally, this coarse-grained description introduces
uncertainty into the modeling problem™ as all turbulent flows
with the same Reynolds stress need not evolve identically under
the same strain-rate histories. Kassinos and Reynolds’ have shown
that using just the Reynolds stresses to characterize the turbu-
lent flow field limits models by eschewing information regard-
ing dynamically important physics. The Reynolds stresses carry
only information on the componentality of turbulence—the rela-
tive strengths of different velocity components. Kassinos, Reynolds,
and Rogers” introduced additional tensors to the modeling basis
that add important information to improve turbulence model pre-
dictions in homogeneous turbulent flows. These tensors include
the structure dimensionality tensor, which characterizes the rela-
tive uniformity of the turbulence structure in different directions,
and the circulicity tensor, which characterizes the large-scale circu-
lation around a particular axis. These tensors are used to describe the
structure of the turbulent flow field, and their definitions are given
in Sec. I C.

While seminally important in homogeneous flows, the afore-
mentioned effects of coarse-graining are further exacerbated when
turbulent flows are inhomogeneous, in regions such as the vicin-
ity of a smooth wall. To explore the ability of these structure
tensors to model inhomogeneous flows, it is important to clar-
ify to what extent these tensors represent the same information
in homogeneous and inhomogeneous flows. For example, it can
be shown’ that the dimensionality tensor represents exactly the
characteristics of the two-point velocity correlation in homoge-
neous turbulence. Specifically, the tensor eigenvalue ratio represents
the aspect ratio (AR) of the two-point velocity-correlation con-
tour, and the tensor principal-axis inclination represents the con-
tour rotation. This is true under the assumptions of homogeneous
turbulence for the scales in the inertial subrange. It is not clear
whether such representations still apply near a wall, where turbu-
lence is inhomogeneous and the local Reynolds number is often
low.

In this study, we analyze the structure-tensor representation of
turbulence above smooth and wavy walls using half-channel DNSs.
The structural characteristics are compared with the correspond-
ing information represented by the same tensors in the case of
homogeneous turbulence. We also analyze whether these tensors
capture near-surface changes in the structure of turbulence caused
by wall waviness—a simple, two-dimensional surface roughness."”
Section II summarizes the simulation parameters and provides cal-
culation details of the stream vector and the single-point tensors,
which are validated in Sec. I1I. In Sec. IV, we compare character-
istics of the actual coherent motions with the tensors and reduce
the tensors to principal information that can be used for modeling
purposes. An overarching objective of many turbulence modeling
efforts is to improve the fidelity of closures by integrating a higher
degree of underlying physics within the closure model. To this end, a
promising approach is to append to the modeling basis tensors that

ARTICLE scitation.org/journal/phf

carry information on features of turbulence physics that are diffi-
cult to represent in existing models. In this context, single-point
structure tensors appear to be very promising as they are effectiv@
measures of nonlocal characteristics of homogeneous turbulence.”
In this paper, we show that, for complex inhomogeneous turbulence,
these tensors contain qualitative information on the structure of the
turbulent flow field, and we quantify their behavior in the vicinity of
a wavy wall.

Il. PROBLEM FORMULATION AND METHODOLOGIES
A. Modeling background

Turbulence theory and the modeling of flows at high Reynolds
numbers with complex inhomogeneity are of considerable impor-
tance. The atmospheric boundary layer'’ and flows over urban and
natural canopies'' are ubiquitous examples of turbulent flows over
rough surfaces. Virtually, all surfaces of engineering and scientific
interest have some roughness, and flows over them can be funda-
mentally different from their smooth-wall counterparts, in terms of
their underlying physics and their engineering ramifications. With
respect to the former, the innate physics of turbulence close to the
wall is affected strongly by roughness. For instance, depending on
the roughness height, the surface roughness can either interfere
with the dynamics of the buffer-layer viscous production mecha-
nism or interrupt it completely. In terms of flow variables, rough-
ness leads to changes in the mean velocity profiles near the wall, in
length scales, and in turbulent kinetic energy distributions.'” With
respect to the latter, transition to turbulence can be promoted by
surface roughness.”” Surface roughness can lead to changes in both
the flow’s coherent structures and behavior far from the wall."’
It can also substantially enhance the Nusselt number in devices
such as heat exchangers."” Moreover, the physics underlying these
phenomena can be complicated. For example, the augmentation
of heat transfer by roughness is a consequence of an increase in
surface area due to roughness, together with increased heat diffu-
sion through roughness-enhanced turbulent motion. Consequently,
complex inhomogeneity leads to significant changes in the physics
of turbulent flows that may be difficult to describe with existing
turbulence models.

Established turbulence models like Reynolds stress closures
are typically formulated for homogeneous turbulence, while eddy
viscosity models are usually developed and calibrated for smooth
walled flows. The application of such turbulence closures to rough
surface flows typically requires the use of ad hoc techniques. For
instance, the equivalent sand grain approach introduces the sand-
grain roughness height as a new parameter for the turbulence model,
which enables the enhancement of turbulence in the near-wall
region, to increase the momentum transport toward the wall and
to reproduce the drag increase. However, there is a schism between
the physics underlying these phenomena and the manner in which
such approaches reproduce them. For example, equivalent sand-
grain roughness models increase the frictional drag even though
it arises predominantly through pressure forces on roughness ele-
ments. Alternatively, various correction terms have been appended
to established turbulence models to account for roughness.'*"* In
addition to being largely empirical, such corrections suffer from
a lack of robustness and universality. For instance, the correction
by Wilcox'” profoundly affects the flow over smooth surfaces and
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causes unrealistically low eddy-viscosity values over regions of high
roughness. In the same vein, different correction terms have to
be formulated to account for the drag increase at the wall due to
roughness and the heat transfer augmentation by roughness, with
complementary wall functions for each correction, etc., resulting
in a cumbersome framework that may lack robustness and does
not offer consistent fidelity across different flows, or even across
all regions of a single turbulent flow. In this light, accounting for
the effects of surface roughness in Reynolds- Averaged Navier-Stokes
(RANS) simulations has been described as the “Achilles heel of
CED.”"

In contrast to conventional closure formulations, elliptic relax-
ation models have shown some success in predicting turbulence
over rough walls.” >’ The v* — f closure in these studies includes
terms that combine the effects of the near-wall velocity-pressure
gradient correlation and the anisotropic dissipation rate and, by
extension, the near-wall stress anisotropy and the nonlocal pressure-
strain effects. The need for any near wall damping functions is
obviated by incorporating near-wall turbulence anisotropy and non-
local pressure-strain effects via an elliptic relaxation equation that
captures the nonlocal, wall-blocking effects. This facet is criti-
cal in the computation of strongly heterogeneous turbulent flows
such as rough wall flows, enabling more accurate prediction of
heat transfer, skin friction, and turbulent boundary layer separa-
tion. Consequently, the addition of information regarding the tur-
bulence structure may potentially enable better modeling of tur-
bulence over complex inhomogeneity. In an analogous scenario,
appending turbulence structure tensors to the modeling basis should
improve the modeling of nonlocal physics in second moment clo-
sures. In this investigation, we analyze whether such structure ten-
sors may aid turbulence modeling over complex inhomogeneities.
We focus on the nature of information provided by such ten-
sors about turbulence in the vicinity of rough or wavy surfaces,
the extent of this information, and its distribution over individual
tensors.

B. Simulation data

The DNSs of this investigation were performed using a well-
validated code that solved the governing equations on a staggered
grid using second-order, central differences for all terms, second-
order accurate Adams-Bashforth semi-implicit time advancement,
and Message Passing Interface parallelization. For the wavy-wall
case, an immersed boundary method (IBM) based on the volume-
of-fluid approach is used to impose no-slip boundary conditions at
the surface. The Neumann boundary condition of pressure at the
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solid-fluid interface is not explicitly imposed. Detailed implementa-
tion and validation are provided by Yuan and Piomelli.” "

The parameters of the DNSs are summarized in Table I. Here,
x1, %2, and x3 (or x, y, and z) are, respectively, the streamwise,
wall-normal, and spanwise directions, and u; (or u, v, and w) are
the velocity components in those directions. For both cases, a half
channel is simulated to limit computational cost. Such approxima-
tion of a full channel as a half channel is widely used in the liter-
ature when the focus of the study is not near the channel center
line (for example, see Scotti” ). No-slip and symmetric boundary
conditions (Qu/dy = 0, Ow/dy = 0, and v = 0) are applied to the
bottom and top boundaries of the simulation domain, respectively,
and periodic conditions are used in x and z. Following previous
publications on rough-walled channel flows using this code,”*"
a constant pressure gradient is applied to drive the flow. The con-
stant pressure gradient is imposed inside both fluids and solids;
in solids, it is balanced by the IBM forcing. Note also that the
imposed pressure gradient is the gradient of the space- and time-
averaged pressure. The pressure that is solved is the sum of the
form-induced pressure [see Eq. (1)] and the turbulent fluctuating
pressure.

Channel flows with two-dimensional sinusoidal wavy walls
have been studied extensively. Experimental and numerical stud-
ies showed that if the wave height (24, equivalent to k. herein) to
length (1) ratio (also called wave slope) is large (2a/A > 0.10), the
flow exhibits a large, unsteady, recirculation zone downstream of the
wave crest.””’** This flow can be separated into two zones: an outer
layer, for which the wavy wall is considered an equivalent rough-
ness, and an inner region. The latter is characterized by the presence
of a region of reverse flow developing downstream of the wave crest,
forming an intense shear layer above the recirculation region, and
a very thin boundary layer that develops beyond the reattachment
point. Away from the wall region, the logarithmic mean velocity
profile, the Reynolds stresses, and the two-point velocity correla-
tions appear not to be affected by the wavy wall.”"" Therefore, such
a wall geometry is equivalent to large-scale two-dimensional rough-
ness. For the waviness simulated here, 2a/A is set to 0.10 to generate
significant separation regions near the wall and the peak-to-trough
height k. is 0.058 (or k; = 50) to yield a flow at the lower limit of the
fully rough regime for this surface (the full rough regime is reached
at k' = 60 for 2a/A = 0.10°) while maintaining a clear scale sepa-
ration between the roughness height and the channel height. The
roughness wavelength A is 0.58. Here, y = 0 is defined as the low-
est elevation of the rough surface, and the zero-plane location d is
defined as the centroid of the rough-wall drag distribution™ which
was at 0.0319 in these simulations.

TABLE I. Half-channel DNS summary. Superscript + indicates normalization using friction velocity u. and viscous length scale
8. Ly and L, are domain sizes, d is the channel half height, k; is the roughness crest height, T is the total simulation time,
and At is the time step size. Re; = u,dlv, where uj is the bulk velocity. ks is the equivalent sand-grain height, which relates
the drag of a roughness to that of the sand-grain roughness studied by Nikuradse.”*

Wall Re; k' k8 (Lo LIS (misnjymg)  (Ax",AZ%)  (Ayimins Ayimax) Tue/8 At
Smooth 1000 0 0 6,3)  (512,256,512) (11.7,5.8)  (0.3,9.9) 85  0.03
Wavy 1000 75 0.05 (6,3)  (1024,226,512) (6.0,6.0)  (0.9,10.6) 86  0.04
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For the wavy-wall case, the simulation domain, wall geometry,
grid sizes in y, and the spatial resolution of the local shear layers
are shown in Fig. 1. The grid sizes in wall units are smaller than
those in the DNS study of Maas and Schumann,” who used Ax*
= Az" » 10 and Ayy,;, = 1.6 and obtained results that compared well
with the experimental measurements of Hudson.”* A domain with
Ly >2Aand L, > A has been show_n sufficient for an accurate evalu-
ation of the inner-layer statistics.” Keylock et al.”" commented that
Ly more than 3] is required to ensure that the x periodic boundary
condition does not impact on the inferred dynamics of a large-scale
vortical structure. The present Ly value of 121 is thus considered
sufficient. For both simulations, the maximum Ay* and the total
simulation time are comparable to those of DNS of channel flows
in the literature (see, for example, Sillero et al.™).

Near the wall, roughness leads to spatial heterogeneity in the
flow. Time-averaged perturbations in space are separated from
turbulent fluctuations using the double-averaging decomposition
introduced by Raupach and Shaw"’

(0)(y) +0(xi) + 0 (xi,1), )

where 0 is an instantaneous flow variable, (6) is the intrinsic spatial
average in the (x, z) plane, (6) = 1/Ay /4, 6dA (where Ay is the area

B(x,», t) =

occupied by the fluid at the corresponding y), 8 is the average in both
timeandz, 6’ =6 - 0 is the instantaneous turbulent fluctuation, and
0 =6~ () is the form-induced fluctuation. The double- averaging
technique has been used in the rough-wall turbulence literature to
distinguish between turbulent and form-induced fluctuations by, for
example, Coceal, Thomas, and Belcher,"' Pokrajac, McEwan, and
Nikora,” and Mignot, Bartheleemy, and Hurther.” This decom-
position is applied to flow data for both smooth and wavy wall
simulations.

C. Structure-tensor calculation

1. Smooth-wall channel

The structure tensors are second-order moments of the three-
dimensional instantaneous stream vector y; which is determined
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from the Poisson equation

= Wi, (2)

where w; is the vorticity vector and y; is related to u; as u; = Eijk Wk, js
where g is the Levi-Civita symbol.

Periodic boundary conditions are applied to y; in x and z. Fol-
lowing Stylianou, Pecnik, and Kassinos, ' the y boundary conditions

of Eq. (2) are imposed as (no summation among Greek letters)
NaVa + ngYp + nyyy = 0, (3)
2 5% . O
— S 4
" B axy 6x¢; " oxs 8 e “
and
vy oy 6% 9y
— Ny 8xa —hg axﬁ = - 6xy - g 6 + Eyjk Ml (5)

where 1y, ng, and n, are the components of the unit normal vector
of the surface pointing out of the fluid domain. Index a corresponds
to the maximum absolute component among the three (i.e., |na|
> |ngl, |ny]), while the remaining indices, § and y, are such that a right
handed coordinate system is formed. Each component of y; and w; is
defined at the cell center. Equation (2) is recast as a system of linear
equations using second-order central differencing (first-order one-
sided differencing at the domain boundaries) and is solved using a
successive overrelaxation (SOR) scheme.

The single-point structure tensors include the Reynolds stress
(Ryj), dimensionality (Dj), circulicity (F;), and inhomogeneity (Cj)
tensors. They are defined by Kassinos, Reynolds, and Rogers® as

= (WeaVigh Fi = (Vv Gi= (W)
(6)

and so both temporal and spatial averaging of data is carried out
to determine these tensor components. In this article, we follow the

Rjj = equsij(‘/’;,p‘//s/,r)’ Dj

FIG. 1. (a) Simulation domain and the
wall geometry of the wavy-wall case.
(b) Wall-normal grid sizes in wall units.
(c) Contour of time-averaged streamwise
velocity overlaid with the mesh to show
resolution of local shear layers. A is the
wavelength of the wavy wall.
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precedent of Kassinos, Reynolds, and Rogers™ and classify these as
single-point tensors.

Each tensor has a distinct physical meaning. Cj; represents
the degree of spatial variation of statistical quantities, as Cj

={(y Vi ) x)> which is zero for the case of homogeneous turbulence.

As such, this tensor characterizes the degree of inhomogeneity of the
turbulent flow field. The structure dimensionality tensor Dj; repre-
sents the relative uniformity of the structure of the turbulent flow
field along different coordinate directions. Equivalently, this can be
viewed as the distribution of turbulent kinetic energy along different
directions in wavenumber space in a homogeneous flow. In contrast
to the dimensionality tensor, the structure componentality tensor R;;
represents the relative strength of fluctuating velocity components
along different coordinate directions. Lastly, Fos represents large-
scale circulation around x,, which can be shown by the fact that
Vi = —wq and that if the flow is irrotational around x, (i.e., wg
= 0 everywhere), y; = constant and consequently v/, = 0, in which
case Fyq = 0. The connection between Fj; and the vorticity tensor
(w—l’w_;) has been pointed out by Stylianou, Pecnik, and Kassinos'
near the wall in a turbulent pipe flow.

Instead of using the classical definitions outlined in Eq. (6),
we calculate Ry, Dy, and Fj; using an alternative approach given by
Stylianou, Pecnik, and Kassinos ©as

Rij = &impQumip> Dij = €impQpmj + Cijs Fij = €impQjpm + Cjiy  (7)

where Qg = —(u]y}, ) and Cjj is calculated according to its definition
in Eq. (6). When calculating these tensors, the use of Eq. (7) results in
less numerical error associated with the discretization of y;;."” The
normalized forms of Ry, Djj, and Fj; are obtained by rescaling with

their respective traces as
rij = Rij/Rx> dij = Dij/Dik» fij = Fij/ Fi- (8)
In contrast, Cj; is normalized as
¢ij = Cij/ Dk )
and is not rescaled by Cy because Cj; is not positive semidefinite.

2. Immersed boundaries and the stream vector solver

For the wavy-wall case, the Poisson Eq. (2) for y; is solved over
the entire domain, including both the fluid and the solid. Two types
of y; boundary conditions are imposed: (1) domain boundary con-
ditions that are the same as in the smooth-wall channel flow and (2)
immersed boundaries on roughness. For the interface grid cells (the
uppermost layer of grid cells of the immersed wall, either partially or
fully solid), the wall boundary conditions [Egs. (3)-(5)] are imposed
with @ =2, 8 =3, and y = 1, as the surface normal is predominantly
in the y direction.

Currently, no local y; reconstruction (similar to, for exam-
ple, the ghost-cell IBM™) is performed to ensure that the fluid-
solid interface is sharp, as might be required for a higher numerical
accuracy. The local normal vector of the immersed boundary # is
obtained from the function f(x, y, z) = 0 that describes the plane
locally tangent to the solid-fluid interface

i = Vf/|Vfl. (10)
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Second-order central differencing is used to discretize Eq. (10)
to obtain 7(xX). It is then used in Egs. (3)-(5) on the immersed
boundary to enforce these boundary conditions, which are
applied to interface grid cells explicitly at the end of each SOR
iteration.

11l. CODE VALIDATION

To validate the stream vector solver without immersed bound-
aries, y; is calculated from large-eddy simulation (LES) data of a
smooth-wall channel flow with Re; = 395. The self-normalized ten-
sors are compared with results obtained from a similar LE channel-
flow simulation by Vartdal" in Figs. 2(a) and 2(b). The two LESs
share the same domain size of (27 x 1 x m)d and similar grid
sizes, (Ax, Aymin,Az)" ~ (25,0.6,9). Good agreement is obtained
for all components, and the slight differences attributed to the
numerical error as Vartdal'" calculated structural tensors through
their definitions in Eq. (6) rather than Eq. (7). In Fig. 2(c), the
Reynolds stress tensor obtained from Eq. (7) is compared with
that obtained from the calculation of R; = (Tu]’) which is free
of error from the y; solver. The discrepancy quantifies the numer-
ical error of the tensor calculation as up to 3% of the local Ry
value. A similar error range of 3%-4% of Ry, was also estimated
by Stylianou, Pecnik, and Kassinos'’ from a pipe flow DNS with
Re; = 180. For the present DNS cases with Re; = 1000, this error
is estimated to be up to 6% of Ry. The anisotropy invariants
of djj and fj; tensors are shown within the “Lumley triangle” in
Fig. 2(d), from which it can be seen that the anisotropy invari-
ants computed in this study are very similar to those reported
by Vartdal.”

It should be noted that the structure tensors obtained from
half-channel flow simulations described in Sec. I'V do not col-
lapse far from the wall with those that would be obtained from
full-channel simulations. This is due to the symmetry boundary
condition imposed for the velocity fields and the boundary con-
ditions for y; imposed by Egs. (3)-(5) (e.g., y2 = 0 at y = 0),
which do not hold for a full channel. Detailed comparison is given
in the Appendix. However, the difference between the structure
tensors obtained from a half channel and a full channel is lim-
ited to the region of y > /2, while the effect of the rough wall
is later shown to be limited to the near-wall region. Therefore,
a half-channel configuration is considered herein an efficient and
effective way to demonstrate the rough-wall effect on the structure
tensors.

To test the implementation of the immersed boundary method
in the stream vector solver, a two-dimensional laminar tilted-
channel is used. The channel is tilted in the (x, y) plane at an angle
of 45° from the global coordinates of the Cartesian grid. A uniform
grid is used in all directions. Here, y; is obtained from analytically
deduced velocity distributions, instead of velocities from a simu-
lation with the IBM, to eliminate the error from the IBM in the
Navier-Stokes solver. In Fig. 3(c), results for y; using the immersed
boundary implementation of the y; solver are compared with their
counterparts obtained for the flow in the same channel aligned with
these coordinates, without immersed boundaries. The contour of
the only nonzero component y3 is shown in Fig. 3(a) across the
immersed boundary. The velocities, reconstructed from y; using
central differencing, are compared in Fig. 3(d), after transformation
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FIG. 2. [(a) and (b)] Self-normalized structure tensors

obtained from smooth-wall channel flow LES with Re;
=395. () R}; from Eq. (7) (lines) vs error-free calculation
(lines with symbols). Components: 11 (black solid line), 22
(red dashed line), 33 (blue dashed line), and 12 (orange

dashed line). (d) Lumley triangle showing anisotropies of dj;
(black solid line) and f; (red solid line). Symbols in (a), (b),

and (d) are data from Vartdal.*’

| ol
10° 10" 102 -0.01 -0.005 0 0.005 0.01

© yt @ 117

to reorient y; and u; to the coordinates of the channel. A very good
collapse is obtained for all y; and u; components. Figure 3(b) shows
the Ly-norm errors of both the reconstructed u and v velocities,
which decrease with the increasing number of grid points across the
channel at a second-order rate, while the L..-norm errors decrease

at a rate between first and second orders. The current immersed
boundary treatment of the y; solver is analogous to reconstructing
the immersed boundary as a stepwise geometry.” Such an idealiza-
tion leads to local errors in the vicinity of the immersed boundary,
which presumably cause the Loo-norm error to be lower than second

FIG. 3. Validation of the stream vector solver with immersed

boundaries using a tilted laminar channel. (a) Distribution
of y3. (b) Lo-norm (black solid line) and Leo-norm (red
dashed line) errors of reconstructed u (black circle) and v
(black square) vs the number of grid points spanning chan-
nel height N. Comparison of (c) y; and (d) reconstructed

u; for N = 10 between calculations with (black) and with-
out (red or dark gray) immersed boundaries. Here, y, is the
center-line elevation.
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order. In this study, these errors are expected to be small because the
wall waviness is well resolved.

The tilted channel is a simple test case since the immersed
boundary is flat. To perform an error analysis near a curved wall,
a laminar channel flow with Re; = 10 on a wavy wall with 2a/A
= 0.1, M/8 = 1 (larger A than that used in the turbulent flow simu-
lations herein), and an x domain size of 1A is used. Uniform grids
are used in both x and y. Slmulatlons are conducted with three spa-
tial resolutions: n; x n; = 327, 647, and 128”. The velocities recon-
structed from y; are compared to the actual velocity obtained from
the simulations. Figure 4(a) displays the contour of the only nonzero
component of the stream vector, 3, for the case with a resolution of
128 grid points in x and y. Figure 4(b) shows the order-of-accuracy
of reconstructed u and v. The Lo, -norm errors are first-order, while
the L,-norm errors are almost second order.

IV. RESULTS
A. The wavy-wall channel

To validate the present wavy-wall DNS using the immersed
boundary method, we compare the pressure-drag coefficient with
that in existing studies using experiments or simulations with body-
fitted mesh. The pressure-drag coefficient is determined by integrat-
ing the average pressure along the fluid-solid interface (Zilker and
Hanratty ') as

_d}/
Cop = /2)pu2 ; f 2, (11)

where uy, is the bulk velocity. In Fig. 5, the present value is compared
with the values determined experimentally by Zilker and Hanratty "

FIG. 4. Validation of the stream vector solver with an
immersed boundary using a laminar channel flow with a
wavy wall. (a) Distribution of y3. White line: solid-fluid
interface. (b) Lz-norm (black solid line) and Loo-norm (red
dashed line) errors of reconstructed u* (black circle) and v*
(black square) as compared with the actual u* and v* vs the
number of grid points.

with Re;, ~ 14 000-30 000 and 2a/A = 0.05-0.2 and by Buckles, Han-
ratty, and Adrian’' with Re, ~ 10700-30 000 and 2a/A = 0.125-0.2.
Large-eddy simulations of Henn and Sykes'” with Re, = 5700-10 800
and 2a/) = 0.03-0.2 are also compared. These parameters bound the
corresponding values of Re, and wave slope in the present DNS. As
pointed out by Henn and Sykes™~ for a(271/) < 0.31, Cp,p appears
insensitive to the Reynolds number variation in this range, and the
prediction of CD,p (2ma/A)* from the analytical model for small-
amplitude waves'” is consistent with these values. The pressure drag
coefficient computed from the present DNS is in very good agree-
ment with reference values, indicating that modifications of the
near-wall turbulent structure associated with the mean-flow sepa-
ration and reattachment are captured accurately by the immersed
boundary method of Yuan and Piomelli.™

The roughness sublayer is defined here as the entire layer within
which the streamwise dispersive stress is not negligible, i.e., (~2)1/ 2
> 0.03(u), which is similar to the definition used by Pokrajac
et al.”’ Figure 5(b) shows the distribution of the dispersive stresses
and both the wave crest height k. and the border of the roughness
sublayer yg in the wavy-wall case. The sublayer is confined mostly
to the region y/8 < 0.1. As will be shown later, this layer contains
the majority of the effects of wall waviness on the structure tensor
components.

Figures 6(a) and 6(b) compare instantaneous values of u’* atan
elevation of 13 wall units away from the wall, which corresponds to
the buffer layer above the smooth wall, and in the roughness sub-
layer in the wavy-wall case. This elevation was chosen to allow a
comparison of the representative near-wall characteristics in the two
flows. Farther away from the wall toward the edge of the roughness
sublayer, the velocity contours become increasingly similar in the
two cases (not shown). A clear structural change is evident, which

102}

Cpyp
b

FIG. 5. (a) Wavy-channel pressure drag coefficient compar-
ison with that in existing studies: present DNS (black circle),
Henn and Sykes (blue square),”” Zilker and Hanratty (blue
triangle),’ Buckles, Hanratty, and Adrian (blue inverted tri-
angle),”' and fitted quadratic relation (black dashed line);*’
(b) dispersive stresses in the wavy-wall case showing the
2. extent of the roughness sublayer, yg. Dispersive stress

components: 11 (black circle), 22 (red square), and 12

@) a(2r/A) ®) oy

015 (orange inverted triangle).
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is associated with the breakup of low-speed streaks. De Angelis
et al.”” also suggested that the streaks appear to be generated at the
reattachment point and to be extinguished at the next reattachment
point with a new cycle starting, based on the ratio of local #" pro-
duction and dissipation. It will be shown in Sec. IV B that the single-
point structure tensors capture the shortened streaky motions.
Figures 6(c)-6(f) compare the instantaneous distributions of w} in
an (x, y) plane obtained using the original DNS velocity data and the
vorticity reconstructed from y;, for both cases. It can be seen that
the reconstructed fields match the original fields very well, with or
without the immersed fluid-solid boundary.

B. Comparison of structure tensors over smooth and
wavy walls

The structure tensors for the flow over smooth and wavy-wall
boundaries are compared in Figs. 7 and 8 using logarithmic and
linear scales, respectively. The components of the inhomogeneity
tensor are normalized by wall units, to compare the relative inho-
mogeneity between different locations and between cases. For the
other tensors, the self-normalized form in Eq. (8) is used to show
differences in their anisotropies.

The inhomogeneity tensor Cj; (plotted as its symmetric equiv-
alent Cjj + Cj) is shown in Fig. 7(a). The extent of the wall layer
within which turbulence has significant inhomogeneity is impor-
tant for modeling purposes as, beyond this layer, the state of
homogeneous turbulence can be specified fully by only two struc-
ture tensors.” Above the smooth wall, the inhomogeneous region

ARTICLE scitation.org/journal/phf

FIG. 6. Instantaneous contours of u’* at
an elevation of 13 wall units above the
wall in 1/4 of the x-z domain (a) and (b),
contours of w of the original DNS veloc-
ity (¢) and (d), and w} reconstructed from
y; (e) and (d) in the wall-normal plane at
z/6 = 1.5, on the smooth wall [(a), (c),
and (e)] and the wavy wall [(b), (d), and
(). Solid while lines indicate immersed
boundaries. Flow goes from left to right.

(with nonnegligible Cj; + Cj;) extends to y* ~ 30, whereas over the
wavy wall, the inhomogeneous region is confined to the rough-
ness sublayer on account of the roughness-scale form-induced shear
Oui/Ox; there. A small peak is visible for the Cy component at
around k.. This is perhaps due to the significant spatial variation
of Oi;/dy associated with the thin attached local mean shear layers
on the peak of the sinusoidal wall and above the mean recirculation
regions.

In general, waviness increases the near-wall isotropy of ryj, djj,
and fj, as well as the magnitudes of their off-diagonal components.
For r;;, this observation is consistent with the findings of Smalley
et al.,”' Busse and Sandham,’” and Flack and Schultz.’

The normalized circulicity tensor f3 is plotted in Fig. 7(d). The
dominance of the 22 and 33 components of f;; near the smooth wall
is due to du'/dy and Ou'/Oz on account of low- and high-speed
streaks."” Furthermore, the rapid increase of the 11 components with
increasing distance from the smooth wall toward a peak at y* ~ 30
is a consequence of the quasistreamwise vortices in this region. On
the wavy wall, all diagonal components remain significant in the
vicinity of the wall, consistent with the presence of roughness-scale
three-dimensional vortical structures in the sublayer of a fully rough
flow, such as the head-down and head-up hairpins.” Orlandi and
Leonardi™ also observed greater isotropy in the vorticity near rough
walls than near smooth ones.

Lastly, the normalized dimensionality tensor dj is plotted
in Fig. 7(c). For this structure tensor, higher values of diagonal
components represent a shorter coherence in the corresponding
direction. From the figure, it can be seen that, in the roughness
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sublayer, waviness weakens the streamwise elongation of structures dimensionality and circulicity. Although discernible differences

by enhancing di; while driving d», and ds; closer to equality (sim-  between the smooth- and wavy-wall flows are observed in the outer
ilar coherence in z and y) as the waviness imposes its scales on layer for fj in Fig. 7(d), these differences are no more than 3% of
the flow. The deductions from this single-point tensor compar- their trace values.

ison are consistent with the instantaneous picture of turbulence To show the spatial variation of various tensors, the (x, y)
in Fig. 6. contours of R, Djj, and F; obtained using statistics of v gradi-

We also note that Townsend’s similarity hypothesis seems ents averaged in time and z (instead of time and both x and z, as
to apply not only to turbulence componentality but also to shown in Fig. 7) are displayed in Fig. 9. The dividing streamline
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— linear scale. For legends, see Fig. 7.
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FIG. 9. Contour of 11 (a)—(c), 22 (d)—(f), 33 (g)(i), and 12 (j)~(l) components of R} [(a), (d), (g), and ()], D [(b), (e), (h), and (k)], and £ [(c), (f), (i), and (I)] tensors. White
lines indicate the solid-fluid interface. Black lines: top of the roughness sublayer (black dashed line) and dividing streamline (black solid line).

is obtained as the contour line of the ¥, value at the immersed
boundary; it quantifies the extent of the separation bubble. The vari-
ations of R;; components shown in Figs. 9(a), 9(d), 9(g), and 9(j)
match very well with results available in the literature (for example,
see experimental measurements of Hudson et al.®). The dominant
dynamical phenomena include the following: (i) The detached shear
layer corresponding to the % inflection point significantly augments
the Reynolds shear stress and u’ production. (ii) A thin bound-
ary layer is generated at the reattachment point, where significant
turbulence kinetic energy (TKE) redistribution takes place, mostly

from u’ to w' energy. (iii) Flow acceleration on the upslope side
leads to increased »’ and v’ due to productions associated with more
intense 0u/0x and Ov/Ox, respectively. (iv) Below the separated
shear layer, a retarded flow region is formed where the Reynolds
stresses are relatively weak and the TKE is maintained by diffu-
sion processes, instead of production. Comparing the middle of the
roughness sublayer (e.g., y ~ d) in the wavy-wall case and the buffer
layer (e.g., ¥ = 10) on the smooth wall, the aforementioned phe-
nomena lead to weaker r1; and stronger 25, 733, and r1, components
on the wavy wall. For the dimensionality tensor, Figs. 9(b), 9(e),
and 9(h) show that, inside the detached shear layer, the coherent
motions are shortened in all directions in an average sense, most
significantly for the x and z extent. This is probably due to the
production of smaller-scale new turbulence inside the shear layer.
The result is a more isotropic Dj; tensor near the wall. Figure 9(f)
shows that F33 decreases as the reattachment point is approached,
perhaps due to the breakup of streaky motions (and consequently

weaker Qu’/dy) as three-dimensional vortical motions are gener-
ated as a result of shear layer roll-up. These vortical motions also
lead to augmented F»; in the detached shear layer. In addition, Fi;
appears to increase in the thin boundary layer generated after reat-
tachment, probably connected to the higher turbulence production
resulting in stronger streamwise vorticity fluctuations. Such damp-
ing of F33 and augmentation of F,, near the reattachment point,
as well as the increase of Fy; in the thin shear layer, lead to an
overall more isotropic circulicity tensor near the wall, as observed
in Fig. 7.

C. Connection between the dimensionality tensor
and the two-point velocity correlation

For homogeneous turbulent flows, Bhattacharya, Kassinos, and
Moser’ showed that the eigenvalue ratio and principal-axis inclina-
tions of Dj; correspond, respectively, to the aspect ratio and incli-
nation of the isocontour of the trace of the two-point velocity
correlation tensor

Rop(ri) = (u",(x,',t)u;;(xi +r,-,t))/(M), (12)

where 7 = i + 1, is the separation between the two points. For such
a connection to be valid, the 7 magnitude must be within the inertial
subrange.

We now test whether this homogeneous-flow correspondence
applies to inhomogeneous turbulence at low local Reynolds num-
bers in the near-wall region, taking care to calculate Zy3(r:) only

Phys. Fluids 31, 125115 (2019); doi: 10.1063/1.5130629
Published under license by AIP Publishing

31,125115-10



Physics of Fluids

@ Kt

il
= lz\‘xjmsl/";'
Soz2- |
5

‘ I
@ ® © \*
AN \§ .
ok .‘.L T
0 0.2 0.4

I

06 08 1
T2/

FIG. 10. Contour of the trace of the two-point velocity correlation tensor,
Ry (1 1y), at a contour level between 0.7 and 0.8 centered at y — d = 53,
(a), 258, (b), 0.18 (c), and 0.38 (d). Black: smooth case; red (or dark gray): rough
case. Short lines indicate axes of the isocontours. Contours are shifted in r, by 0.3
units for clarity.

where there is no contribution from within the solid. Values of
P, ranging from 0.55 to 0.85 are used to show the trend and the
level of uncertainty in this two-point correlation. Within this %
range, all isocontours satisfy [f|* > 10 and so exclude contributions
from the dissipative subrange. In addition, [f|/.£ 5 0.25, where .&
is the x extent of the isocontour of % = 0.3 at each y-location,
which is considered to be a measure of the largest scale of the coher-
ent motion. Thus, the upper cut-off value of |7| used here largely
(though not completely) excludes the contribution from the integral
scales.

Figure 10 compares the evolution of the % (7, 1y) isocontour
along y. The isocontours are identified using %} values between
0.7 and 0.8 for demonstration purposes, though using another
contour value range does not alter the evolutionary trend. The
isocontour axes are identified using principal component analy-
sis. At each y location, the inclination and shape of the isocon-
tour are characterized by (1) the inclination angle ¢ of the iso-
contour axis with respect to the (x, y) coordinate and (2) the
aspect ratio (AR), I1/l,, where I; is the isocontour length along
the principal component and L is the length in the orthogonal
direction.

In Fig. 11, a comparison is made between the values of ¢
and 1/l obtained from % isocontours and their correspond-
ing Dj-tensor representations. Far from the wall, the tensor

ARTICLE scitation.org/journal/phf

representations are very close to the true structural properties (with
allowance for scatter in the data) for both smooth- and wavy-wall
flows. A good collapse might be expected as the relatively high
local Reynolds number results in an inertial subrange of significant
extent and the flow is locally homogeneous. Near the wall, waviness
leads to a clear increase in the inclination angle and a reduction
in the aspect ratio. The tensor representations capture both near-
wall changes qualitatively but not quantitatively according to the
relations identified by Bhattacharya, Kassinos, and Moser possi-
bly because the assumptions of a prominent inertial subrange and
homogeneous turbulence do not apply near the wall. The inclu-
sion of information from the inhomogeneity tensor in a structure-
tensor-based model of % characteristics might result in better
agreement near the wall—a topic to be explored in the future
work.

D. Principal tensor information

For structure-based closures such as that of Kassinos and
Reynolds, it is impractical to impose boundary conditions on each
tensor component. Instead, one imposes the minimum amount of
information required to describe the structural change between the
wall and the outer layer, both for smooth and wavy walls. One
approach is to decompose a full tensor into (1) the principal-axis
inclination angle and (2) a measure of tensor anisotropy which,
together with the tensor trace, describes the principal information
of the tensor.

In Fig. 12(a), the principal-axis inclination angle is shown for
each tensor. For the smooth case, the inner-layer (y/§ < 0.1) distribu-
tions are very similar to the smooth-wall pipe-flow results obtained
by Stylianou, Pecnik, and Kassinos'” at Re; ~ 180. Waviness results
in significantly higher inclination angles near the wall, comparable
to their values at the edge of the roughness sublayer.

The tensor anisotropies may be characterized on a barycentric
map,”” which is designed to present visually the state of turbulence
in an equilateral triangle which weights equally the different limit-
ing states. The one-component (1C) state describes the flow where
the tensor-represented properties (fluctuations, spatial variations,
or large scale circulation) exist only in one direction. The axisym-
metric two-component (2C) state describes turbulence where these
properties exist along two directions with equal magnitude, and the

ke |YR

FIG. 11. Properties of the true structure
(black dashed line) and its tensor predic-
tion (black solid line) in smooth (black)
and rough (red or dark gray) cases using
the %y range of 0.55-0.65: (a) inclina-
tion angle and (b) aspect ratio (AR) of
the %y isocontour. Tensor predictions
(black dashed line) from 27 ranges of
0.6-0.7, 0.65-0.75, and 0.75-0.85.
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FIG. 12. (a) Inclination angles (in degrees) of principal
axes of Dj (black solid line), R; (red dashed line), and F;
(blue dashed line) tensors for smooth wall (lines) and wavy
wall (black triangle) cases. Barycentric maps showing the

1C change of anisotropies of R; (b), Dj (c), and Fj (d) ten-
sors for smooth wall (black solid line) and wavy wall (black
dashed line) cases. Black solid line and black dashed line:
0.16 < y < 0.66; blue solid line and blue dashed line: over-
lap region, 508, < y < 0.14 for the smooth wall flow and yr
<y < 0.1 for the wavy wall flow; red solid line: viscous wall
region (y < 508,) for the smooth wall flow; red dashed line
(d <y < yg) and orange dashed line (y < d): roughness
sublayer for the wavy wall flow.

©  ac 1c (d) 2

isotropic [or three-component (3C)] state describes flow where the
properties are of equal strength in all directions.

The tensor anisotropies are shown on barycentric maps in
Figs. 12(b)-12(d). In Fig. 12(b), it may be seen that, on a smooth
wall, R;; develops from the two-component limit in the buffer layer,
where much of its turbulence kinetic energy (TKE) is in the u’ com-
ponent and associated with the low-speed streaks, to a state much
closer to 3C in and above the overlap region where y* > 50. In
Fig. 12(¢), it can be seen that Dj; also transitions from close to the
two-component limit at the wall (due to a very long coherence in
the x direction with Dj; ~ 0) to an axisymmetric state with one
small eigenvalue far from the wall, with structure elongation pre-
dominantly in the x direction and correspondingly weaker in y and
z directions, with D2, ~ D33 > Diy. In Fig. 12(d), it can be seen
that very near the wall, Fj; is near the axisymmetric two-component
state because the flow is dominated by circulation around the y
and z axes, as a consequence of low and high velocity streaks. Fy
then changes toward the 3C state with increasing distance from the
wall.

For the flow over the wavy-wall, it is evident that the tensor
anisotropy above the roughness sublayer follows closely the varia-
tion in the smooth case. In the upper part of the roughness sub-
layer above the virtual wavy-wall origin (y > d), all three structure
tensors are at a state close to that in the overlap region. This is
presumably because, inside the roughness sublayer, quasistreamwise
vortices coexist with smaller-scale eddies generated by mechanisms
such as shear-layer roll-up” near local wake regions (see, for exam-
ple, Martinuzzi and Tropea ™ and Talapatra and Katz™*). In contrast,
a significant departure from the buffer-layer state is observed below
the virtual origin (y < d), especially for Ry, which takes the shape
of an oblate spheroid rather than the prolate one observed in the
smooth-wall flow. Busse and Sandham ™ also observed this behav-
ior in R in the lower part of the sublayer adjacent to a random

synthetic wall roughness and attributed it to stronger damping of 1’
motions than v' and w’ motions in this layer. Below the virtual wavy-
wall origin, Dj; is more isotropic than in their respective buffer-layer
states, where a weaker structure elongation in the x direction yields
values of Dj; further from the two-component limit. Also, Fj; is fur-
ther from the 2-component axisymmetric limit in the lower por-
tion of the roughness sublayer than in the buffer layer, as a result
of more significant x-axis circulation caused by three-dimensional
vortices there. From the perspective of turbulence model closure,
the upper portion (y > d) of the roughness sublayer of the wavy
(fully rough) flow appears to be structurally similar to the outer
layer, in the componentality, dimensionality, and circulicity of its
turbulence.

The observation of greater isotropy in turbulence statistics
within the roughness sublayer has important implications for mod-
eling of wavy- and rough-wall flows. For example, in smooth-wall
flows, the sharp near-wall peaks in quantities such as (u2) and TKE
require wall functions in Reynolds-averaged Navier-Stokes closures
and render model equations to be stiff that smoothing approaches
such as elliptic relaxation™” are often needed to satisfy boundary con-
ditions. However, in wavy- and rough-wall flows, the degree of tur-
bulence anisotropy is greatly reduced within the roughness sublayer.
This observation implies that although the specification of precise
boundary conditions at a virtual origin may not be straightforward,
the modeling of a more isotropic turbulence may be simpler and may
not require such stiff model equations or relaxation techniques to
accommodate boundary conditions. This observation is supported
by the modeling studies of Brereton and Yuan,”’ who show that the
dominant contribution to shear stress in the roughness sublayer in
turbulent flows in rough-wall channels comes from the viscous and
pressure forces over roughness elements, which can be modeled as
an eddy viscosity or an effective local body force. The dominance of
this term over the Reynolds and dispersive stresses in the roughness
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sublayer lessens some of the limitations of Reynolds-stress closures
when applied in smooth-wall flows.

V. CONCLUSIONS

An overarching objective of many turbulence modeling efforts
is to improve the fidelity of closures by integrating a higher degree of
underlying physics within the closure model. To this end, a promis-
ing approach is to append to the modeling basis tensors that carry
information regarding features of turbulence physics that are dif-
ficult to represent in existing models. In this context, single-point
turbulence structure tensors appear to be very promising as they
are effective measures of nonlocal characteristics of homogeneous
turbulence.” While the capability of such tensors to improve model
fidelity has been verified for homogeneous turbulence, in this work,
we show that, for complex inhomogeneous turbulence, these ten-
sors also contain qualitative information on the computed turbu-
lence structure, which we quantify throughout the flow over a wavy
wall. An immersed-boundary approach for solving the vector Pois-
son equation is adopted to solve for the stream vector to extract
these tensors on an ideal (wavy), two-dimensional rough surface
and can potentially be used for establishing databases of single-point
structure tensors for structure-based model development for more
complex wall-roughness geometries.

DNS results show that, in the sublayer adjacent to the
rough/wavy surface, turbulence is inhomogeneous. In this sublayer,
the dimensionality structure tensor describes qualitatively higher-
order effects such as the near-wall structure inclination angle on
account of waviness, as well as the shortening of streamwise coher-
ence lengths of turbulence motions. Furthermore, the circulicity
tensor becomes more isotropic in the sublayer, consistent with the
emergence of roughness-scale eddies. Beyond the roughness sub-
layer, Townsend’s similarity hypothesis appears to apply not only

ARTICLE scitation.org/journal/phf

to the componentality of turbulence but also to its dimensional-
ity and circulicity. Even within the roughness sublayer above the
virtual origin, turbulence above a wavy or rough surface appears
to be structurally simpler compared with that in a smooth-wall
flow. This is encouraging from a modeling standpoint. In gen-
eral, tensor characteristics such as principal-axis inclination and
anisotropy are shown to be sensitive to both the presence of
wall waviness and the distance from the surface. Thus, structure-
tensor characteristics may also prove to be useful for imposing
wall boundary conditions for use with structure-based turbulence
models.
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APPENDIX: STRUCTURE TENSORS EXTRACTED FROM
A HALF CHANNEL

The half-channel configuration is used in this work as an effi-
cient way to explore the difference brought by roughness in a chan-
nel flow. In this section, we show the discrepancy between the results
obtained from a half channel simulation and a full-channel one. Ten-
sors extracted from the LESs of a full-channel flow with Re; = 395
and those from its half-channel counterpart are compared in Fig. 13.
In the region y/8 < 0.5 (or y* < 200), the two cases collapse perfectly.
In the region 0.5 < y/8 < 1, differences are increasingly significant as
y increases. At y/8 = 1, the symmetry condition for velocities gives
r22 = 0, causing differences in the other two components also, since

» -oztg,,,,A

100 200
(a) Yy (b) y*

FIG. 13. Comparison of inhomogeneity (a), normalized
300 Reynolds-stress (b), dimensionality (c), and circulicity (d)
tensors obtained from a full channel (lines with symbols)
and half channel (lines only), both with a smooth wall and

Re, = 395. Components: 11 (black solid line), 22 (red
dashed line), 33 (blue dashed line), and 12 (orange dashed
ling).
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r11 + r2 + r33 = 1. The other tensors are also affected due to the
identity”"

R,j + D,’j st Fij G (C,J & Cj,’) = 6inkk~ (Al)

Furthermore, the y; boundary conditions at the top boundary of a
half channel do not hold for a full channel. For example, y; is set to
zero at y/§ = 1 according to Eq. (3) for a half channel, while for a
full channel, y; is free to take any value at the channel center line.
Despite these differences, a half channel is considered effective in
studying the roughness effect, which is shown limited to the near-
wall region only.
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