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Abstract
This paper considers the Peacekeeping Troops-to-Tasks Problem (PTTP). The PTTP deals with assigning battlegroup
resources to a set of tasks associated with a given peacekeeping mission. The tasks may be spread across several
locations, and have requirements regarding the time at which they can be handled, and the skills and skill-levels needed
to complete them. There is also a utility value related to each completed task that reflects its importance. The resources
are bound by a hierarchy of command, limiting their movement in relation to one another. The aim is to decide which
tasks to complete, when, and by whom. We present a mathematical compact model for the PTTP, which includes
a number of complicating real-life factors. Due to the complexity of the compact model, it is difficult to solve large
instances using a commercial solver. Therefore, we also propose a decomposition-based solution approach, with a
decomposed model where possible travel routes for the resources are generated a priori. The computational study
shows that the decomposed model has better performance than the compact model, and that it can be used as a good
starting point for developing a useful decision support tool for military peacekeeping operations planning.
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Introduction
The purpose of peacekeeping missions is to maintain
and defend stability and security. The United Nations
(UN) currently have 14 international peacekeeping missions
ongoing, served by more than 110 000 military, police, and
civilian staff. Of these 14 missions, Norway is active in five:
in Liberia, South-Sudan, Mali, Haiti, and a joint operation in
Lebanon, Israel, Syria, and Egypt1. In addition, The North
Atlantic Treaty Organization (NATO), of which Norway
is a founding member, have several active peacekeeping
missions on the African continent and in Eastern Europe2.

The most critical resource in peacekeeping operations is
human capital. Deciding how to best utilize this resource
in military operations planning is often referred to as a
troops-to-tasks analysis. In such an analysis, military staff
investigate who should do what, where, when, and how in
operations3. Typically, a troops-to-task problem is solved
manually. Indeed, the troops-to-tasks analysis can benefit
from using optimization techniques. Optimization could
provide valuable decision support for operations, ensuring
the optimality and feasibility of a planning schedule, in a
reasonable amount of time. It could also be a tool for testing
different alternatives by varying input data and conditions to
see how such variations affect the operation plan4. At worst,
it could provide a solution that operation planners can use as
a starting point.

The specific problem scenario considered in this paper
is defined as the Peacekeeping Troops-to-Tasks Problem
(PTTP). To address this problem, we study a fictious military
battlegroup that has to handle different tasks at various
locations, during a fixed time period where there is no

incentive to end ahead of schedule. Tasks have multiple
conditions relating to the time at which they can be handled,
and the amount, and type of skills needed to complete them.
There is also a utility value related to each completed task
that reflects its importance. As in real life, the battlegroup
in our scenario consists of units with differing qualities and
abilities that make them suited to handle certain types of
tasks. They are bound by a hierarchy of command, limiting
their movement in relation to one another. In the PTTP, the
aim is to decide which tasks to complete, when, and by
whom.

Research on the application of optimization in general
military operation planning is scarce. This is despite the
Norwegian Armed Forces and international organizations
like NATO being interested in such an approach. The
Norwegian Defence Research Establishment (FFI) has
conducted some research on troops-to-tasks analysis of high
intensity operations3,4, but not of low intensity operations of
which peacekeeping falls under.

The PTTP is modelled as an extension of the well
studied Resource Constrained Project Scheduling Problem
(RCPSP), where a set of tasks have to be completed
by a set of resources. The objective of the RCPSP is
to find a schedule that minimizes the duration of the
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project while observing precedence and resource constraints.
Tasks require a certain amount of capacity from resource
performing it, and resources have to be assigned to tasks
such that the capacity requirements from the tasks do
not exceed the resource capacity. Each task can only
start once, and some tasks have precedence over others.
The RCPSP is known to be NP-hard5, making all of its
extensions NP-hard as well. Well-known extensions of the
RCPSP address more challenging problems, and include
the multi-mode and multi-skill extensions. In the Multi-
Mode Resource Constrained Project Scheduling Problem
(MMRCPSP), a mode represents a feasible combination
of a project duration and resource requests that allow
the underlying tasks to be accomplished6. The Multi-
Skill Resource Constrained Project Scheduling Problem
(MSRCPSP) considers resources with multiple skills. In this
extension, with what skills a resource contributes to which
tasks must be determined7.

In this paper, the PTTP is modeled as an extension
of the MSRCPSP. It is the first version of the RCPSP
where the aim is to select which tasks to complete (or
leave undone) based on the utility value of tasks, while
considering resources with multiple skills of different levels
and capacities, whose movements between locations are
bound by military hierarchy and rest periods. Others have
studied most of these aspects to some degree, but an
extension with a combination of these factors is lacking.
Particularly, fundamental aspects of the PTTP, such as the
selection of tasks and the hierarchy of resources, are notably
absent in previous research.

The main contributions of this paper are a new
comprehensive mathematical compact model for the PTTP,
and a solution approach based on decomposing the
resources’ travel routes with the other decisions to be made.
The latter results in a new decomposed model with travel
routes generated a priori. Furthermore, we show through a
computational study that the decomposed model performs
significantly better than the compact model on a number of
randomly generated realistic test instances, and that it can
provide a good starting point for developing a useful decision
support tool for military peacekeeping operations planning.

The remainder of the paper is organized as follows: We
first present an overview of relevant literature on variants
and extensions of the RCPSP, before giving a detailed
description of the PTTP studied in this paper. Further, we
present a compact mathematical model of the problem, and
how this model can be decomposed using Dantzig-Wolfe
decomposition. Finally, we compare the performance of the
two models in a computational study, and then give some
concluding remarks regarding the contents of the paper.

Literature review
In this section we discuss the variants and extensions of
the RCPSP, by going through different attributes of the
problem, and discuss how different papers add different
characteristics to each attribute. We begin by discussing
different objective functions, before addressing task and
resource characteristics. We further discuss how time is
handled in different models and what solution methods have
been applied.

The objective of a basic RCPSP is often time-based, and
in most cases looks to minimize the makespan of a project,
while the PTTP seeks to maximize the value of completing
a subset of the available tasks. The value of a task can be
interpreted in several different ways. By giving each task a
weight and a quality measure of how well it is completed,
Pollack-Johnson and Liberatore8 seek to maximize the total
quality of completed tasks. Tavana et al.9 also assign a
quality measure to tasks, but in addition to maximizing the
total quality they look to simultaneously minimize cost and
the makespan. In the case of the PTTP, value differs from
quality as it is described in Tavana et al.9, because it is
a function of tasks and skill level, while quality is only
dependent on tasks. This is also the case with the papers
that seek to minimize cost or maximize NPV, as neither are
dependent on skill level10–14.

For scheduling problems, it is common for some tasks to
have to be carried out in a certain order. Precedence, the
term used to define an order of tasks, is therefore usually
present in RCPSP problems, in most cases as a finish-to-
start precedence relation12,14–20. Other precedence relations
are start-to-finish, start-to-start, and finish-to-finish relations,
which Tavana et al.9 also address. Fauske4 considers both
finish-to-start and start-to-start precedence. Release times
and deadlines for tasks is another common extension of the
RCPSP, which affect when a task can be performed. Usually,
a task has to start after its release time and be completed
before its deadline. Alternatively, the model can penalize
solutions where deadlines are exceeded3,6. In the PTTP we
consider only finish-to-start precedence, and include release
and completion times.

In a standard RCPSP problem, tasks are assumed to be
located at a single location or site, while in the PTTP we
consider multiple locations. Of the papers reviewed in this
chapter, only Laurent et al.20 and Fauske4 extend the RCPSP
to include multiple locations. In the paper by Laurent et al.20,
rather than tasks being fixed to given locations, a subset of
resources are tied to certain locations. A task can therefore
be completed at various locations. Comparatively, the paper
by Fauske4 and the PTTP assume that tasks are fixed to
given locations and that resources are free to move between
locations. Strict hierarchy associated with military personnel
does, however, directly affect the mobility of resources and
hence adds an additional layer of complexity to the PTTP.

Even though the time spent on, and the costs associated
with, the transport of resources is a relevant factor,
particularly when considering multi-project scheduling, they
tend to be neglected by most research21. H’Mida and
Lopez22 argue that the coordination of transportation cannot
be neglected, as it affects the optimal solution. Recent
research on multi-site RCPSPs that do consider travel time,
includes papers by Laurent et al.20, H’Mida and Lopez22,
Adhau et al.23, and Fauske4.

A task can be divisible, meaning that multiple resources or
extra capacity can be assigned to a task to reduce its duration.
For multi-mode models, the processing time for a task in a
particular mode is dependent on the resources assigned to
the task in that mode6. Therefore, all MMRCPSP models
include the extension of divisible tasks. Al-Anzi et al.24, on
the other hand, relate the processing time of a task to the skill
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level of the assigned resources in their MSRCPSP model. In
the PTTP we include both divisible and non-divisble tasks.

Resources in the standard RCPSP are of one type,
renewable, can operate at full capacity at all times, and
may divide their individual capacity among several tasks
simultaneously. To limit the resources to one task at a time,
Bianco et al.25 study dedicated resources with an availability
limit for the number of tasks a resource can undertake
simultaneously. Similar to Fauske4 we characterize tasks as
exclusive or non-exclusive, where exclusiveness implies that
resources can only process that task at a certain point in
time, and restrict the assignment of resources to tasks by
considering the military hierarchy which forces all resources
in a group to travel as a collective unit.

Heimerl and Kolisch11, Wang and Zheng26, Al-Anzi et
al.24, Myszkowski et al.27, Bellenguez and Néron28, and
Fauske4 all consider non-interchangeable resources that may
possess different sets of skills or skill levels. For a resource
to be assigned to a task, they must have a skill that matches
the task’s requirements. Myszkowski et al.27 and Bellenguez
and Néron28 model tasks to require a minimum skill level to
be completed, while Al-Anzi et al.24 let higher skill levels
lead to faster completion times of tasks. Wang and Zheng26

and Heimerl and Kolisch11 discuss how to best utilize a
workforce with different skills and performance levels to
meet requirements and minimize costs. Both Myszkowski
et al.27 and Heimerl and Kolisch11 let the skill level of the
workers affect the cost, and prioritize to meet the requirement
of the lowest possible skill level to sufficiently complete a
task. In the PTTP we require a given skill level to complete a
task, but only the resource capacity, not the skill-level affects
the completion time of a task.

Some models might need to include time periods within
the project horizon where no activity can occur, or one
or more resources cannot be utilized, for example during
breaks. Drexl29 introduce extensions to the standard RCPSP
to model issues like labour time regulations. One such
extension is to let resources be partly renewable, limiting
them to be assigned only a given number of times in a
series of time periods, hence forcing each resource to have
individual forbidden periods that are not predefined. In the
PTTP, time windows ensure that regular tasks are never done
at night, however, for tasks that take several days, rest is
enforced after the task is completed, and before a new one
begins.

Because the RCPSP is NP-hard, it is generally difficult
to solve real-sized problem instances. For this reason, the
majority of the literature studied here examines various
heuristics to find practical and efficient solution methods that
are capable of handling realistic instances. Fauske3, Tavana
et al.9, Afruzi et al.18, Van Peteghem and Vanhoucke16,
Afshar and Majlesi15, and Debels and Vanhoucke30 all
test different versions of evolutionary algorithms. Their
results are exclusively positive, suggesting that evolutionary
algorithms are efficient in solving the RCPSP and its
extensions.

Another approach to solving nontrivial RCPSPs, is a
decomposition approach. A problem can be decomposed
in different manners. Debels and Vanhoucke30, Zamani31,
Sprecher32 and Rihm and Trautmann33 all decompose
their projects into sub-parts and iteratively concatenate the

solutions. The decomposition approaches in these papers are
shown to outperform other exact methods.

In this paper, we solve the PTTP using a decomposition
approach. Although such an approach is promising, there
is relatively limited research on the application of it
to the RCPSP, compared to for example metaheuristic
approaches32,33. Especially regarding military operation
planning, a decomposition approach is a novel solution
method.

Problem description
The decisions to be made in the PTTP concern which tasks
the resources are to perform at any given time. Resources
consist of army resources and supporting airborne resources.
Examples of tasks are given in Table 1. A task’s importance
and a resource’s ability to execute the task, both affect the
value generated by completing the task. The objective of the
problem is to maximize the total realized value, given the
resources and time available.

Table 1. Examples of military peacekeeping tasks.

Operational planning and management
Camp security

Quick reaction force
Medical preparedness and sick quarters

Headquarters management
Air defence alert

Search and seizure
Check point

Observation point
Social patrol

Road reconnaissance
Escort of VIP

Intelligence, surveillance, and reconnaissance
Humanitarian support

The resources in the PTTP are assigned to a given area
at all times. The assigned area consists of several locations,
and at each of these locations, there are different tasks to
be completed. One of these locations is a base camp, where
the resources spend their nights and free time. During the
day, they can be assigned to tasks, either at base camp or
at other locations. Because the locations are geographically
dispersed, travel times between them has to be considered.
Locations can be visited multiple times a day.

Army resources in the PTTP are ordered in a two-level
hierarchy, where each level 1 resource is a super-resource
(SR) consisting of one or more level 2 sub-resources (SB).
A super-resource cannot be spread over several locations,
meaning that its sub-resources have to travel as a collective
unit. If a super-resource is assigned to a location, it is
because the sub-resources subject to it are assigned to tasks
there, and the super-resource cannot leave before all of its
sub-resources have completed their tasks in that location.
Hierarchy therefore restricts movement between locations
for the army resources. The army resources are supported by
airborne resources consisting of aircraft and helicopters. The
supporting resources are not bound by the same hierarchy
system as the army resources, and can therefore travel
independently. In modelling terms this means that a single
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Super-resource 1 

(SR1)

Infantry platoon

Super-resource 2 

(SR2)

Aircraft

Sub-resource 1 
(SB1)

Infantry section 1

Sub-resource 1 
(SB2)

Infantry section 2

Sub-resource 4 
(SB4)

Aircraft

Resource 

capacity

Skill level: 

Excellent

Skill level: 

Sufficient

Skill 1 0 2

Skill 2 1 0

Skill 3 0 0

Resource 

capacity

Skill level: 

Excellent

Skill level: 

Sufficient

Skill 1 2 0

Skill 2 0 3

Skill 3 0 0

Resource 

capacity

Skill level: 

Excellent

Skill level: 

Sufficient

Skill 1 0 0

Skill 2 0 0

Skill 3 3 0

Figure 1. Example of two hierarchies and their sub-resources’
skill capacities.

aircraft is both a super-resource and a sub-resource. Figure 1
presents examples of hierarchies for both an army resource
and a supporting resource, as well as skill capacities of their
respective sub-resources.

Sub-resources possess sets of skills, and for each skill, a
sub-resource has a given capacity. Demining, surveillance,
neutralizing targets, and transporting people are examples
of skills a sub-resource can have. Sub-resources that possess
the exact same combination of skills and skill capacities, are
said to be of the same type. Super-resources consisting of the
same type of sub-resources are also said to be of the same
type. Skills are assumed to be one of two levels – sufficient
or excellent. All resources are renewable, meaning they do
not lose capacity or skill by completing a task.

In the PTTP there are unique tasks of varying importance,
and hence value. It is generally not possible to complete all
tasks in a peacekeeping operation, because of the limited
amount of time and resources. Some tasks require other
tasks to be completed before they can be undertaken. Other
tasks, such as training local forces, consist of several sub-
tasks, in this case different training sessions, and can thus be
completed in parts at different occasions. With such tasks, all
sub-tasks have to be completed if one of them is undertaken,
by the same army resources.

A task has to be completed in a continuous, uninterrupted
fashion by the same resources, i.e. preemption is not
permitted. Some tasks have multiple time windows, meaning
that they have several possible start and end times. However,
because preemption is not permitted, the task can only be
completed during one of them. Tasks may be mandatory,
meaning that they have to be undertaken during their defined
time-window.

In the PTTP, we assume that most tasks have to be
completed within regular daytime working hours. Some
tasks, such as humanitarian support at a local village, can
span over multiple days. During the completion of these
long tasks, resources do not need to travel back to base
camp at night. These lengthy tasks do, however, require the
assigned resources to take time off at base camp directly after
completion, so that they can have some restitution. During
this time, resources cannot be assigned to other tasks.

Tasks require certain skills of certain capacities to be
completed. These requirements can be met by one or more
resources. For example, if task A requires a capacity of 3
of skill type s, then a resource with a capacity equal to
or higher than 3 of skill s will meet the requirement to

complete the task. Alternatively, multiple resources with a
combined capacity of 3 or higher of skill s can complete the
same task. Some tasks, like searching an area for landmines,
can be completed in a shorter time if extra capacity is
assigned to them. These tasks are referred to as divisible
tasks. Completion time of indivisible tasks, such as escorting
a VIP or monitoring a building, must be done for a fixed
period of time, and can not be shortened regardless of the
capacity assigned to them. Resources’ skill levels affect how
well a task is done and hence the value of completing the
task, but not the time it takes to complete it.

A resource’s ability to work on several tasks simultane-
ously depends on the exclusiveness of a task. Exclusiveness
entails that resources completing an exclusive task cannot
undertake other tasks at the same time. Non-exclusiveness
means that resources can undertake more than one non-
exclusive task simultaneously, given that the resource has the
skill and capacity required, and that the tasks are in the same
location. For example, a resource can use its capacity of 1
on two different tasks simultaneously, each one requiring a
capacity of 1, if both tasks are non-exclusive and at the same
location.

The objective of the PTTP is to realize as much value
as possible, given the resources and time available. The
effective outcome of solving the problem is deciding which
resources are assigned to which tasks at what time.

Mathematical model (CM)
In the following we propose a Mixed Integer Programming
(MIP) model for the PTTP, which we refer to as the
Compact Model (CM). We define first the notation before
presenting the mathematical model.

Notation
Sets
G Set of super-resources
GARMY Subset of army super-resources not including
supporting super-resources
Kg Set of sub-resources that belong to super-resource g
K Union of all Kg sets
I Set of locations including dummy locations 1 and I
P Set of all tasks
PE Subset of exclusive tasks
PDIV Subset of divisible tasks
PLOCi Subset of tasks that are located at location i
PLONG Subset of long tasks, including rest tasks
PREST Subset of rest tasks
PSLEEP Subset of sleep tasks
PDUPd Subset of tasks that are duplicates of task d
D Set of unique tasks, each representing a group of
duplicate tasks
S Set of skills
L Set of skill levels
Ni Set of possible visits to location i
Parameters
TTRAV EL
gij Travel time for super-resource g between
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locations i and j

TTASK
p Standard time it takes to complete task p

TMIN
p Minimum percentage of standard time it can take to

complete task p

TRL
p Release time for task p

TDDL
p Deadline for task p

CREQ
ps Capacity requirement for task p of skill s

CMAX
p Maximum excess capacity task p can utilize as a

percentage of CREQ
ps

CRES
ksl Capacity of resource k of skill s at skill level l

Hps 1 if task p requires skill s, 0 otherwise

Vpl Value of completing task p with skill level l

FPREC
dd′ 1 if group of duplicates d has precedence over

group d′, 0 otherwise

FCON
dd′ 1 if resources assigned to a task in groups d must

also be assigned to
a task in group d′, 0 otherwise

FDIR
dd′ 1 if a task in group d′ is to start directly after the end

time of a task
in group d, 0 otherwise

R Maximum number of resources that can be assigned to
any task

T End time of operation

M Big M

Variables
xkp 1 if resource k is assigned to task p, 0 otherwise

qp 1 if task p is completed, 0 otherwise

ug 1 if super-resource g is assigned to security, 0 otherwise

wkpsl The capacity of skill s, at skill level l, resource k
contributes to meet the capacity requirement of task p

epl Portion of task p completed at skill level l

tSTART
p Time task p starts

tEND
p Time task p finishes

agim Arrival time of super-resource g at location i for the
mth time

bgim Departing time of super-resource g from location i for
the mth time

yLOC
gim 1 if super-resource g visits location i for the mth

time, 0 otherwise

yTRAV EL
gimjn 1 if super-resource g travels directly between its
mth visit at location i and nth visit at location j, 0 otherwise

okpp′ 1 if resource k is occupied with long task p′ and
therefore not required to
complete sleep-task p, 0 otherwise

δpp′ 1 if task p is completed before task p’, 0 otherwise

γkpm 1 if resource k completes task p on the mth visit of
the task’s location, 0 otherwise

θgimp 1 if super-resource g travels to location i for the mth
visit before sleep task p, 0 otherwise

Model
Objective function

max z =
∑
p∈P

∑
l∈L

Vplepl (1)

The objective function (1) maximizes the total value
achieved by completing tasks. The given value of each task
being completed at a certain skill level is multiplied by the
proportion of the task being done at that skill level. For
unprocessed tasks, the proportions will be zero, ensuring
that no value is added for these tasks. The objective function
(1) is maximized subject to the following set of constraints.
Super-resource network constraints

agim − T (1− γkpm) ≤ tSTART
p ,

g ∈ G, i ∈ I, k ∈ Kg,m ∈ Ni, p ∈ PLOCi

(2)

bgim + T (1− γkpm) ≥ tEND
p ,

g ∈ G, i ∈ I, k ∈ Kg,m ∈ Ni, p ∈ PLOCi

(3)

bgim ≥ tEND
p − T (θgimp+∑

k∈Kg

∑
d′∈D,p′∈Pd′

∑
d∗∈D,p∗∈Pd∗∩PLONG

FDIR
d′d∗ F

CON
d′d∗ okpp′),

g ∈ GARMY , i ∈ I,m ∈ Ni, p ∈ PSLEEP (4)

bgim ≤ tSTART
p + T (1− θgimp+∑

k∈Kg

∑
d′∈D,
p′∈Pd′

∑
d∗∈D,

p∗∈Pd∗∩PLONG

FDIR
d′d∗ F

CON
d′d∗ okpp′),

g ∈ GARMY , i ∈ I,m ∈ Ni, p ∈ PSLEEP (5)

Constraints (2) and (3) handle the hierarchy requirements
associated with super- and sub-resources. They state that for
a task to be completed by a certain sub-resource, the super-
resource that this sub-resource is a part of has to arrive at
the task’s location before the task begins, and can only leave
after the task is completed. Constraints (4) and (5) ensure
that no resources leave a location during sleep periods, unless
they travel from a long task ending during the night, to the
location of a connected rest task with a direct start condition.
d∗ in (4) and (5) represent duplicate groups of only long
tasks.

bgim + TTRAV EL
gij ≤ agjn +M(1− yTRAV EL

gimjn ),

g ∈ G, i, j ∈ I,m ∈ Ni, n ∈ Nj , i 6= j (6)

∑
i∈I

∑
m∈Ni

∑
j∈I

∑
n∈Nj

TTRAV EL
gij yTRAV EL

gimjn +

∑
i∈I

∑
m∈Ni

(bgim − agim) = T , g ∈ G
(7)

Constraints (6) specify that if a super-resource travels
directly between two locations, then it can only arrive at a
location a time at least equal to the travel time TTRAV EL

gij
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after it has left from its previous location. Big M for
constraints (6) equals the sum of the end time T and the
highest travel time for any super-resource between any two
locations, i.e. the highest TTRAV EL

gij value. Constraints (7)
ensure that, at all times, a super-resource is either traveling
or at a location.

agim ≤ TyLOC
gim , g ∈ G, i ∈ I,m ∈ Ni (8)

bgim ≤ TyLOC
gim , g ∈ G, i ∈ I,m ∈ Ni (9)

yLOC
gim ≤

∑
k∈Kg

∑
p∈PLOCi

γkpm, g ∈ G, i ∈ I\(1, I),m ∈ Ni

(10)

xkp ≤
∑

m∈Ni

yLOC
gim , g ∈ G, i ∈ I, k ∈ Kg, p ∈ PLOCi

(11)

∑
m∈Ni

γkpm = xkp, i ∈ I, k ∈ K, p ∈ PLOCi (12)

Constraints (63) and (64) assert that a super-resource
cannot arrive or leave a location it is not visiting. Constraints
(10) limit unnecessary travel by stating that if a super-
resource visits a location for the mth time, then a sub-
resource belonging to that super-resource has to be assigned
to a task in that location on that particular visit. Exceptions
are the start and end locations, as there are no tasks at these
locations. Constraints (11) state that if a sub-resource is
assigned to a task, then it has to visit the task’s location at
least once. Constraints (12) couple the variables γ and x.

∑
i∈I

∑
m∈Ni

yTRAV EL
gimjn = yLOC

gjn , g ∈ G, j ∈ I\1, n ∈ Nj , i 6= j

(13)

∑
j∈I

∑
n∈Nj

yTRAV EL
gimjn = yLOC

gim , g ∈ G, i ∈ I\I,m ∈ Ni, i 6= j

(14)
Constraints (13) and (14) represent route continuity

between locations for the super-resources.

yLOC
gim ≥ yLOC

gi(m+1), g ∈ G, i ∈ I,m ∈ Ni\|Ni| (15)

To avoid symmetric solutions, constraints (15) state that
a super-resource cannot visit a location for the (m+ 1)th

time unless it has visited the location an m number of times
already.
Start and end locations

ag11 = 0, g ∈ G (16)

agI1 ≥ agim, g ∈ G, i ∈ I,m ∈ Ni (17)

Constraints (16) and (17) handle start and end locations
for all super-resources. Constraints (16) specify that all

super-resources start at location 1 at time zero, while (17)
state that all resources ultimately must arrive at location I .
Constraints (16) and (17) also ensure that no super-resources
can travel to the start location or from the end location.
Resource capacity constraints∑

s∈S
CREQ

ps epl =
∑
k∈K

∑
s∈S

wkpsl, p ∈ P, l ∈ L (18)

∑
k∈K

∑
l∈L

wkpsl = CREQ
ps qp, p ∈ P, s ∈ S (19)

wkpsl ≤ CRES
ksl xkp, k ∈ K, p ∈ P, s ∈ S, l ∈ L (20)

Constraints (18) calculate the proportion of a task that
is carried out with each skill level. Constraints (19) ensure
that this proportion is only positive if a task is completed.
They also ensure that a task can only be completed if the
task’s skill requirements are met, and that the model does
not award value to unnecessary work. Constraints (20) state
that a resource’s contribution to a task cannot be more than
its own capacity.

xkp ≤
∑
s∈S

∑
l∈L

wkpsl, k ∈ K, p ∈ P\PDIV (21)

xkp ≤
∑
s∈S

∑
l∈L

CRES
ksl CREQ

ps , k ∈ K, p ∈ PDIV (22)

Constraints (21) and (22) forbid the assignment of
resources to tasks which they cannot undertake. Constraints
(21) state that, for indivisible tasks, xkp can only be set to 1
if k contributes to the adding of value for task p, and that its
total capacity contribution has to be at least 1. For divisible
tasks, wkpsl may be zero for resource k and hence not
generate any task value, even if k is assigned to task p. This
occurs if the capacity assigned to a divisible task exceeds the
requirement of that task. The reason for exceeding capacity
without adding value is to reduce the duration it takes to
complete a task. In this case, constraints (19) and (20) do not
provide any restrictions to the skill requirement for resource
k to be assigned to tasks p. Constraints (22) therefore make
sure resource k is not assigned to a divisible task unless it
has the skills required to complete the task. Note that these
constraints imply that all capacities are above 1.
Task scheduling constraints∑

k∈K

xkp ≥ qp, p ∈ P (23)

∑
k∈K

xkp ≤ Rqp, p ∈ P\PSLEEP (24)

∑
p∈PDUPd

qp ≤ 1, d ∈ D (25)

Constraints (23) and (24) guarantee that a task can only
be completed if one or more resources are assigned to it,
and that they cannot be assigned to a task unless that task is
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selected. Constraints (24) also limit the number of resources
that can work on a single task. Sleep tasks are not subject to
this limit. Constraints (25) make sure that tasks with multiple
time windows cannot be completed more than once, meaning
that only one task in a group d of duplicate tasks can be
completed. ∑

g∈GARMY
ug = 1 (26)

xkp ≤ 1− ug, g ∈ GARMY , k ∈ Kg, p ∈ P\PSLEEP
(27)

Constraint (26) ensures that one army super-resource is
assigned to the mandatory security post, while constraints
(27) make sure that sub-resources belonging to that super-
resource are not assigned to any tasks during the planning
period (with the exception of sleep tasks).
Exclusive task constraints

tEND
p − T (2− (xkp + xkp′)) ≤ tSTART

p′ + T (1− δpp′),
k ∈ K, p ∈ P, p′ ∈ PE , p 6= p′ (28)

tEND
p′ − T (2− (xkp + xkp′)) ≤ tSTART

p + Tδpp′ ,

k ∈ K, p ∈ P, p′ ∈ PE , p 6= p′ (29)

Constraints (28) and (29) deal with the exclusiveness of
certain tasks, forcing all tasks handled by resource k to either
end before an exclusive task handled by the same resource
k, starts, or start after the exclusive task is completed. The
binary variable δ ensures that the same task is not affected
by both constraints.
Sleep and long task constraints

xkp +
∑

p′∈PLONG
okpp′ ≥ 1,

g ∈ GARMY , k ∈ Kg, p ∈ PSLEEP (30)

Constraints (30) require resources to be assigned to all sleep
tasks, unless the resource or other resources belonging to
the same super-resource are occupied with a long task at the
time. This only applies to army resources.

tSTART
p −M(1− okpp′) ≤ tEND

p′ ,

k ∈ K, p ∈ PSLEEP , p′ ∈ PLONG (31)

tSTART
p′ −M(1− okpp′) ≤ tEND

p ,

k ∈ K, p ∈ PSLEEP , p′ ∈ PLONG (32)

okpp′ ≤
∑

k′∈Kg

xk′p′ ,

g ∈ GARMY , k ∈ Kg, p ∈ PSLEEP , p′ ∈ PLONG
(33)

Constraints (31)–(33) make sure resources are allowed
to undertake long tasks or rest tasks during sleep periods.
This is only the case for sleep tasks p overlapping with long
or rest tasks p′, and only for army resources k belonging
to super-resource g where one or more resources k′ are
assigned to long or rest task p′. Constraints (31) and (32)
allow okpp′ to be 1 for sleep task p only when there is a long
task or rest task p′ starting before the end, and ending after
the start of sleep task p. Constraints (33) force okpp′ to zero
for sub-resource k if none of the sub-resources belonging
to its super-resource are assigned to the long or rest task p′.
Thus, the variable okpp′ is zero unless requirements in all
three equations are met. Big M in constraints (31) and (32)
equals the duration of the shortest sleep task subtracted from
the end time T .
Precedence constraints∑
p′∈PDUP

d′

qp′ ≤
∑

p∈PDUPd

qp, d, d′ ∈ D, d 6= d′, FPREC
dd′ = 1

(34)

tSTART
p′ + T (1− qp′) ≥ tEND

p ,

d, d′ ∈ D, p ∈ PDUPd , p′ ∈ PDUPd′ , d 6= d′, FPREC
dd′ = 1

(35)

Constraints (34) state that a task or one of its duplicates
cannot be completed unless a task in the group(s) of
duplicate tasks with precedence over it are completed, and
constraints (35) set the start time for task p′ after the end
time of task p. Constraints (35) are not to be binding unless
task p′ is completed, hence the term T (1− qp′).
Connected tasks and direct start constraints

∑
p∈PDUPd

xkp ≤
∑

p′∈PDUP
d′

xkp′ ,

g ∈ GARMY , k ∈ Kg, d, d
′ ∈ D, d 6= d′, FCON

dd′ = 1 (36)

xkp = xk′p, g ∈ GARMY , k, k′ ∈ Kg, p ∈ PREST (37)

Constraints (36) ensure that if task p is connected to task
p′, i.e. FCON

dd′ equals 1, then any army resource k assigned
to task p must also be assigned to task p′. For pairs of
connected tasks where both tasks need to be completed by
the same combination of resources, FCON

dd′ and FCON
d′d equal

1. Constraints (37) force all or no sub-resources in a super-
resource to be assigned to rest task p if it is a rest task.

tEND
p + FCON

dd′ TTRAV EL
gij ≥ tSTART

p′ ,

g ∈ GARMY , i, j ∈ I, d, d′ ∈ D, p ∈ (PDUPd ∩ PLOCi ),

p′ ∈ (PDUPd′ ∩ PLOCj ), d 6= d′, FDIR
dd′ = 1 (38)

For some tasks, there is a requirement that another task
starts directly after the first task is completed. Constraints
(38) ensure that these requirements are fulfilled, taking into
account travel time between the tasks’ locations.
Time scheduling constraints
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tSTART
p ≥ TRL

p qp, p ∈ P (39)

tEND
p ≤ TDDL

p qp, p ∈ P (40)

If a task is realized, constraints (39) make sure task p
starts after its release time Rp, and constraints (40) ensure
its completion before its deadline Dp.

tEND
p ≤ tSTART

p + TTASK
p qp, p ∈ P (41)

tEND
p ≥ tSTART

p + TMIN
p TTASK

p qp, p ∈ P (42)

tEND
p ≥ tSTART

p + TTASK
p

(
CMAX

p − TMIN
p

CMAX
p − 1

qp

)
+

TTASK
p

(
TMIN
p − 1∑

s∈S C
REQ
ps (CMAX

p − 1)
·

∑
k∈K

∑
s∈S

∑
l∈L

CRES
ksl Hpsxkp

)
, p ∈ PDIV (43)

Constraints (41)–(43) handle task duration and ensure
that tasks are completed in a continuous fashion. Constraints
(41) make sure that completing a task does not take longer
than necessary, while constraints (42) and (43) limit the
shortest time a task can take to complete. TTASK

p is the
given time it takes to complete task p when minimum
capacity requirements are met, and TMIN

p is the minimum
proportion of time it may take if the capacity requirements
are exceeded. For indivisible tasks, it is not possible to
shorten the duration and TMIN

p equals 1. For divisible tasks
the duration can be shortened by the proportion of exceeding
capacity down to the minimal proportion TMIN

p . Constraints
(43) set the end time of task p according to this.
Variable domains

wkpsl ≥ 0, k ∈ K, p ∈ P, s ∈ S, l ∈ L (44)

epl ≥ 0, p ∈ P, l ∈ L (45)

tSTART
p ≥ 0, p ∈ P (46)

tEND
p ≥ 0, p ∈ P (47)

agim ≥ 0, g ∈ G, i ∈ I,m ∈ Ni (48)

bgim ≥ 0, g ∈ G, i ∈ I,m ∈ Ni (49)

xkp ∈ {0, 1}, k ∈ K, p ∈ P (50)

qp ∈ {0, 1}, p ∈ P (51)

ug ∈ {0, 1}, g ∈ G (52)

yLOC
gim ∈ {0, 1}, g ∈ G, i ∈ I,m ∈ Ni (53)

yTRAV EL
gimjn ∈ {0, 1}, g ∈ G, i, j ∈ I,m ∈ Ni, n ∈ Nj

(54)

okpp′ ∈ {0, 1}, k ∈ K, p, p′ ∈ P (55)

δpp′ ∈ {0, 1}, p, p′ ∈ P (56)

γkpm ∈ {0, 1}, i ∈ I, k ∈ K,m ∈ Ni, p ∈ PLOCi (57)

θgimp ∈ {0, 1}, g ∈ G, i ∈ I,m ∈ Ni, p ∈ PSLEEP
(58)

Decomposition solution approach (DM)
Since the CM presented in the previous section is hard
to solve using commercial MIP solvers, we propose an
alternative decomposed model (DM) based on Dantzig-
Wolfe decomposition34, where all feasible routes for each
super-resource are generated a priori. Let Rg be the set of
routes for super-resource g, and let the binary parameters
Y LOC
rgim and Y TRAV EL

rgimjn be equal to 1 if super-resource g
on route r visits location (i,m) and travels directly from
location (i,m) to (j, n), respectively, and 0 otherwise. We
also add the binary variable λrg, which takes the value of
1 if super-resource g travels route r, and 0 otherwise. Using
this notation we substitute the variables yLOC

gim and yTRAV EL
gimjn

in the CM mode as follows:

yLOC
gim =

∑
r∈Rg

Y LOC
rgim λrg, (59)

yTRAV EL
gimjn =

∑
r∈Rg

Y TRAV EL
rgimjn λrg, (60)

Notice, that as a result of this, constraints (13)–(15) become
redundant and can be removed from the DM. In addition, we
have to add the following constraints (61) and (62) to ensure
that for all super-resources, exactly one route is selected.∑

r∈Rg

λrg = 1, g ∈ G (61)

λrg ∈ {0, 1} g ∈ G, r ∈ Rg (62)

To further strengthen the linear programming relaxation of
the DM model, we may calculate the earliest and latest arrival
time to node (i,m), Argim and Brgim, for a given route r
travelled by super-resource g. Using these parameters we can
bound the earliest and latest arrival time to a node (i,m) as
follows:∑

r∈Rg

Argimλrg ≤ agim, g ∈ G, i ∈ I,m ∈ Ni (63)

∑
r∈Rg

Brgimλrg ≤ bgim, g ∈ G, i ∈ I,m ∈ Ni (64)

To generate the set of feasible travel routes for each super-
resource g,Rg , we use a dynamic programming algorithm.
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Computational study

In the following, we present a comparison of the performance
of the CM and DM. For the DM, the total run time is the
aggregate of the time it takes to generate travel routes, which
is done in Python, and run the optimization model using the
commercial MIP-solver FICO Xpress. For the CM, the total
run time is only the time it takes to run the optimization
model in FICO Xpress.

We have generated three sets of realistic test instances. The
first set is designed to test how the models handle a varying
number of resources. The second set tests for an increasing
number of locations, while the third set tests for an increasing
number of tasks. Testing along these dimensions makes it
possible to study how the two models react to an increase in
resources, tasks, and locations. Each set of instances consists
of five subsets. Each of these subsets have five test instances.
As a result, each set consists of 25 test instances. Since
task characteristics are generated randomly for every test
instance, the test instances belonging to the same subset
differ even though their other parameters are equivalent.

The identification for every subset has the following logic:
[set–number of super-resources–number of total tasks–
number of locations]. Set 1 is labeled ”R” for resource, set
2 is labeled ”L” for location, and set 3 is labeled ”T” for
tasks. The identification for a subset from set 1 with four
super-resources, 30 tasks and 8 locations is for example ”R–
4–30–8”.

The comparison of the performance of the decomposition-
based solution approach, using the DM model, with the CM
on instances from sets 1–3 is shown in Tables 2, 3, and 4,
respectively. The tables report the best solutions found after
one hour and after 20 minutes, the optimality gap after one
hour, and the total run time of the CM and the DM for test
instances 1–3, respectively. The best solution found after 20
minutes is a measurement that is included in the analysis
because 20 minutes is deemed the longest acceptable run
time in a real military operation planning context4.

The results for each subset are calculated as the average
over its five instances, with the exception of the optimality
gap. The optimality gap is calculated using the average upper
bound and average best solution. In the cases where no
solution is found, the best solution after 20 minutes and the
best solution found after one hour are both set to zero. These
cases are marked with an asterisk (*). An alternative would
be to omit these cases when calculating the average, but
this would skew the results because for subsets where fewer
than all instances are solved, it could lead to higher average
values.

Table 2 suggests that the DM dominates the CM when
increasing the number of resources (instance set 1), having
equal or better best solution found, best solution found after
20 minutes, optimality gap, and run time, for all five subsets.
Furthermore, for some test instances including 8, 10, and
12 super-resources, the CM did not find any solution in the
given run time of one hour, while the DM found at least one
feasible solution for all instances.

The results in Table 3 indicate that the DM provides better
or equal results also for the instances in set 2, in a shorter
amount of time than the CM. For a few test instances with 10
and 12 locations, the CM did not find any feasible solution

within one hour. The DM found at least one solution for all
instances, but did not find the optimal solution for all the
instances in the subset including 12 locations.

Table 2. Computational results test set 1: Varying the number
of resources.

Subset

Obj.
value
(one
hour)

Obj.
value
(20 min)

Gap after
one hour
[%]

Total run
time [s]

CM DM CM DM CM DM CM DM
R-4-30-8 12.5 12.5 12.5 12.5 0.0 0.0 0.5 0.9
R-6-30-8 18.0 18.0 18.0 18.0 0.0 0.0 1.9 1.7
R-8-30-8 24.4* 41.2 24.4* 41.2 20.0* 0.0 728.3 21.2
R-10-30-8 22.0* 87.2 22.0* 84.8 74.2* 6.1 3600 2215
R-12-30-8 44.8* 74.0* 23.2* 74.0 40.0* 21.0* 2095.7 2210
Average 24.3 46.6 20.0 46.1 - - 1285.4 890

Table 3. Computational results test set 2: Varying the number
of locations.

Subset

Obj.
value
(one
hour)

Obj.
value
(20 min)

Gap after
one hour
[%]

Total run
time [s]

CM DM CM DM CM DM CM DM
L-6-30-4 35.3 35.3 35.3 35.3 0.0 0.0 7.0 1.8
L-6-30-6 35.2 35.2 35.2 35.2 0.0 0.0 122.0 2.6
L-6-30-8 21.5 21.5 21.5 21.5 0.0 0.0 2.5 1.7
L-6-30-10 29.1* 37.4 29.1* 37.4 20.0 0.0 724.1 16.4
L-6-30-12 10.8* 43.2 10.8* 43.2 23.6* 1.6 1442.6 734
Average 26.4 34.5 26.4 34.5 - - 459.7 151

Table 4. Computational results test set 3: Varying the number
of tasks.

Subset

Obj.
value
(one
hour)

Obj.
value
(20 min)

Gap after
one hour
[%]

Total run
time [s]

CM DM CM DM CM DM CM DM
T-6-30-8 18.0 18.0 18.0 18.0 0.0 0.0 1.9 1.7
T-6-40-8 40.4* 70.6 36.4* 70.6 45.8* 0.0 2883.8 1449
T-6-50-8 70.1* 50.5* 70.1* 50.5* 47.0* 60.0* 2883.1 2285
T-6-60-8 59.5 86.7 25.9 86.7 43.8 0.0 2883.0 1622
T-6-70-8 74.6 68.8* 73.2 68.8* 20.8 22.5* 2371.6 2286
Average 52.5 58.9 44.7 58.9 - - 2204.7 1529

The results in Table 4 show that both models struggle to
efficiently handle instances with a large number of tasks.
Comparing the two models, the DM still performs better than
the CM for four out of the five subsets within one hour of run
time. Within a run time of 20 minutes, it provides an equal or
better solution for three out of the five subsets. Furthermore,
the DM does in general take a shorter amount of time to solve
the instances, but the optimality gaps are significant.

Overall, the DM performs better than the CM, indicating
that the proposed decomposed-based solution approach is
effective. The DM does nonetheless, struggle to handle the
largest instances efficiently. The number of resources and
the number of tasks seem to be the most important factors
influencing solvability for the DM. In particular, an increase
in resources and tasks seem to greatly affect the number of
routes generated, which again affects the performance of the
model. As an example here, it can be mentioned that for test
instances R-8-30-8, the average number of feasible routes
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is 8081, while for test instances R-12-30-8 this number has
grown (exponentially) to 141,107. An analysis of the run
time for the DM shows that, for most subsets, the time it
takes to generate routes takes less than 10% of the total run
time. However, for the instances with a large number of travel
routes, a considerable portion of the remaining run time is the
time it takes the optimization model to read the travel route
files.

Conclusions
The models presented in this thesis are intended as a decision
support tool for military peacekeeping operations. The
problem considered is termed a Peacekeeping-Troops-To-
Tasks Problem (PTTP), and it includes a number of realistic
features, e.g. the combination of complex task relations,
such as connected tasks and direct start requirements, the
introduction of long tasks, sleep tasks, rest tasks and a
security task, the possibility of multiple time windows using
duplicate tasks, and unavailable time periods for resources.
The mathematical models are based on the notion that the
PTTP is a two-tier problem consisting of a network-flow
problem for super-resources moving between locations, and
a multi-skill scheduling problem for assigning tasks to sub-
resources at each location.

Due to the complexity of the problem, it is difficult to
solve large instances using a model based on a compact
formulation of the problem. A decomposition approach is
therefore introduced as an alternative solution method, where
possible travel routes are generated a priori. A computational
study shows that, in general, using the decomposed model
formulation gives shorter computing times and provides
better solutions than the compact model formulation. This
is especially true as the number of resources, tasks, and
locations increase, proving that a decomposed solution
approach is effective. However, even the decomposed model
is unable to handle the largest test instances efficiently.
For these instances, heuristic solution methods are probably
needed to generate feasible and good solutions in short
amount of time. Anyway, we believe the models and the
computational results provided here can be used as a good
starting point for developing a useful decision support tool
for military peacekeeping operations planning.
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