

FFI-rapport 2009/00911

oTWLAN – a tool to simulate tactical ad-hoc networks

Tore J. Berg

Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI)

May 15th, 2009

 2 FFI-rapport 2009/00911

FFI-rapport 2009/00911

1070

P: ISBN 978-82-464-1596-3
E: ISBN 978-82-464-1597-0

Keywords

Modellering og simulering

Datanett

Radionett

Approved by

Eli Winjum Project Manager

Vidar S. Andersen Director

FFI-rapport 2009/00911 3

English summary
oTWLAN is a stochastic discrete event continuous time simulator developed to assist simulation
based research studies of wireless ad-hoc networks. The simulator is primarily designed for
analysing link layer and network layer protocol functions. However, a complex radio model is
implemented to have an accurate packet capture model. oTWLAN has many similar characteristics
as WLAN (IEEE 802.11), but also provides a 100kbps radio channel for enlarged radio coverage
area and relaying of traffic for increased service coverage area. The network supports multi-level
precedence and preemption, which is an important service in military networks and emergency
networks.

The first part of this document describes the networks protocols implemented and the design of
the simulator. The last part focuses on validation of the simulator and presents some multihop
simulation experiments.

 4 FFI-rapport 2009/00911

Sammendrag
oTWLAN er en nettverksimulator som modellerer et trådløst ad-hoc datanett. Simulatoren er
utviklet for å studere nettprotokoller der prioritetshåndtering av brukertrafikk er et krav.

Dette dokumentet viser eksempler på hvordan simulatoren kan brukes, men beskriver også design
og realisering av simulatoren.

FFI-rapport 2009/00911 5

Contents

1 Introduction 7

2 Learning to Drive 9
2.1 Creating the Playground 10
2.2 Radio Planning 12
2.3 Creating the Routing Table 17
2.4 Creating the Traffic Generators 18
2.5 Activating Probes 20
2.6 Sanity Checks of Input Data 21
2.7 Running the Experiment 22
2.8 Output Data Analysis 23

3 The Protocol Stack 26
3.1 The 3a Layer 28
3.2 The LLC Layer 31
3.3 The MAC Layer 32
3.4 The Physical Layer 33
3.5 Priority Handling 35
3.6 Lifetime Control 36

4 Modelling a Network of Radios 36

5 Input Data Structures 43
5.1 Playground 45
5.2 Pathloss Matrix 46
5.3 Data Traffic 47
5.4 Routing 50
5.4.1 A case study 52
5.5 Radio Data 54
5.6 Probe Data 55
5.6.1 Rate probes 56
5.6.2 Probe objects 59
5.6.3 Counters 60

6 Simulator Design 61
6.1 Design Patterns 61
6.1.1 Qt4 Based Models and Views 63

 6 FFI-rapport 2009/00911

6.2 The User Traffic Module 64
6.3 The L7_DataProtocol Module 65
6.4 The L3_3aLayer Module 65
6.5 The L2_LlcLayer Module 66
6.6 The L2_MacLayer Module 67
6.7 The L1_DsssBaseband Module 68
6.8 The MChannelControl Module 70

7 Tips and Tricks 71
7.1 Sanity Checks of the Input and Output Data 71
7.2 How to simulate without the GUI part 72
7.3 How to remove the GUI software 73
7.4 How to remove the kernel part 73

8 The Software Architecture 74

9 Validation and Parameter Optimization 77
9.1 AHAn2 79
9.2 Optimising bp 79
9.3 Selecting (ap,bp)-values 82
9.4 Capacity per priority 85
9.5 Capacity versus network size 88
9.6 Summary 90

10 Multihop Networks 91
10.1 The Cost of Multihop Communications 91
10.2 Network Fragmentation 94
10.3 Mobility 95
10.4 Multihop in Egli terrain 103
10.5 Discussions and Conclusions 106

11 Installation 107
11.1 Basic Build 108
11.2 Build with TCP Support 110
11.3 Running the First Time 110

12 Conclusions and Remarks 111

Appendix A Symbol Error Rate 113

Appendix B Egli Single-hop Network 114

FFI-rapport 2009/00911 7

1 Introduction
oTWLAN1 is a stochastic discrete event continuous time simulator modelling a wireless tactical
multihop network. The goal of the oTWLAN open source project is to develop a simulator suitable
for the study of network protocol functions under various network topologies. The simulator is
named “tactical” since the network services provided support priority handling of user traffic,
which often is a mandatory feature in military and emergency networks. The software supports
the entire “life-cycle” of modelling and simulation – functions to implement models of real
objects, functions to configure a network, functions to conduct debugging and functions to
produce simulation reports.

The oTWLAN software is developed under the FFI-project2 Fundamental Technologies and
Trends in Information Security (GOSIKT). An objective of GOSIKT is to study security
technologies for system architectures with different bandwidth, battery, processing and memory
capacities. One task for this project is to study the transmission capacity required to serve a
NATO Public Key Infrastructure (PKI) [25,26] within the tactical domain where only radio based
communication is available. The first step of this task is to implement a simulator which models a
wireless ad-hoc network supporting physical layer transmission rates from 100kbps to 10Mbps.
An ongoing project activity extends the oTWLAN simulator with PKI application layer protocols.

The primary target group for the simulator is researchers and students that want to study network
protocol functions. This document is written for readers having experience with modelling and
simulation of wireless ad-hoc networks. We assume the readers have good knowledge about radio
aspects as well as protocol aspects. The modular design of the simulator makes it easy to add new
protocol functions in any of the layers as well as modifying the radio characteristics, or add a new
radio version. During the design and implementation, we made an effort to assign module and
class names that clearly identify their belonging and functionality to ease programming for new
users.

oTWLAN versus other simulators. Commercial simulators protect their source code and to modify
existing protocols or adding new ones often become difficult. Our research is targeted towards
new communication protocols, and simulations of existing protocols are less interesting. Our
practical experience is that we need the source code to add trace statements within the code to get
insight into network behaviour, and to gather network statistics. oTWLAN is based on the open
source projects OMNeT++ [1] and Qt4 [7]. OMNeT++ implements the basic services needed for
modelling network protocols and build discrete event simulators. Qt4 is used to build a Graphical
User Interface (GUI). Qt4 is a comprehensive C++ framework for developing cross-platform GUI
applications. However, Qt4 has many high quality software modules of general interest. In
particular the Qt4 XML module has been extensively used. Doing simulation experiments are a
rather time-consuming task since the user must parameterise a model, interpret the simulation
results and produce a report based on many plots from the simulation results. SimProcTC [22] is

1 OMNeT++ based Tactical Wireless Local Area Network
2 Norwegian Defence Research Establishment, www.ffi.no.

 8 FFI-rapport 2009/00911

an open source OMNeT++ based project which implements a tool-chain intended to ease the
process of running experiments. oTWLAN provides similar functionality where the user works via
a set of GUI based editors. The editors produce “.ini”-files and XML-files. These files are the
input data to the OMNeT++ modules.

oTWLAN as a tool. Chapter 2 demonstrates the capabilities of the oTWLAN by going through a
simulation experiment. oTWLAN provides a GUI through which the user can set up the
simulator’s input data to model a particular scenario. Eager readers, who want to get started with
oTWLAN simulations as fast as possible, should read chapter 2 first. However, to have an
understanding of the network modelled and to be able to configure the network correctly, chapter
3 and 5 have to be read. The simulator is designed for analysing performance of network protocol
functions. It is not designed to conduct radio performance analysis (physical layer protocols), nor
to estimate the performance in a specific real terrain.

The radio planning process. An operating scenario is modelled by specifying radio link pathloss
models, transmitting power, etc. The user inserts a number of nodes on the playground and then
sets a number of radio parameters to get the radio coverage wanted. oTWLAN provides a number
of interactive management tools by which the user can predict Signal-Noise-Ratio (SNR) values
and the resulting success probabilities of the different parts of the radio frame.

The network planning process. The oTWLAN MAC protocol is a random access protocol, which
means that packet collisions may occur. The collision probability increases with increasing traffic
and therefore the network layer experiences change in topology; links having good quality may
become useless as the traffic increases. oTWLAN has implemented a set of graphical tools
facilitating deployment of network nodes on the playground, setting up routing matrix and
inserting traffic generators above OSI layer 7.

oTWLAN is a hierarchical model. oTWLAN models a complex multihop network and the system
must be split into functional units of smaller size suitable for implementation in a programming
language. To achieve this, the system is broken down into smaller components in a structured
manner. oTWLAN is at the top level divided into a horizontal layer model in conformance with
the OSI Reference Model (chapter 3). We specify the layer protocols and queue structures for the
network nodes. The next step is to specify the simulator’s main data structure that models a
network of radio nodes. This is done in chapter 4 “Modelling a Network of Radios” where we end
up with leaf nodes in a data tree. These leaf nodes are called “simple modules” in OMNeT++
terminology [1] and are coded in C++.

oTWLAN as a framework. Users planning to use this project as a framework want to implement
new protocols or reuse part of the GUI code in other projects. We have made a great effort to ease
this task by assigning C++ class names that easily can be related to their functionality and the
software module they belong to. Chapter 8 “The Software Architecture” specifies the naming
convention used for software modules, class names and file names. This document is addressed
both to users of oTWLAN as well as programmers. To ease the navigation within the source code,

FFI-rapport 2009/00911 9

we have included class names in the text within this document. Hopefully, this simplifies the task
of locating particular functions in the source code. Chapter 7 gives some guidance on how to
remove certain software components. An automatic documentation system (doxygen,
www.doxygen.org) has been applied, so this document gives only an overview of the
implementation. The starting point for a detailed description of the implementation is the
doc/html/index.html file.

2 Learning to Drive
The objective of this chapter is to exemplify the functionality of the oTWLAN simulator. We use
an example based on a hypothetical scenario where nine nodes are deployed on the playground
shown in Figure 2.1.

10
00

m

1000m

0

8
GW

message
servers

MSG client

Figure 2.1 The playground and nine nodes placed on a regular grid of size 2000m x 2000m.

One terminal is attached to each radio node and all the terminals run the same application; a
message client that sends short messages to the other clients in the network. All the sites are
identical with the exception of node 0, which operates as a gateway to message servers. If the
users shall communicate with users outside the wireless zone, the traffic must pass through node
0. We assume the message system is based on User Datagram Protocol (UDP) services.

Our task is to assist the users with the network planning constraint by a set of user requirements.
The users want to keep the transmitting power at minimum to maximize battery lifetime and to
have a low visibility in the RF spectrum. However, they are anxious to be able to access the
message servers for external communications. We prescribe activation of the ARQ protocol on all
radio links to increase the resilience against packet loss. The link between node 0 and node 8 is
the longest link in this network, and we must carefully consider this link during the radio planning
process (section 2.2).

 10 FFI-rapport 2009/00911

The users specify that their terminals (OSI layer 7) generate message traffic according to Table
2.1. The outcome of our analysis shall be a recommended power level and throughput/delay plots
as function of the offered message traffic.

Parameter Value
Message arrival distribution exponential, variable mean
Payload distribution fixed 400 bytes
Pattern uniformly distributed
Priority distribution
{P0(lowest),P1,P2,P3}

{0.4, 0.3, 0.2, 0.1}

Table 2.1 Traffic data for user terminals (offered traffic to layer 7).

Traffic pattern “uniformly distributed” means that the nodes address any other of the nodes with
the same probability. oTWLAN supports Multi-Level Precedence and Preemption (MLPP) [17,18]
and the priority distribution tells the relative volume of each level. For example, the lowest
priority level P0 amounts to 40% of the total traffic volume. Some radio parameters are also
needed and this example takes the values from Table 2.2.

Parameter Value
Radio hardware 1Mbps version
Antenna height 2m
Antenna gain (tx/rx) 0 dBi
Pathloss model Egli

Table 2.2 Radio parameters. oTWLAN supports the three radio versions specified in
section 3.4.

The following sections describe the steps required to set up the simulator’s input data. It is
important to execute the steps in the same order as they are presented since the steps depend on
each other. For example, you cannot create the traffic generators in section 2.4 for nodes that do
not exist on the playground in section 2.1.

2.1 Creating the Playground

A playground is the xy-plane where the network nodes are deployed. The ”New Simulation Scene
Editor” in Figure 2.2 provides functions to set up a playground and insert a number of nodes. We
set the playground size to 5000m x 5000m, specify 9 nodes and click on the ”Create”-button.

FFI-rapport 2009/00911 11

Figure 2.2 The menu “Project->New” invokes an editor for setting up a playground (class
GUI_NewSceneEditor).

Then the oTWLAN dashboard pops up and visualises the nodes as red rectangles, see Figure 2.3.
A user of oTWLAN may have a mental model which describes the task of deploying wireless
networks and often this model arises from real-world experience. The dashboard design attempts
to reflect the user’s mental model by setting focus on the physical equipment by displaying the
playground area in the main widget. The user sees the geographical locations of the radios
deployed and he may select one or more of them and drag them to new positions.

In our scenario, the nodes shall be placed on a grid and this can be achieved through the drag-and-
drop functionality, or by writing the nodes’ positions into a table. By selecting a node and then
right-clicking on the mouse button, the table widget pops up. Remember to click the “Update
Data” button in the upper right corner of the dashboard when the playground is ready. The
underlying data model is not changed before this button is clicked. Then you can use the menu
“Project->Save” to save your playground to a file (setup/playground.xml). Figure 2.3 shows the
playground after the data has been set correctly. An existing project can be opened by the menu
“Project->Open”.

The next step is to specify the pathloss model by means of the pathloss editor (menu “Editors-
>Pathloss”). This is easy in our example since all the links shall use the Egli pathloss model [9].
Figure 2.4 presents the picture after correct setting of the pathloss data. The pathloss matrix pops
up after one click on the “Show Matrix” button. Click on the “Save”-button and the pathloss
matrix is written to a file (setup/pathloss.xml).

Now nine nodes exist on the playground and we have created a “terrain” by specifying a pathloss
model. The next step is to configure the radio attributes to have the radio coverage area wanted.

 12 FFI-rapport 2009/00911

Figure 2.3 The oTWLAN dashboard (class GUI_MainWindow) provides a set of functions to set
up simulation scenarios, run simulations and analyse results.

Figure 2.4 The pathloss editor (class GUI_PathlossEditor) facilitates setting of a pathloss
model on a per link basis.

2.2 Radio Planning

The physical layer editor facilitates selection of different radio hardware and configuration of
transmitter and antenna parameters. The first step is to select the radio hardware and we shall
select the 1Mbps option in the editor’s ”Global Parameter” page, see Figure 2.5 (left picture).
Then the transmitter and antenna parameters are set from the ”Default Parameters”-page (right

FFI-rapport 2009/00911 13

picture). All the radios in our scene shall have the same settings, so this example does not need to
open the ”Node Parameters”-page.

Figure 2.5 The physical layer editor (class GUI_PhyLayerEditor) has three tool box pages
which provide selection of radio hardware and specification of transmitter and
antenna parameters. Individual node parameters can be set from the ”Node
Parameters”-page.

Different sections of the radio frame have various ranges since they are carried by a different
number of chips (see Table 3.1). The preamble is carried by the largest number of chips and gets
the longest link range. A successful packet reception occurs when the radio header and the radio
payload are correctly received. It is the Symbol Error Rate (SER) and the maximum packet length
that determines if a radio link gets a reasonable retransmission rate. The oTWLAN Direct
Sequence Spread Spectrum (DSSS) radio sends 8 information bits in a symbol. Figure 2.6
indicates the packet loss probability 0.4 at a distance of 2.5 km when sending a 500 byte packet
using 10 dBm (10 mW) transmitting power.

 14 FFI-rapport 2009/00911

Range [km]
2.5

preamble

demodulation

3.2km
S: -98dBm
SER: 10-3

Prob. packet loss: 40% at 500 bytes
E[Tx] = 1.67

F1

Figure 2.6 Radio frame coverage prediction when sending at 10 dBm (10 mW).

Our first task is to find the minimum transmitting power constrained by the users’ requirement of
reaching node 0. oTWLAN supports relaying and we could set the power level to have a low SER
at 1000m and all nodes are connected. However, the oTWLAN uses a random access protocol
(section 3.3) and the system will suffer from collisions due to the hidden-node problem as the
traffic level increases. Hidden nodes and relaying consume much capacity and lead to a
significant reduction of the throughput capacity. oTWLAN provides a “RF Link Data Viewer”
(Figure 2.7) which is useful for inspecting the RF link quality. Figure 2.8 presents the situation
when the transmitting power is set to 10 mW. The lower left table expresses the probability to
detect the preamble correctly and shows that the link 0 8↔ fails 35 times out of 100 (the
detection probability is 0.65). This means node 0 and node 8 have different understanding of the
channel state (busy or idle) a significant part of the time. The network can, of course, cope with
this situation but the MAC protocol has lower efficiency since this is a preamble sense protocol3.
A preamble detection failure implies that a node assumes the channel is idle and acts accordingly.
If we look at the (1-SER)-table at the right in Figure 2.8, we see that the payload part never
succeed. We also note the low probability of success for the other links. Remember that we shall
transfer long packets4.

We want to increase the power level beyond 10mW to achieve a good link quality on the link
between node 0 and 8 under low traffic conditions where the background noise is the dominating
cause of payload corruption. Then we have built in a margin to the problems that occur as the
offered traffic increases as well as improved resistance to network jamming and interference from
other transmitters.

We decide to dimension the transmitters such that the average number of transmissions needed
for successful delivery is below 2 for all the radio links during the low traffic hour. Then maybe

3 Like IEEE 802.11. A carrier sense protocol can detect a busy channel at any part of the air frame.
4 oTWLAN supports segmentation and reassembly, and we could reduce the air frame size, but the
drawback is more overhead per user message.

FFI-rapport 2009/00911 15

we are able to have a reasonable retransmission rate during the high traffic hour. This is verified
later in this chapter.

Figure 2.7 The “RF Link Data Viewer” (class GUI_RfLinkViews) provides widgets to assist the
user in the radio planning phase. The widget is activated from the menu “View
Radio Data”->”Rf Link Data”.

The message size is 400 bytes and the oTWLAN protocol stack adds 22 bytes Protocol Control
Information (PCI) [14] such that the payload size on the air becomes 422 bytes. The probability to
deliver the packet in a single transmission is 422(1)ser− and this value must be larger than 0.5.

Therefore the SER must be lower than 0.0016. From the demodulation table for the radio (class
RadioSER), we find that the demodulation SNR limit is somewhere between 0 dB and +1 dB. We
must then analyse the link budget on the longest network link (2828m) and set the transmitting
power to fulfil this SNR limit. A link budget analysis shows that 63 mW gives a radio link of
sufficient quality and we prescribe use of 70 mW. Note that the boundaries shown in Figure 2.6
are represented by probability distributions5 in the simulator.

Figure 2.9 presents the situation at 70 mW and shows an increase in Signal-to-Noise Ratio (SNR)
on the link 0 8↔ from 7.8− dB to 0.6 dB, the preamble can be detected reliably in the entire
network and the SER is low. The table does only use 3 digits and a better way to inspect the link
quality is through a link cost widget. This is a subject for section 5.4 that deals with routing.

5 For example, the preamble has 4.5 dB dynamic range. SNR levels below -10.5 dB are never detected
while SNR levels above -6.0 dB is always detected (class RadioSER).

 16 FFI-rapport 2009/00911

Figure 2.8 Radio coverage predictions at transmitting power 10 dBm (10mW).

FFI-rapport 2009/00911 17

Figure 2.9 Radio coverage predictions at transmitting power 18.4 dBm (70 mW).

2.3 Creating the Routing Table

oTWLAN does not implement a routing protocol but must have a routing table to find paths
between the network nodes. The routing table for the current scenario is a very simple table since
all the end-destinations are reached in one hop. However, the user must still create a routing table,
and the “Routing Viewer” in Figure 2.10 assists the user with this task. Simply press the “Build
Minimum Spanning Tree”-button, answer yes on the question popping up and the routing table is
saved to a file (setup/routing.xml). Section 5.4 gives detailed information about routing.

 18 FFI-rapport 2009/00911

Figure 2.10 The ”Routing Viewer”-widget (class GUI_Routing).

2.4 Creating the Traffic Generators

A typical simulation experiment for us is to estimate the expectations of stochastic variables as
some input parameters are varied over a set of values. This is exemplified by Figure 2.11 where
the estimate of interest is the average end-to-end delay as function of the offered traffic taken
from the set 1 2 3 4 5{ , , , , }Λ Λ Λ Λ Λ . The index i of these elements is referred to as session run i.

They are all independent of each other, which means that the simulator is set to its initial state at
the very beginning of each run6. The offered traffic iΛ will at run-time lead to creation of one or

more traffic generators. Normally, the offered traffic set is ordered after increasing load since this
eases the process of producing nice output graphs.

offerred traffic

measured average
end-to-end delay

L1 L2 L3 L4 L5

Figure 2.11 A simulation session where the objective is to measure the end-to-end delay as
function of the offered traffic. We want to have control of the quality of the estimates
and present the measurements as confidence intervals.

6 All queues are set to an empty state at time instance zero.

FFI-rapport 2009/00911 19

The offered traffic is specified in Table 2.1 and our variable is the message arrival rate. To find
the levels to use is not a trivial task, especially when the end-to-end delay shall be measured. A
practical way to do this is first to find values which give a nice throughput plot and then focus on
the delay measurements thereafter. After some trials we found that the following arrival rates will
give a nice throughput plot {0.025, 100, 137.5, 150, 162.5, 175, 200, 250, 275, 300, 325, 350,
375, 400, 425, 450, 475, 500, 525} [packets/s]. These 19 session runs are created by means of the
“Traffic Editor”-widget in Figure 2.12.

The “P(Arq)” is set to 1 such that all messages enable use of the ARQ protocol function in the
network. The lifetime control (section 3.6) is set to 60 seconds since the messages are not
outdated after a period of time (for example, a radar application should set the lifetime to 2-5
seconds to prevent relaying of outdated data). The functionality of the traffic editor is too
complex to be described in an introductory section and we refer to section 5.3 for a full
description.

Figure 2.12 The Traffic Editor widget (class GUI_TrafficEditor) is activated by the menu
“Editors->Traffic”. You must click the Update-button(s) to update the underlying
data model after changing an editor attribute.

 20 FFI-rapport 2009/00911

2.5 Activating Probes

Probes are the objects that take measurements from the stochastic distributions produced by
oTWLAN. Our project is based on another open source project named oProbe [2] for producing
statistically sound results. The oProbe functionality is provided as an integrated part of oTWLAN
via the menu “Editors->Probe” (Figure 2.14).

A typical simulation run will have many active probes taking samples from different probability
distributions, see Figure 2.13. Unfortunately, network simulations normally imply collecting
time-variant and correlated samples7. Probes must use controlled statistical sampling techniques
to produce trustworthy results, and oProbe uses a classical batch means analysis technique [9] to
get control of the correlation. When the uncorrelated batch size is found, the probe starts to
estimate the confidence interval of the first order moment (the expectation) of the underlying
distribution.

a

bprobe 1

probe 3

Measure network
end-to-end delay

Measure link loss
probability(a->b) probe 2

Measure network
throughput

Figure 2.13 Probes are the objects that collect and process samples from probability
distributions.

For our scenario, we can immediately conclude that it is impossible to estimate the delay of the
lower priority traffic at high traffic loads since the simulation run length explode due to the
correlated sample problem8. The practical solution is therefore first to set focus on the throughput
performance and consider the delay later. Figure 2.14 shows the probe objects used for taking
measurements for the throughput plot. Network throughput is the main performance metric of
interest, and we set up the probe module to produce a 90% confidence interval. We also measure
the throughput per priority levels separately but skip usage confidence intervals. Therefore we
must be very careful to use these probes when we analyse the results because we no longer have
control of the error in the estimate.

7 Delay samples from queues are known to have an increasing positive correlation with increasing load
level.
8 Our practical experience is that the variance of the underlying distribution is not the main problem since
the simulations terminate immediately when the uncorrelated batch size is reached. We normally use the
lag k threshold 0.4; see [2, section 2.2].

FFI-rapport 2009/00911 21

Figure 2.14 The oProbe widget provides functions to activate probes.

2.6 Sanity Checks of Input Data

Most of the simulator’s input data is now ready and we have specified 19 session runs, each using
a different packet arrival rate. It is irritating to simulate for a long period of time and then crash in
run number 18 due to erroneously input data. When the simulator kernel starts, it begins to build
the main data structure from the top node (Sim in Figure 4.8) and traverses the tree down to the
leaf nodes. If an illegal value is found or there exist some inconsistencies, the kernel aborts,
usually with a cryptic message for those who do not have detailed knowledge of the software.
This section explains how we can circumvent such problems.

The kernel launcher in Figure 2.15 provides functions to set up the run-time environment for
debugging or for production, and the following four run-time environments are supported:

Tk-environment
This is a graphical user interface provided by the OMNeT++ framework to be used for
debugging. You get an overview of the network topology and may inspect different parts of the
simulator. When you run the simulator, animation of events is activated, and the text window
shows a lot of trace messages.

Cmd Debug
This is a text based user interface provided by the OMNeT++ framework. Only programmers
using a symbolic debugger will appreciate the usefulness of this interface.

File Input Check
This is a text based user interface that executes each session run for a short period of CPU time (a
few seconds). This will catch many types of input errors such as syntax errors in the XML-based

 22 FFI-rapport 2009/00911

input files and inconsistent input data (e.g., the playground file declares a network of 10 nodes
while the traffic file declares 15 nodes).

Cmd Express
This is the run-time environment to use during the production phase, that is, when you have
validated that all the input data is correct and consistent, and that the simulation process will
reach a steady-state.

Figure 2.15 The simulator’s kernel launcher (class GUI_OmnetStartEditor).

Sanity checks of input data are done in two steps. First select the Tk-environment and select the
run number with the lowest offered traffic (this is run 1 in our case) and press run on the
OMNeT++ GUI that appears. This step may discover many errors in/between NED-files and
XML-files. The next step is to activate the kernel in a “File Input Check”-mode using all the run
numbers (this is run 1-19 in our case).

2.7 Running the Experiment

The previous step has checked the input data and at this point we consider them as complete and
consistent. Start the simulator in “Cmd-express” mode after you have specified the session run
number by inserting the line “1-19” on the run edit line. In this mode the simulator process is
optimised for speed and all tracing is turned off.

FFI-rapport 2009/00911 23

The OMNeT++ kernel is started as a separate thread by the main GUI thread. The upper right
corner of the dashboard (Figure 2.16) displays a progress bar informing about the status of the
thread running. It is impossible to predict the time until termination, so the number does only
indicate a healthy thread state and that the probe module collects samples. The digit below the
progress bar is the session run number currently executed by the omnet thread (class
oProbe::OMNET_Thread). The progress bar vanishes when the omnet thread halts.

Figure 2.16 The upper right corner of the oTWLAN dashboard displays a simulation progress
bar and the ongoing session run number.

2.8 Output Data Analysis

Usually a simulation report contains a plot of data, and the report editor (Figure 2.17) has
functions to simplify this work. Reference [2, section 2.1 step 8] explains how the plot in Figure
2.18 can be made by means of the report editor.

Figure 2.17 The report editor (class oProbe::GUI_ReportEditor).

The oTWLAN simulated results are converted to a Mathematica [20] compatible data set by
means of the oProbe report editor. The performance plot in Figure 2.18 is produced by
Mathematica. The figure shows that the maximum network throughput is 81661 509± bytes/s
9(90% confidence interval) and the network starts to reject the lowest priority traffic when the

9 204 messages/s

 24 FFI-rapport 2009/00911

traffic volume increases beyond 70000 bytes/s (175 messages/s). The throughput plot confirms
that the precedence and pre-emption (priority handling) works excellently in this network.

50000 100000 150000 200000
Offered traffic @bytes êsD

20000

40000

60000

80000

tuphguorhT
@

setyb
ês
D

P3

P2

P1

P0

all

Figure 2.18 Network throughput versus offered traffic. The total throughput is presented as 90%
confidence intervals while no confidence control is applied for the other plots
(examples/chapter2).

Figure 2.19 shows the delay curve and as expected, the average delay increases fast when the
corresponding priority level approaches its capacity limit. Remember that the average delay does
not go to infinity since the packets are deleted when their 60 seconds lifetime expire. Three
different simulation sessions were needed to conduct this experiment. The first session focused on
the lowest priority P0. It excluded the runs above number 6 since the P0 delay probe demands
extremely large sample size as the load level increases beyond this run number (offered traffic
70000bytes/s). The uncorrelated batch size10 at this run number became 600 samples. oProbe
demands 100 batches of this size and the total sample size at the termination point was 60000
samples (i.e., 60000 messages have passed through the network).

10 Remember we use the ro limit 0.4 [2].

FFI-rapport 2009/00911 25

50000 100000 150000 200000
Offered traffic @bytes êsD

0.1

0.2

0.3

0.4
yaleD
@

ces
D

P3

P2

P1

P0

Figure 2.19 90% confidence intervals for the end-to-end delay versus offered traffic.

The second simulation session considered priority level P1 and we altered the P0 delay probe type
from “terminating” to “sample mean”. All the other delay probes were “terminating” probes.
From the throughput plot we conclude that the P1 traffic faces its capacity limit between run
number 10 and 11. Thus load levels above run number 10 are excluded from the second
simulation session since the simulation run length will be extremely long11. The P1 uncorrelated
batch size was slightly smaller12 than for the P0 case.

The third simulation session measured priority P2 and P3 (highest level) simultaneously. As we
can see from the throughput plot, neither P2 nor P3 reaches their capacity limits and the
simulation session can include the entire run set 1 to 19.

We end this section with some comments about the retransmission rate on the link 0 8↔ , which
was an important subject during the radio planning processes in section 2.2. The transmitting
power level was set 70 mW to achieve a packet loss probability below 0.5 on this link during the
low traffic hour. The probe which measures the retransmission rate can only sample the network
average and we must resort to the counters (section 5.6.3) to get information on a per link basis. If
we accept the uncertainty of the statistical accuracy, we can estimate the packet loss probability at
node 0 under heavy load as:

1 - NCasAlarms/NrfWavesRxed= 1 - 53280/58153 = 0.08

11 At run number 11 the run length becomes infinite due to the positive correlation problem known from the
queuing theory
12 550 samples

 26 FFI-rapport 2009/00911

The counters’ output data confirm that it is only the corner nodes {0,2,6,8} that experience packet
loss during the low traffic hour, so we expect this value to be a reasonably good estimate despite
the lack of confidence control.

3 The Protocol Stack
oTWLAN is designed to model a unicast data service at OSI layer 7 in the terminals shown in
Figure 3.1. Traffic generators above layer 7 send packets down to layer 7 (class
L7_DataProtocol) and depending on the service selected, the traffic is sent over TCP (class
L4_Tcp) or UDP. The oTWLAN protocols are designed to provide the following supplementary
subnetwork services:

• Multi-Level Precedence and Preemption (MLPP).
• Lifetime control: the terminals set the maximum lifetime a data packet shall exist in the

network13.
• A service coverage area larger than the radio coverage area: the intra network layer

protocols implement relaying.
• Enhanced resilience against packet loss across radio links: the intra network layer

protocols implement ARQ.

The MLPP and the lifetime control functions are described in the sections 3.5 and 3.6,
respectively. The terminals can enable/disable ARQ on a per packet basis. This is useful since
some traffic types (e.g., radar traffic) should not be retransmitted in case of loss while other traffic
types benefit from ARQ (e.g., TCP traffic).

IP terminal

IP terminal

IP terminal

IP terminal

edge-node

edge-node

edge-node

edge-node

relay-nodes

generator A->B

generator C->F IP terminal

A B

C
D E

F

Figure 3.1 An example network with two traffic generators representing the terminal
applications.

13 TCP traffic uses maximum lifetime 60 seconds and enables use of ARQ within the subnetwork. UDP
traffic can set these parameters on a per packet basis.

FFI-rapport 2009/00911 27

The simulator models the scenario depicted in Figure 3.1 with any number of nodes determined
by the input data. An entry-node in the figure is a radio node which serves traffic from its local
terminal while an exit-node is a radio node which delivers traffic to the local terminal equipment.
A common name for an entry-node or an exit-node is edge-node. A node that relays traffic from
an adjacent node is named a relay-node. A node may take the role as a relay-node and an edge-
node simultaneously. For example, node E in the figure operates as a relay-node and an exit-node.

A generic OSI Reference Model for the network in Figure 3.1 is shown in Figure 3.2 a). A node
has two interfaces; a radio based interface and a wire based interface to the terminal equipment.
The figure depicts an IP based access protocol between the network and the end-systems. The air
interface is not based on IP protocols but these protocols must serve IP traffic between edge
nodes. The interface towards the terminal is not modelled since this is a wired based interface
with infinite capacity compared to the air interface, and the oTWLAN protocol stack is simplified
to the stack shown in Figure 3.2 b). The forthcoming sections describe the protocol functions in
each layer. The 3b layer protocol is not included in the simulator.

PHY
MAC
LLC
3a

edge-node relay-node edge-node

OSI layer 3

OSI layer 1

OSI layer 2

PHY
MAC
LLC
3a

TCP/
UDP

OSI layer 4

PHY
MAC
LLC
3a

TCP/
UDP

PHY
MAC
LLC
3a

PHY
MAC
LLC
3a

PHY
L2

PHY
MAC
LLC
3a

PHY
L2

IP

PHY
L2

PHY
L2

IP

TCP/
UDP

end-system edge-node relay-node edge-node end-system

OSI layer 4

OSI layer 3

OSI layer 1

OSI layer 2

IP based
access protocol

3b
IP

3b
IP

TCP/
UDPA)

B)

Figure 3.2 Layered models. Figure a) shows the protocol stack for a real system while b) shows
the stack implemented in the simulator. The 3b layer protocol carries layer 3
information which is not needed by relay nodes but must be signalled end-to-end.

 28 FFI-rapport 2009/00911

3.1 The 3a Layer

The 3a layer performs store and forwarding operation in multihop networks and the following
functions are implemented:

• Data transmission using ARQ and passive acknowledgement14 [9]
• Data transmission without ARQ
• Duplicate filtering
• Lifetime control (is described in 3.6)
• Precedence and preemption (is described in 3.5)
• Segmentation and reassembly
• Relaying
• Flow control

The paragraphs below give a short description of these protocol functions.

ARQ and Passive ACK
A “last hop” PDU (Protocol Data Unit) is a PDU which has only one hop left to its end-
destination while a multihop PDU is a PDU that has more than one hop left to its end-destination.
Figure 3.3 depicts a chain of three nodes where the multihop PDU uses passive/implicit
acknowledgement on the A->B link, while the “last hop” PDU uses unacknowledged
transmission at the 3a layer and acknowledged transmission at the Logical Link Control (LLC)
layer. The implementation of an implicit acknowledgement scheme demands a Global Identifier
(GId) field in the 3a PCI: a unique identifier that identifies a PDU during its lifetime in the
network.

A B C

3a DT PDUuseArq == trueGId = 0x2a
LLC DT PDUuseArq == false

3a payload 3a DT PDUuseArq == falseGId = 0x2a
LLC DT PDUuseArq == true

3a payloadpassive acknowledgment

by GId

LLC ACK PDU

implicit ACK at 3a explicit ACK at LLC

entry-node or relay relay node exit-node

Figure 3.3 The 3a layer protocol utilises the broadcast feature of radio communications by
using passive acknowledgement on the intermediate hops and explicit
acknowledgement on the last hop.

14 The literature also uses the terms implicit acknowledgment and echo acknowledgment.

FFI-rapport 2009/00911 29

GId = <endDest><endSrc><dataUnitId> and is included in all 3a-DT-PDUs, see Figure 3.4. The
GId is also utilised by other protocol functions within the 3a layer.

message 3aDtPDU
{
fields:
 // Layer PCI
 int endDest; // terminal destination address
 int endSrc; // terminal source address
 int dataUnitId; // Unit identifier
 int sapId; // TCP,UDP
 int priority;
 bool useArq;
 int noOfSegments;
 int segmentSeqNo;
}

Figure 3.4 Format of the 3a data PDU.

message 3aAckPDU
{
fields:
 // Layer PCI
 int endDest; // terminal destination address
 int endSrc; // terminal source address
 int dataUnitId; // Unit identifier
}

Figure 3.5 Format of the 3a explicit PDU (needed by a relay node when the 3a source misses
the passive ACK and retransmits).

Duplicate Filtering
PDUs may be duplicated within the network due to loss of 3a level acknowledgements,
retransmissions and selection of alternative routes. The entry-node assigns a GId to each PDU and
all relay nodes stores the GId in a cash/database. If a new PDU with the same GId arrives, this
PDU will be deleted since it is regarded as a duplicate.

Segmentation and Reassembly
The entry-node splits the packets received from the terminal into packets of a size acceptable for
the LLC layer, and the exit-node reassembles all packets to their original size before sending
them to the terminal. All the packet segments are relayed as independent packets.

Flow Control
The node buffer system is scaled to have a small buffer space below layer 3a, and the 3a layer
entities can therefore effectively choke the outgoing traffic. The flow control mechanism
implemented is described in [9] and an overview is given here by means of Figure 3.6. As the
first rule (single-threading), the 3a protocol does not allow more than one outstanding data packet
to each of its neighbours. This is achieved by adding a forced idle period (pacing) after
transmitting packet 1 in the figure. B starts to relay A’s data packet at t2 and A should obviously
defer further transmissions until the passive ACK B->A is received. If A sends in the interval

4 5,t t then A interferes with the ACK C->B and reduces the likelihood of successful forwarding

 30 FFI-rapport 2009/00911

of its own packet. Node A shall sustain from further transmissions to B until a pacing period has
elapsed. The 3a protocol entity measures the forwarding delay to each of its neighbours and uses
this estimate to set a pacing interval. 3a DT PDUs not requesting ARQ are not subject to this flow
control mechanism.

A B

passive ack

data1

C D

data1

passive ack data1

pacing

data2

t1

t3

t2

t4
t5

Figure 3.6 Time-sequence diagram for packet forwarding. Related data packets are tagged with
the same number (GId).

The 3a layer uses the complex queue structure depicted in Figure 3.7 (class L3_3aPDP::Buffer).
Queuing of relay traffic and traffic from the local terminal is done within this layer, and this layer
determines the serving policy of fresh traffic and transit traffic. The 3a layer can store a large
amount of packets in contrast to the LLC layer buffer system.

Protocol
Entity n

priority
0

priority
1

priority
2

priority
3

Protocol
Entity 1

internal
layer

routing

PDUs under service
pdus priority 0,1,2,3

Transit buffer

pr
io

rit
y

0

pr
io

rit
y 1

pr
io

rit
y 2

pr
io

rit
y 3

IP-SAP

L3/3a

L2/LLC

Outgoing traffic
Incoming traffic

Figure 3.7 The queue structure within 3a layer. Queuing is done on a per PDU basis according
to its type and priority level.

FFI-rapport 2009/00911 31

3.2 The LLC Layer

The LLC protocol has similar functionality as standard link protocols [19] but is enhanced with
some services. The following protocol functions are implemented:

• Data transmission with ARQ using a selective repeat protocol with window size 2
• Data transmission without ARQ
• Lifetime control (is described in section 3.6)
• Precedence and preemption (is described in section 3.5)

The LLC protocol uses the retransmission time delay (2 [0,])Ack txt IntUniform n⋅ + where the
length of the acknowledgement in seconds is Ackt , and txn is the number of times a packet is

transmitted. As explained in section 3.3, oTWLAN implements immediate ACK at layer 2 and a
feedback should be received within a short time limit. The random component added contributes
to a decreased collision rate in the network.

The LLC protocol uses the DT PDU in Figure 3.8 to carry data traffic and the ARQ protocol
function uses the ACK PDU in Figure 3.9. The remaining lifetime field is included in the LLC
PCI and not in the MAC PCI because the LLC-ACK-PDU does not need a lifetime control
function.

message LlcDtPDU // (n)-layer peer-to-peer data
{
fields:
 // Layer PCI
 int constTypeBit = 0;
 int nS; // 2 bits Send sequence number
 int nR; // 2 bits Receive sequence number
 bool outOfSeqIndicator;
 bool useArq;
 double remainingLifetime; // [seconds]
}

Figure 3.8 The format of the LLC data PDU.

message LlcAckPDU // (n)-layer peer-to-peer data
{
fields:
 // Layer PCI
 int constTypeBit = 1;
 int nR; // 2 bits Receive sequence number
}

Figure 3.9 The format of the explicit acknowledgement packet used by the LLC protocol.

The queue structure within the LLC layer is shown in Figure 3.10. Identical with the 3a layer,
queuing is done on a per PDU basis according to the priority level but here each LLC entity can
store one and only one fresh DT PDU per priority. PDUs under service are outgoing
acknowledgments, packets scheduled for transmission/retransmission and packets awaiting
acknowledgement. oTWLAN has no buffers within the MAC layer.

 32 FFI-rapport 2009/00911

internal
layer

routing

PDUs under service
sdus priority 0,1,2,3

IP-SAPL3/3a

L2/MAC

Protocol
Entity n

Protocol
Entity 1

L2/LLC

RATCH-SAP

Incoming traffic

Outgoing traffic

Figure 3.10 The queue structure within the LLC layer. Each LLC entity can store only one (1)
fresh PDU per priority. PDUs under service are PDUs ready to be sent
(acknowledgments or retransmissions), or PDUs awaiting acknowledgment.

3.3 The MAC Layer

oTWLAN uses a preamble sense random access Medium Access Control (MAC) protocol.
Preamble sense means that determination of the radio channel state is based on detecting a radio
preamble15. If a radio fails to detect the preamble then it acts as if the channel is idle. Figure 3.11
illustrates the channel access cycle. When an ongoing transmission ends, all nodes which have
data packets ready for service draw a random access delay. The radio channel remains idle for a
random time period CI (the channel idle period) and becomes occupied when the first node
transmits. A listening node detects a busy channel tv seconds after the start of the first
transmission. The length of the channel busy period is CB. Both CI and CB are functions of the
offered traffic.

tv
CI CB

DT PDU

t time

ACK PDU

Figure 3.11 The contention phase and the transmission phase of a channel access cycle. The first
node transmits at time instance t and a listening node detects a busy channel at t +
tv. The system uses immediate acknowledgment which means an ACK is returned
without any delay and may collide with on ongoing data transmission (packets may
have different lengths).

15 Reference [12] outlines channel sense schemes based on energy detectors, preamble detectors and
decorrelation-based detectors.

FFI-rapport 2009/00911 33

The MAC protocol uses an access delay function D, which is the sum of a fixed component and a
random component, given by:

 (,) [0,]p p p v p vD a b a t RandUniform b t= ⋅ + ⋅ , ,p pa b : Integer > 0, 0...3p =

where pa is named the priority delay access factor, tv is the vulnerable period and pb determines

the upper bound of the uniformly distributed random delay. tv is a function of the radio parameters
and section 3.4 specifies numerical values.

The MAC protocol handles four priority levels where the acknowledgement packet has the
highest priority and is scheduled for transmission using 0D = . If a network uses a single priority
level then the probability of having a collision with this access delay access function is given by
[1, section 5.3.3]:

 1 (1 1/) , 1n

coll p pp b b= − − ≥ (3.1)

Given exactly n busy nodes at the end of the busy period, the mean channel idle period can be
expressed as [1]:

[] / (1)I v p v pE C t b n t a= + + (3.2)

The idle period is wasted channel capacity and should be zero. []IE C decreases with decreasing

pb but the penalty is increased collision rate, and we realise that there exists a pb value which

optimise the network throughput under a given set of conditions. Chapter 9 considers network
throughput as function of pa and pb , and proposes a set of values.

The MAC protocol uses the DT PDU in Figure 3.12. No buffering of data is done within the
MAC layer.

message MacDtPDU // (n)-layer peer-to-peer data
{
fields:
 // Layer PCI
 int destAddress; // Mac level destination address
 int srcAddress; // Mac level source address
 int crc32; // 4 bytes CRC
}

Figure 3.12 The format of the MAC DT PDU.

3.4 The Physical Layer

oTWLAN uses a Direct Sequence Spread Spectrum (DSSS) technique and an air frame format
similar to the IEEE 802.11 air frame, see Figure 3.13, where the air frame starts with a preamble.
A Physical Layer Convergence Protocol (PLCP) carries a field named F1, which, among others,

 34 FFI-rapport 2009/00911

informs the receiver about the payload rate. Some military radio systems implement
countermeasure against jamming by changing the preamble periodically. They will typically
include preamble synchronisation and encryption information in F1. IEEE 802.11 uses a fixed
preamble and the vulnerability of using a fixed preamble is discussed in [10]. The receiver is
informed about the length of the air frame from a Length Indicator (LI) field and detects bit errors
in the PLCP header through a 16-bits CRC check. The preamble and F1 are sent as 256 and 128
chips, respectively, to give a more robust radio channel.

preamble payload

t0
ton

time
C

R
C

32
tcas tf1 4tsymbol LI * tsymbol

LI

C
R

C
16F1

Figure 3.13 oTWLAN air frame format.

oTWLAN implements three different radios, all using the same air frame format, but supporting
different payload transmission rates as specified in Table 3.1. The Symbol Error Rate (SER)
model used is based on 256-ary orthogonal non-coherent modulation [21] and the simulator
implements a separate probability distribution for the preamble, F1 and the payload (class
RadioSER), see appendix A.

 100kbps 1Mbps 10Mbps
fpayload Payload transmission rate 0.1 1 10 Mbits/s
fchip Chiprate 0.4 4 40 MHz
nchip Number of chips in a symbol 32 32 32
tsymbol The length of a symbol (8 bits)

nchip/fchip
80 8 0.8 ms

tcas Preamble length 256/fchip 640 64 6.4 ms
tf1 Symbol length 128/fchip 320 32 3.2 ms
ton Receive to transmit switching delay 500 50 5 ms
toff Transmit to receive switching delay 0 0 0 ms

n0 Thermal noise density of the receiver -173.8 -173.8 -173.8 dBm/Hz

nt Thermal noise of the receiver -117.8 -107.8 - 97.8 dBm

maxpayload Maximum payload size 500 500 500 bytes

tbackoff Backoff delay after CRC error or
transmission of data:
tcas + tf1 + (4+maxpayload)*tsymbol

41.8 4.18 0.418 ms

fRF Operating RF frequency 50 50 50 MHz

Table 3.1 Physical layer parameters

If a DSSS radio does not receive the preamble correctly, it fails to detect a busy channel. This fact
may lead to an instable radio system when using a random access MAC protocol. To guard

FFI-rapport 2009/00911 35

against instability, each radio node backs off a period of time after detecting a CRC error and
after completing a transmission.

Table 3.1 states an unrealistic operating RF frequency. The purpose of oTWLAN is not to provide
a tool by which researchers can estimate performance in a real terrain, and the simulator sets the
RF frequency to a fixed value (class UTL_RadioCoveragePredictions) regardless of the chip rate.
We use the default setting 50MHz for the three radio versions. Then they will have the same RF
conditions and the performance differences are caused by the radio parameters only.

Section 3.3 stated the importance of having a short vulnerable period (vt), and it is obviously
important to be able to detect the preamble under poor SNR conditions. v on cast t t= + can be
calculated from the parameters in Table 3.1. The first line in Table 3.2 expresses vt -values for the

three radio versions.

A successful packet reception occurs only when all parts of the air frame are received correctly.
Table 3.2 extracts some data from the radio probability distributions to give an indication of the
signal level required for successful packet reception. The radio data can be modified by editing
the classes RadioSER and RadioConstants but then you must also modify the parameters for the
upper layer protocols.

The simulator provides two other packet capture models described in section 6.7, which are very
useful during performance studies.

 100kbps 1Mbps 10Mps
tv vulnerability period 1140 ms 114 ms 11.4 ms

pcas Probability of preamble detection 0.9 @ - 124 dBm

0.1 @ - 127 dBm

0.9 @ - 114 dBm

0.1 @ - 117 dBm

0.9 @ - 104 dBm

0.1 @ - 107 dBm

pF1 Probability of F1 detection 0.95 @ - 127 dBm

0.4 @ - 131 dBm
0.95 @ - 117 dBm

0.4 @ - 121 dBm
0.95 @ - 107 dBm

0.4 @ - 111 dBm
SER Symbol Error Rate 10-3 @ - 118 dBm

0.6 @ - 124 dBm
10-3 @ - 108 dBm

0.6 @ - 114 dBm
10-3 @ -98 dBm

0.6 @ - 104 dBm

Table 3.2 Radio performance parameters.

3.5 Priority Handling

In the past, Multi-Level Precedence and Preemption (MLPP) has been a mandatory service in
connection oriented military networks [17, 18]. With the introduction of IP terminals, we have no
connections to disconnect towards the terminal equipment so preemption in this case must mean
to control traffic streams. MLPP shall specify the importance of the information content and not
the application type. In the simulator, an MLPP value is assigned on a per packet basis at OSI
layer 7, and four levels are supported. The MLPP function handles the traffic strictly after rank.

 36 FFI-rapport 2009/00911

Precedence is needed on data traffic within all layers. Layer 3a and LLC precedence is simply to
serve the priority queues in the correct order, see Figure 3.7. The simulator has a very large buffer
space and never needs delete data packets for allocation of buffers for higher priority traffic. The
MAC preemption process is to interrupt an ongoing MAC scheduling of a lower priority data
packet when a higher priority data packet arrives.

The MLPP process at the MAC level has the highest impact on the performance of the MLPP
service since it is the MAC protocol that assigns transmission capacity. Implementation of MLPP
internally in a node is easy. The difficult part is to construct a mechanism that operates efficiently
between network nodes because distributed nodes have no exact and timely information about the
queue status in adjacent nodes.

3.6 Lifetime Control

One purpose of packet lifetime control is to stop serving data which have expired, that is, the data
is not useful for the recipient(s). Another purpose is to end looping of packets if the routing
protocol fails. We also need to have a maximum packet lifetime in the network to be able to reuse
unique identifiers, for example, the GuId-field in section 3.1. Lifetime is not intended to be used
as a service to take delay measurements!

The principle of the lifetime control function is that the upper layer in the entry-node sets a
maximum lifetime value. The 3a and LLC layer entities in the entry-node measure their internal
queuing delays. When an SDU is sent down to the lower layer, the remaining lifetime and the
internal layer delay are also sent over. Based on these two values, the lower level entity calculates
the remaining lifetime and this value is carried by the outgoing LLC PDU. The receiving nodes
execute the lifetime control function according to the same procedure. When the remaining
lifetime reaches a predefined threshold (a specific threshold is defined for each layer), the
corresponding packet is deleted without further actions. The exception is if a receiving node is an
exit-node. In this case the packet is always sent to the local terminal.

4 Modelling a Network of Radios
Modelling and simulation are two distinct, yet complementary activities. Modelling is the process
of creating a model, while a model is anything to which experiments can be applied in order to
answer questions about the system modelled. A simulator is any object that implements the model
and simulation is the process of running the simulator. The objective of this chapter is to model a
network of radios that can estimate throughput-delay characteristics under different conditions. A
later chapter will elaborate on how this model can be implemented in a simulator.

A model needs to support different operating environments with respect to usage of the
communication services and the radio coverage area (network topology). Thus the model must
facilitate deployment of radio nodes within a deployment area, referred to as the playground, and
provide functions to set up different traffic generators. An example scene is illustrated by Figure

FFI-rapport 2009/00911 37

3.1 where a number of radio nodes deployed on the playground serves terminal traffic on a single
shared radio channel.

The top level components of oTWLAN are shown in Figure 4.1. The user environment, that is, the
usage of the application layer services, is modelled by the User Environment (UE) box. The
arrows signify message passing and the figure illustrates how generators send messages down to
layer 7 within the hosts. A host is an abstraction of a radio (OSI layer 1 to 3) with an attached
user terminal (OSI layer 4 to 7). No messages flow back to the UE and the incoming traffic
streams terminate in layer 7 at the exit-nodes. Notice that the hosts are not connected directly but
communicates through a physical transmission medium, which models the RF conditions on the
radio channel.

 User Environment (traffic)

 Physical Transmission Medium

host 0 host 1 host (n-1)

layer 7

layer 1

Figure 4.1 The basic structure of the oTWLAN model.

The remaining part of this chapter breaks down the basic structure in a hierarchical manner to end
up with a set of sub models of reduced complexity suitable for implementation in a simulator.

The model of a network of radios is a stochastic discrete event continuous time model, and has
a hierarchical architecture composed of two elementary model types: atomic models and coupled
models. Atomic models are, as the name says, the smallest element of building blocks that are
coded manually in some programming language. Coupled models are either composed of other
coupled models and/or atomic models.

The top level is a coupled model, identified by the dotted box in Figure 4.2, named Sim. Sim
contains four atomic models and one coupled model, and encapsulates all the other models. Sim
makes a complete system with any number of hosts.

 38 FFI-rapport 2009/00911

The coupled model Host models a single network node with one radio and one user terminal, that
is, a Host encompasses layer 1 to 7 of the OSI Reference Model. The model must handle any
number of Host instances where each host is assigned a unique address (number range is zero to
network size minus one).

The atomic model MChannelControl models the Radio Frequency (RF) environment of the real
world, the physical transmission medium in our basic structure16. The functions of the
MChannelControl is to determine the RF path loss according to the path loss model in use, set the
receiving power at the destination end, and copy the RF signals from the coaxOut port of a
transmitting host to the coaxIn port on all the hosts within the radio coverage area of the
transmitting host. The Sim shall have one instance only of the MChannelControl.

host (N>1): Host

coaxIn coaxOut

MChannelControl

Sim

Blackboard

OMNET_Probes

UE_TrafficDataModule

Figure 4.2 The top level of the model is a coupled model containing both atomic and coupled
models.

Host A Channel

Control

RF wave

Host B1

RF wave
t1

t2

t3

Host B2

RF wave

Figure 4.3 Sequence diagram for radio wave propagation when host A transmits. The
MChannelControl distributes the wave to all hosts within the radio coverage area of
host A.

++++++16 The Mobility Framework class ChannelControl [11] is taken as the basis for implementing the
MChannelControl module (Modified ChannelControl).

FFI-rapport 2009/00911 39

message RFwave
{
fields:
double txPowerDbm; // Radiated power in dBm with which this packet is transmitted.
double rxPowerDbm; // Power in dBm at the receiver antenna input
double rxPowerW; // rxPowerDbm converted to W
double duration; // Time it takes to transmit the packet, in seconds!
double startedAt; // The time instance the wave reached the receiver antenna.
int srcNode; // The host identifier (>= 0) that sends this packet.
};

Figure 4.4 The attributes of the RF wave.

The atomic model Blackboard does not exist in the real world, but is included in the model for
publishing of cross layer information. Information published on the Blackboard does not traverse
the radio channel, does not affect the network performance and Sim shall have one instance only
of the Blackboard.

One usage of the Blackboard is in conjunction with routing. The MChannelControl publishes the
link cost matrix (see section 5.4) on the blackboard at time instance zero (the model does not
support mobility). By reading this set, the network routing algorithm gets information about radio
link connectivity, which is needed to route traffic over multiple radio hops. Another usage of the
Blackboard may be to implement an address map between internal addresses, range is 0...(n-1), to
external addresses (e.g. IP addresses, map[host0].ipAddress gives 127.0.0.8).

The atomic model OMNET_Probe collects samples from network distributions (packet loss,
queuing delays, etc.) and performs data analysis in run-time. Such functionality would also be
needed if network statistics should be measured in a real system. Sim shall have one instance only
of the OMNET_Probe.

An objected oriented approach has been followed during development of a model - there is a one-
to-one mapping between the real-life components and the components in the model. A host (layer
1 to 7) in the network contains a network node (layer 1 to 3) and this again contains a Network
Interface Card (NIC) (layer 1 and 2). A network may contain any number of hosts, but a host can
contain one NIC only. Motivated by these observations, we introduce a set of atomic and
coupled models as shown in Figure 4.5.

 40 FFI-rapport 2009/00911

L1

L2

L3/3a

LLC

L4

UDP-SAP

L7

3aPDP

TCP

L7DataProtocol

TCP-SAP

MAC

PHY

L2

host: Host

net: L3_3aLayer

coaxIn coaxOut

data: L7_DataProtocol

nic: RadioNic

d3
tcp: L4_Tcp

d4

d2

d1

d5 c1
RadioNic

Figure 4.5 The layered reference model (left) and the interior of the coupled model Host (right).
Coupled models are marked as dotted rectangles.

The atomic model L7_DataProtocol is a simple application layer protocol which handles TCP
and UDP traffic. TCP is implemented by the coupled model named L4_Tcp in Figure 4.5 and is
specified in [3]. Figure 4.6 exhibits its internal organisation.

All the model gates in oTWLAN are assigned unique identifiers. Gates used for data traffic are
prefixed by the letter “d” in their names while gate names prefixed by the letter “c” carries control
messages. The letter is followed by a unique positive integer. Control messages are for
coordination of (n+1)-layer and (n)-layer entities, for example, Xon/Xoff flow control between
the 3a layer and the LLC layer.

tcp: L4_Tcp

tcpinet: TCPtcpstub: L4_TcpStub

d2

d4

d20

d21

Figure 4.6 The coupled model L4_Tcp contains the atomic module TCP which is implemented
by the INET-project [1]. The atomic module L4_TcpStub is designed to be a wrapper
between the INET software and the oTWLAN software.

Figure 4.5 above introduced the coupled model RadioNic and Figure 4.7 below expands the
coupled model to three new atomic models.

FFI-rapport 2009/00911 41

mac: L2_MacLayer

baseband: L1_DsssBaseband

nic: RadioNic

coaxIn coaxOut

d5In d5Out c1Out c1In

llc: L2_LlcLayer

Tx/Rx
Switch RF/IF stage

Baseband
processor

MAC
processor

RX, TX, RSSI Data
Control

DsssBaseband MacLayer
LlcLayer

Data
Control

message RFwave
{
fields:

double txPowerDbm;
double rxPowerDbm;
double duration;
double startedAt;
int srcNode;

};

d6 c2

c3d7

Figure 4.7 The topmost figure depicts an RF wave that arrives at the receiver and shows the
internal structure of a radio card. Functional split of the RadioNic into atomic
modules is shown in the bottom figure. Incoming RF waves arrive at the coaxIn port.
A radio transmission leads to an outgoing RF wave on the coaxOut port.

The atomic model L1_DsssBaseband models the DSSS radio while the atomic model
L2_MacLayer implements the MAC protocol. The L2_LlcLayer implements the Logical Link
Control (LLC) protocol. Seen from the host point of view, only a well defined interface to the
NIC is needed and therefore we encapsulated the DsssBaseband, MacLayer and LlcLayer into a
coupled model named RadioNic. The RadioNic provides the two data ports d5In and d5Out. d5In
is for layer 3 data from the host that shall be sent over the air interface. d5Out is the output port of
data received over the air interface. In addition to these two data ports, we have two ports for host
internal signalling; c1Out and c1In. Of course, the DsssBaseband and the MacLayer must also
communicate - both data and local control signalling are needed. This is done over a number of
gates as illustrated by the figure.

The modelling hierarchy is now completed since all coupled models are described by atomic
models. The oTWLAN model is a model of models organised in a hierarchical manner as
illustrated by the tree structure in Figure 4.8. The leaf nodes are the atomic models. The top node
is the Sim, which is a coupled model, and the model may have any number of the nodes named
Host.

 42 FFI-rapport 2009/00911

Sim

Probe Host0

L7_DataProtocol

Blackboard

L4_Tcp L3_3aLayer RadioNic

Hostn-1 UserTrafficDataModule
MChannelControl

L2_MacLayerL2_LlcLayer L1_DsssBaseband

Figure 4.8 The oTWLAN model is a model of models organised in a hierarchical manner.

Before leaving this chapter, we will give a more detailed description of the MChannelControl
module by means of Figure 4.9. When a transmitting radio sends, the DsssBaseband module
creates an RF wave and fills in the parameters: srcNode, txPower [dBm], duration [sec], startedAt
[sec]. Time values refer to the simulator’s time axis. The RF wave message is sent to the
MChannelControl module, which calculates the signal level for each possible destination, makes
an explicit copy of the RF wave to each destination, fills in the rxPower and sends the message to
all the receivers. Further processing of the RF wave is done within the receiving DsssBaseband
module.

Physical Transmission Medium

message RFwave
{
fields:

double txPowerDbm;
double rxPowerDbm;
double duration;
double startedAt;
int srcNode;

};

message RFwave
{
fields:

double txPowerDbm;
double rxPowerDbm;
double duration;
double startedAt;
int srcNode;

};

Figure 4.9 The MChannelControl module models the physical transmission medium.

FFI-rapport 2009/00911 43

5 Input Data Structures
The purpose of this chapter is to specify the semantics of the simulator’s input data structures and
give some guidance how they are created by the GUI editors. We refer to the oTWLAN doxygen
based documentation for a complete description of the syntax.

An ad-hoc network might be considered as having the three planes shown in Figure 5.1. At the
bottom we have the playground area - the geographical area where the mobile nodes move
around. The next upper plane is the pathloss layer that models the radio wave propagation. The
topmost layer is the traffic plane. These planes model the environment with respect to user
mobility, the users’ deployment location within the terrain and the usage of the communications
services (traffic).

y

x

pathloss plane

playground

traffic plane

Figure 5.1 Modelling the network environment. These layers must be configured in sequence,
starting at the bottom layer. The nodes are assigned unique identifiers within the
playground plane and these identifiers are used within the other two planes.

A graph is a collection of vertices and edges. The term network topology addresses the graph that
represents the connectivity of the network as seen by the network layer. The network topology of
oTWLAN is, among others, determined by the following models:

The node mobility model
A mobility model defines the spatial distribution of the nodes within the deployed area. A
spatial distribution that is time variant represents node mobility.

 44 FFI-rapport 2009/00911

The pathloss model
A pathloss model defines the RF attenuation function of a radio link. The simulator provides
a pathloss model based on Egli [9]. Under this model, the RF condition is affected by the
spatial distribution. We need the possibility of having perfect control of the pathloss during
the validation of the simulator and the study of protocol behaviour. A fixed pathloss model 17
is therefore provided and this pathloss model is not affected by the spatial distribution.

The traffic model
A traffic model defines the user input traffic to the system (OSI layer 7) in terms of arrival
rate and packet length. A traffic generator is characterised by the following attributes:
• Arrival rate distribution [packets/s]
• Payload length distribution [bytes]
• Traffic pattern distribution
• Quality of service: the ARQ distribution18, priority distribution and packet lifetime

Each node in the system is assigned a unique identifier and this identifier is the same within all
the three planes. Nodes can only be added at the bottom layer where the node identities are
assigned, but they can be deleted within any plane.

The user of the simulator specifies a network scene by inserting values in a number of data
structures, and these data structures are located in XML-based files assigned unique names under
the setup-directory. The oTWLAN dashboard provides GUI based editors for maintaining these
files. However, any user may edit the XML-files directly in his favourite editor. The user of the
simulator must supply values to these data structures before the oTWLAN kernel is started. The
oTWLAN kernel parses the XML-based files when it starts up. The objective of this chapter is to
describe the syntax and semantics of the XML-files. Syntax errors or missing data are detected by
the Qt XML module while the range checks are done in the oTWLAN software. Semantic is
important because the oTWLAN kernel aborts if some of the rules are broken. Inconsistent data
may lead to unpredictable behaviours – the best that can happen is a nice crash with a useful error
message. The worst outcome is production of simulation results without detection of erroneous
input data!

17 A symmetric matrix assigns constant loss values.
18 The ARQ distribution describes the probability of requesting use of ARQ. P(arq)=0 means “no use of
ARQ” while P(arq)=1 means that all packets use ARQ.

FFI-rapport 2009/00911 45

5.1 Playground

The playground specifies the nodes’ positions within the operating area. The playground data
graph is specified in Figure 5.2 and the following rules apply for the playground:

1. The playground parameter values cannot change during the simulation session.
2. The playground may define a larger node set "<node>...</node>" than the

networkSize. This is beneficial since a large playground can easily be scaled down to
contain fever nodes by changing a single parameter.

3. The network size determines the number of hosts objects that are created (cf.
sim.numHosts).

4. Each host is uniquely identified by an address within the range 0...networksize-1.
5. If the number of node-branches is less than networkSize, the playground is invalid.
6. The node vertices must identify exactly one and only one host in the set

0...networksize-1.
7. There cannot be any missing node addresses in the range 0...networksize-1.

playground< networksize >

node < address > playgroundSizeMeters

positionMeter

node < address >

positionMeter

Figure 5.2 The playground data graph is a tree with the top node <playground>.

Here is an example playground of size 5000m X 5000m with two nodes: address 0 and 1.

<playground networksize="2" >
 <playgroundSizeMeter x="5000" y="5000" />
 <node address="0" >
 <positionMeter x="200" y="0" />
 </node>
 <node address="1" >
 <positionMeter x="200" y="100" />
 </node>
 <node address="2" >
 <positionMeter x="200" y="200" />
 </node>
</playground>

Address 2 is neglected since the address range is 0...1. The playground data structure is
implemented by the class XML_Playground.

 46 FFI-rapport 2009/00911

5.2 Pathloss Matrix

The pathloss matrix (class XML_PathlossMatrix) specifies the radio link pathloss for all the radio
links in the network and its data graph is specified in Figure 5.3. The graph determines the
following semantics of the pathloss matrix:

1. The pathloss parameter values cannot change during the simulation session.
2. The default branch specifies default values for all radio links in the network.
3. The node i branch specifies deviations from the defaults for the network node

identified by address i.
4. All the nodes (0...N-1) are first assigned values from the <default>-element and then

overwritten by the node i branch values.

pathloss

network size default node 0

rflink rflink

node 1

rflink rflink rflink

...

model valueDB toNode

Figure 5.3 The pathloss data graph is a tree with the top node <pathloss>.

The pathloss editor (class GUI_PathlossEditor) in Figure 2.4 builds this data graph after
completing the following sequence of stages:

Stage 1 Set the network size
Use the spin box to set the network size and the editor creates an NxN matrix of radio links where
each network node is identified by an integer in the range 0...N-1.

Stage 2 Assign a default model
Assign a default model and default value(s) where needed. The editor appends this default model
to all the radio links defined in the previous step.

Step 3 (optional) Change individual links
The “Change Links” panel provides functions to overwrite the settings assigned in step 2. You
must use the “Add Changes”-button to apply the changes to the matrix. Use the “Show”-button to
inspect the matrix.

Step 4 Save the data
The editor converts the pathloss data graph to XML and writes it to the file setup/pathloss.xml.

The figure below presents an example.

FFI-rapport 2009/00911 47

<pathloss>
 <size>3</size>
 <default model="Fixed" valueDB="999" />
 <node id="0" >
 <rflinks model="Fixed" valueDB="10" toNode="1" />
 </node>
 <node id="1" >
 <rflinks model="Fixed" valueDB="10" toNode="0" />
 <rflinks model="Fixed" valueDB="10" toNode="2" />
 </node>
 <node id="2" >
 <rflinks model="Fixed" valueDB="10" toNode="1" />
 </node>
 </pathloss>

0 2 1

Figure 5.4 This example gives a chain of 3 nodes (since 999 dB pathloss stops all RF waves
while 10 dB is a very low attenuation).

5.3 Data Traffic

The simulator’s traffic module generates traffic to layer 7 for all the hosts in the system. The
traffic specification is stored in an XML coded file and this file can be created manually, or by
using the traffic editor (class GUI_TrafficEditor). The structure of this file is illustrated in Figure
5.5, and the traffic editor creates vertices in this graph. The graph determines the following
semantics of the simulator’s traffic (class XML_UserTraffic):

1. The network size cannot change during the simulation session.
2. The offered traffic can be specified separately for each run.
3. A run can have any number of generators.
4. One or more generator objects are created for each generator leaf vertex found in the

traffic tree (One object for each source in the source address field).
5. The generators’ attributes are assigned values in two steps:

1) Copy in the data found under the default branch; then
2) Overwrite these data with the data found under the generator branch.

A simulation session must have one or more generators, and a host may have zero or more
generators. The effect of having zero generators in a session is that no traffic will be generated in
the simulator, and the simulator terminates immediately. The default branch must specify values
for all generator attributes, and the generator branch must include at least one attribute.

traffic

network size run nrun 1

gen generator

run 2

default generatordefault

arrival distr pattern distr

gen gen gen

arrival distr pattern distr

Figure 5.5 The network traffic represented as a graph with the top node <traffic>.

 48 FFI-rapport 2009/00911

We take an example to clarify the resulting offered traffic per host. Let {1,2} {3,4,5}()g a→ denote

offered traffic from the random source set {1,2} to the random destination set {3,4,5} with the
arrival rate a. The oTWLAN kernel creates at run-time two independent generator objects

{1} {3,4,5}(/ 2)g a→ and {2} {3,4,5}(/ 2)g a→ - the L7 packet rates at the two sources are a/2. If you

specify the two generators {1} {3,4,5}()g a→ and {1} {7,8}()g a→ , the L7 offered traffic from host 1

becomes 2a.

The traffic editor in Figure 2.12 builds this data graph after completing the following sequence of
stages:

Stage 1 Set the network size
Use the spin box to set the network size N and the simulator creates a container for traffic
generators that accepts network node identifiers in the range 0...N-1.

Stage 2 Set the default model
Assign a default model and assign values to its attributes. Then click on the “Set default” to apply
the defaults. These defaults are taken as the default values for the generators created in the next
step.

Stage 3: Create the generator(s)
The previous stage has just assigned defaults and none generator is yet created. Use the
“Generator Controls” panel to create traffic generators. Note: The underlying data model is not
updated before the “Update”-button is clicked.

Stage 4: Set the run number
Use the run number spin box to select the run number and click on “Add run”. The generator is
added as a new leaf vertex in the correct run branch of the traffic tree.

Step 5 Save the data
The editor converts the data graph to XML and writes it to the file setup/userdatatraffic.xml.

FFI-rapport 2009/00911 49

<traffic>
 <networksize size="3" />
 <run number="1" >
 <default>
 <priority P1="0" P2="0" lowestP0="0" highestP3="1" />
 <arrivalDistributionPacketsPerSec model="Fixed" a="0.1" />
 <payloadDistribution model="Fixed" a="50" />
 <lifetime lifetime="60" />
 <arq arq="0" />
 <trafficPattern model="BySrcAndDstSets" from="0" to="2" />
 <protocol use="UDP" />
 </default>
 <generator>
 <arrivalDistributionPacketsPerSec model="Exponential" a="0.01" />
 </generator>
 </run>
</traffic>

Figure 5.6 The traffic model for the system is described by an XML-file.

Traffic input data is described by the example XML-file shown in Figure 5.6. Different data apply
two different simulation runs, and the <run>-tag identifies the run the data applies to. A generator
is first assigned values from the <default>-tag and then overwritten by the attributes defined in its
local scope (the area between the <generator>...</generator>). The “from” and “to” attributes
reference end-source and end-destination addresses of hosts within the system. Hosts are
numbered 0...(<networksize>::size-1). Addresses outside this range lead to modelling errors.

The traffic generators provide fixed and exponential packet arrival distributions with the payload
length distributions fixed and uniform. The following traffic pattern models are supported:

From all-to-all.
When a new arrival event occurs (in the UE_UserTrafficDataModule), the end-source address
and the end-destination address are randomly drawn from the end addresses domain of the
system. Routing and relaying are generally needed to serve this traffic type.

From all-to-all RF neighbours.
When a new arrival event occurs (in the UE_UserTrafficDataModule), the end-source address i is
randomly drawn from the addresses domain of system. Then an end-destination is randomly
drawn from a RF connectivity matrix belonging to address i. Routing and relaying are not needed
since the traffic streams terminate in nodes connected directly to the source node.
The RF connectivity matrix is calculated from link cost matrix in Figure 5.7 and the user may set
a link cost limit (range 1 1.49r≤ ≤). For example, if the user sets the link cost limit to 1.3, only
adjacent neighbours having a link quality better than 1.3 will be included in the RF connectivity
matrix.

By source and destination sets.
The oTWLAN user sets up explicit source and destination sets before a simulation session starts.

 50 FFI-rapport 2009/00911

5.4 Routing

The simulator does not implement a routing protocol and the user must specify a routing matrix
before the simulation thread starts. This matrix (class XML_Routing) specifies the routing path
between all combinations of source/destination pairs in the network. Data is stored in an XML
coded file named routing.xml, and this file can be edited manually using a standard text editor, or
created automatically through the routing viewer (class GUI_Routing) in Figure 2.10. The routing
viewer can build a routing table from a minimum spanning tree based on the link cost described
below.

The following rules specify the semantics of the routing matrix:

1. A path must be specified between every pair of source and destination.
2. Addresses are numbered 0...networksize-1.
3. All routing paths are symmetric: path i->j == path j->i.
4. A path is an ordered set where both end-points must be included.
5. The upper triangular must be completely filled in.
6. The routing may be specified as an upper triangular matrix only, and the class

XML_Routing fills in the lower triangular according to rule 3.

A routing matrix for a 3-node chain looks like this:

<routing networksize="3" >
 <path src="0" dst="2" >
 <hopset s="0,1,2" />
 </path>
 <path src="0" dst="1" >
 <hopset s="0,1" />
 </path>
 <path src="1" dst="2" >
 <hopset s="1,2" />
 </path>
</routing>

The automatic construction of a routing table is based on the cost-SNR function shown in Figure
5.7. A link having an SNR level greater than snrb is assigned the lowest cost factor one since the

link seldom experiences air frame corruption during the low traffic hour (where frame corruption
is caused by the background noise only). As the SNR deteriorates, any link reaches a point snra

where the link quality is not sufficiently high for data communications. Links with SNR levels
below this value are assigned an infinite cost factor. The (,)snr snra b parameters are determined

by modulation and coding, and oTWLAN (see appendix A) uses the threshold values (-6, +3) [dB]
(class UTL_RadioCoveragePredictions).

Let i jSNR→ [dB] denote the signal-to-noise ratio when node i transmits to node j, given only one

transmission in the network (i j i j tSNR S N→ →= −). The following algorithm is used for

automatic production of the routing table:

FFI-rapport 2009/00911 51

Step 1 Calculate the link cost matrix

Let rxC be the link cost matrix of order n n× , where n is the number of nodes in the

network. The pathloss of radio links are symmetric, but since the radios can have different
transmitting power, the matrix rxC may become asymmetric. Based on the pathloss
model and the radio data, calculate the elements , | ()i j i j≠ in rxC using the following

link cost function

cos 1i jt → = for i jSNR b→ ≥

0.49cos () 1i j i jt SNR b
a b→ →= − +
−

 for i ja SNR b→≤ <

cos i jt → = ∞ for i jSNR a→ <

The last line sets the radio link to none existing.

Step 2 Convert rxC to a symmetric matrix

Loop over all the elements , | ()i j i j≠ in rxC : if , ,i j j ic c≠ then set

, , , ,, max(,)i j j i i j j ic c c c= .

Network protocols demand bidirectional radio links.

Step 3 Build the all-pairs shortest-path graph

An all-pairs shortest-path problem is to find a shortest path from every vertex to every
other vertex in a graph. Within our context, this means to take the cost matrix from the
previous step and feed it into an algorithm that solves the shortest-path problem.

In principle, this routing model does not exclude mobile hosts - just build new routing tables
when one or more hosts have moved a sufficiently long distance to give significant change of the
network topology. However, we have already decided to exclude mobile hosts and build the
routing table once at time instance zero. The routing table is published on the blackboard and
becomes available to all the hosts in the network.

 52 FFI-rapport 2009/00911

SNR i->ja

cost

1

packet loss 0%

packet loss 100%

1.49

a b
1 1 1

1.49 1.49

b

Figure 5.7 The radio links are assigned a cost factor according to the SNR-level. The
demodulation threshold cost value is set to 1.49 to force the routing to select the two
hops routing path instead of three hops at the upper right corner of the figure.

5.4.1 A case study

The aim of this section is to illustrate the practical aspects of the link cost and usage of the routing
viewer (Figure 2.10). Consider the scenario in Figure 5.8 where seven nodes are deployed on the
playground.

MSG server

0

2

1

3
4

6

5

Figure 5.8 A playground with seven nodes.

FFI-rapport 2009/00911 53

Node 2 has a central position since it operates as a router between the wireless clients and the
infrastructure. The link cost table shows that this is not a fully-connected network. For example,
node 0 is not connected to node 4. The SNR table expresses -8.9 dB SNR on this link and
demodulation never succeed19. However, the preamble detection probability is 0.3 (the right
table) and thus node 0 and node 4 are not completely hidden nodes in the sense that the MAC
protocol prevents collisions from time to time. The routing viewer in Figure 2.10 displays routing
graphs after selecting a top node.

Of particular interest in this scenario are the edge node 0 and the gateway node 2. The output
graphs from the routing viewer are presented in Figure 5.9. Node 2 reaches all nodes in one hop
and this is beneficial due to its importance for having fast access to the message server. Node 0
may communicate with all the other nodes in the network but the traffic must be relayed over
three hops to reach node 4 and node 6.

MSG server

0

2

1

3
4

6

5

Figure 5.9 The routing graph for node 0 and node 2.

19 The SNR table applies to the low traffic hour where bit-errors mostly are caused by the background
noise. As the traffic increases, the SNR becomes degraded due to collisions.

 54 FFI-rapport 2009/00911

5.5 Radio Data

Radio data (class XML_RadioData) specifies basic physical layer attributes such as power and
antenna height, and the data structure has a default section containing these attributes:

 <txpower watt="1.0" />
 <antenna txGainDBi="0.0" rxGainDBi="0.0" heightInMeters="2.0" />
 <captureModel model="Normal" backgroundNoise="0.0" />
 <equipmentVersion hw="Version1" />

The <captureModel>-tag (cf. section 6.7) and the <equipmentVersion>-tag have a global scope in
the sense that all radio nodes in the network use the same value. The latter describes the radio
hardware in use, different hardware is assumed incompatible, and all the nodes must use the same
version number. However, <txpower> and <antenna> can change between nodes. The data graph
is shown in Figure 5.10 and the following rules apply:

1. All nodes are assigned data from the <default>-section.
2. When a node address is found in the <node>-section, data assigned from the <default>-

section is overwritten by attributes under the <node>-section.
3. The following tags shall not be included in the <node>-section: captureModel and

equipmentVersion.
4. The <default>-section is mandatory and all the tags must be present with valid values.
5. The <node>-section is optional.

radioData

node ndefault

captureModel

node 1

txpower

equipmentVersion

antenna txpower antenna txpower antenna

Figure 5.10 The structure of the radio data.

The physical layer editor (class GUI_PhyLayerEditor) in Figure 2.5 provides a tool box (cf.
QToolBox) where the page “Global Parameters” assigns values to <captureModel> and
<equipmentVersion>, while the page “Default parameters” assigns values to the rest of the
<default>-section. The usage of the physical layer editor is as follows:

Step 1 Global Parameters
Select the page “Global Parameters” and make your choices.

Step 2 Default Parameters
Select the page “Default parameters” and change the spin box settings.

FFI-rapport 2009/00911 55

Step 3 (Optional) Node Parameters
Select the page “Node Parameters” and set values on per node basis.

Step 4 Save the data to the file setup/radiodata.xml.

Here is a printout of a radio data XML file:

<radioData>
 <default>
 <txpower watt="1.5" />
 <antenna txGainDBi="0.0" rxGainDBi="0.0" heightInMeters="2.0" />
 <captureModel model="Normal" backgroundNoise="0.0" />
 <equipmentVersion hw="Version1" />
 </default>

 <node address="0" >
 <txpower watt="3.0" />
 </node>
 <node address="1" >
 <txpower watt="30.0" />
 <antenna txGainDBi="1.0" rxGainDBi="1.0" heightInMeters="3.0" />
 </node>

</radioData>

The backgroundNoise element applies only to the capture models “perfect capture” and “zero
capture”.

5.6 Probe Data

The probe module [2] takes its input from an XML coded file (named probeInFile.xml) and this
file specifies which probes shall be activated for the simulation session. Figure 5.11 shows the
structure of the file controlling the probe module, and the probe editor creates vertices in this
graph.

probeInput

defaults probe

name probeType

probe

name probeType

probe

Figure 5.11 The probe input data graph is a tree with the top node <probeInput>.

The graph determines the following semantics of probes:

1. The probe module configuration is the same for all the session run numbers.
2. The default branch may be omitted.
3. A simulation session may have any number of probes.

 56 FFI-rapport 2009/00911

4. All probes are disabled by default20 and every probe is uniquely identified by a human
readable text string. When a valid name vertex is found in the probe branch, the state of
the probe object is switched from disabled to enable.

The probe editor in Figure 2.14 builds this data graph after completing the following sequence of
stages:

Stage 1 (optional) Set the default values
Click the button named “Edit defaults” and a panel for editing the probe attributes appears.

Stage 2 Enable/disable probes
Use the “Insert probe” or “Remove probe” to enable or disable probes.

Stage 3 (optional) Change individual probes
Click on the probe name in the probe table widget and a probe attribute editor appears showing
the current settings. Change the attributes at will.

Step 5 Save the data
The editor converts the data graph to XML and writes it to the file setup/probeInFile.xml.

Here is a probe example file:

<probeInputFile>
 <defaults>
 <probeType>Terminating</probeType>
 <alfaConfidenceCoefficient>0.9</alfaConfidenceCoefficient>
 <accuracy>0.1</accuracy>
 <trace>false</trace>
 <maxmin>true</maxmin>
 <roLimit>0.4</roLimit>
 <transientPeriodLength>10</transientPeriodLength>
 <windowSize>-1</windowSize>
 </defaults>
 <probe>
 <name>endToEndDelay</name>
 <probeType>SampleMean</probeType>
 <accuracy>0.3</accuracy>
 </probe>
 </probeInputFile>

5.6.1 Rate probes

A rate probe takes measurements over a time window and forms a time average at the end of the
window. Examples of a rate probes are the offered traffic probe that estimates the number of
bytes per second generated by the source terminals, and the throughput probe which measures the
number of bytes/s reaching their exit nodes.

20 Probes are static objects in the simulator. Thus they always exist but are deactivated by default.

FFI-rapport 2009/00911 57

Rate probes collect samples over time windows of size tw seconds and form a time average over
the window that is treated as a single sample during data analysis. Figure 5.12 illustrates the
algorithm used by the rate probes21. The two packets (k) and (k+1) arrive in window (i) while
packet (k+2) arrives in window (i+1) and it is the time average over each window that is taken as
a sample.

windowi

simulator time axis

packetk

windowi+1

packetk+1

packetk+2 packetk+3

Figure 5.12 Rate probes collect samples over a time window.

When the packet arrival process is a Poisson process with intensity l packets per second, the
expected number of arrivals in each window is w wn tλ= ⋅ (Little’s law). If nw is a small number,

we have a high likelihood to have no arrivals during the simulation period and all windows
produce a zero and the mean value is estimated to zero. This is clearly not a correct value. If the
rate probe is activated as a terminating probe [2, chapter 2], the same situation may occur if
5000 wtλ⋅ is a small number, but the consequence is different22. Collecting 5000 zeros leads to

accuracy = halfWidth/mean = 0/0 = 1, the batch means procedure stays in its estimation state and
demand more samples.

From the discussion above we conclude that nw should be large, but since the packet intensity
distribution l is unknown it is impossible to calculate tw in advance. For this reason, the probe
module has been extended to provide a function which adjusts the time window at run-time to
have exactly two samples in each window. The user activates the adaptive window function by
inserting the string “auto” instead of inserting a double on the window size input line in Figure
5.13.

21 This section outlines rate probes because the oProbe project [2] does not describe rate probes. oTWLAN
also extends its functionality.
22 The batch means procedure needs 5000 samples before data analysis can start.

 58 FFI-rapport 2009/00911

Figure 5.13 The Probe Editor (class oProbe::GUI_ProbeEditor).

A rate probe activated as a sample mean probe can safely use the automatic window size function
without experiencing a longer simulation time or producing erroneously results. To study the
effect of different tw-sizes in conjunction with the batch means procedure, we estimated the
offered traffic from a single traffic generator using a Poisson arrival process with rate 1 packet/s
and 400 bytes fixed packet length. The offered traffic is then known to be 400 bytes/s. Table 5.1
presents the results of these trials under various window sizes.

Window size tw [sec] Estimated mean Sample size Run time [sec]

10 400.8 ≤ 3.9 6002 (*10) 5.5
1 400.4 ≤ 4.2 57502 (*1) 5.3

0.1 400.4 ≤ 4.3 562502 (*0.1) 7.2
0.05 400.4 ≤ 4.0 1137502 (*0.05) 12.3
0.01 400.4 ≤ 4.0 5612502 (*0.01) 148

Automatic 400.5 ≤ 3.6 30002 (*2) 5.8

Table 5.1 Estimated offered traffic in bytes/s as 99% confidence intervals.

Firstly, note that all confidence intervals cover the true mean (400 bytes/s). The sample size
column expresses the number of samples gathered at time of termination. The total number of
packets included in each sample is identified by (*x). For example, 6002 (*10) means 6002*10
packets were required before the accuracy was reached. All the runs demanded approximately the
same number of packets but the table shows significant deviations in the execution times. This is
caused by the increasing event rate generated by the probe module as the observation window
decreases. The lessons learned from these experiments are: 1) Use the window size “automatic”
since only an insignificant increase in run-time is experienced and you need not to bother about
the problem of selecting a sufficient large window size compared to the underlying rate
distribution and 2) Turn off all rate probes not needed to prevent unnecessary generation of
events.

FFI-rapport 2009/00911 59

5.6.2 Probe objects

Probes are the most important tool to get results from simulators and oTWLAN implements a large
number of probes that estimates the first order moment of the underlying probability distributions.
This section explains what the different probes measure. Probes tagged by priority (P0,...,P3) do
only sample traffic at the corresponding priority level.

throughput, throughputP0,..., throughputP3 [bytes/s].This is the layer 7 throughput and is the
sum of all packets that successfully pass between end terminals. The sampling is done in the
L7_DataProtocol-module. Five throughput estimators are available; one for each of the four
MLPP levels and one sums the throughput over all MLPP levels.

offeredTraffic [bytes/s]. This is the sum of the traffic sent by the user environment module to the
hosts. The sampling is done in the L7_DataProtocol-module. A god practise is to activate this
estimator in all simulations to detect faulty setting of traffic generators.

endToEndDelay, endToEndDelayP0,..., endToEndDelayP3 [seconds]. The end-to-end packet
delay is the difference between the time of delivery and the time of arrival measured at layer 7.

3aNReTx. This estimator measures the number of times the layer 3a entity must retransmit
packets. Only packets that shall use ARQ are included in the statistics.

3aQueueTimeTransitTraffic [seconds]. The average waiting time for all traffic in the transit
buffer (Figure 3.7). Transit traffic is traffic received from the neighbourhood and shall be relayed
by this node. Sampling is done when the 3a PDU is sent down to the LLC layer and the PDU may
get an additional queuing delay within the LLC layer.

3aQueueTimeLocalTraffic [seconds]. Measures the average waiting time for all traffic received
from the layer above layer 3 (Figure 3.7) and represents traffic that have not yet been sent on the
radio channel. Sampling is done when the 3a PDU is sent down to the LLC layer and the PDU
may get an additional queuing delay within the LLC layer.

3aHopCount. Measures the number of hops the packets traverse end-to-end. You have a means to
detect a faulty routing table if you activate sampling of max/min values of this estimator.

llcNReTx. This estimator measures the number of times the LLC entity must retransmit packets.
Only packets that shall use ARQ are, of course, sampled.

llcQueueTime [seconds]. The LLC layer may store one fresh LLC SDU per priority and this
estimator measures the waiting time in this queue, that is, the time delay until it get served by the
LLC entity.

phyNKTx. This estimator measures the number of simultaneous transmissions present when the
baseband processor (class L1_DsssBaseband) gets an F1 detection alarm. If phyNKTx = 1 then

 60 FFI-rapport 2009/00911

no collisions have occurred. The estimator takes the average over all nodes in the network. This
estimator gives a good indication of the conditions in a well connected network. However, in a
fragmented network the MAC protocol is less efficient and collisions may frequently occur after
F1. Those events will not be measured by this estimator.

phyECI [seconds]. This estimator measures the channel idle period. Compared to the theoretical
channel idle period in Figure 3.11, a radio in the simulator detects a busy channel tv-seconds later.
When a radio detects a CRC error, it may potentially have lost the control of the channel state and
samples are only taken when packet corruptions do not occur.

5.6.3 Counters

Counters (class oProbe::Counters) are objects of the type positive integer that sum up something,
for example, the number of events of a certain kind during a session run. The counters are set to
zero at the start of each session run and the results are printed to a file counters_rN.txt at the end
of run N. The “N” (=1,2,3,...) identifies the session run number.

Counters make samples from stochastic distributions. The quality of the measurements is not
controlled and therefore counters shall never be included in a simulation report. The practical
usages of counters are:

1) Confirming the correctness of your arguments made from the probe output data
2) Discovering erroneous setting of input data
3) Understanding location dependent behaviour

An example of bullet 2) is given in section 7.1. With the assistance of the simulation example in
chapter 2, we concretise the meaning of bullet 3). Consider the following counter output for the
low traffic hour (session run number 1):
sim.host[4].nic.baseband::L1_DsssBaseband:noOfCasAlarms = 18090
sim.host[4].nic.baseband::L1_DsssBaseband:noOfRfWavesRxed = 18090
sim.host[4].nic.baseband::L1_DsssBaseband:noOfF1Errors = 0
sim.host[4].nic.baseband::L1_DsssBaseband:noOfPlcpErrors = 0
sim.host[4].nic.baseband::L1_DsssBaseband:noOfCrc32Errors = 0

sim.host[8].nic.baseband::L1_DsssBaseband:noOfCasAlarms = 18115
sim.host[8].nic.baseband::L1_DsssBaseband:noOfRfWavesRxed = 18115
sim.host[8].nic.baseband::L1_DsssBaseband:noOfF1Errors = 0
sim.host[8].nic.baseband::L1_DsssBaseband:noOfPlcpErrors = 0
sim.host[8].nic.baseband::L1_DsssBaseband:noOfCrc32Errors = 68

Note the similarity between the counters’ structure and the simulator’s data graph in Figure 4.8.
The host numbers inserted are identical with the node addresses displayed on the playground.
Thus host 8 is the edge node 8 in Figure 2.3, while host 4 is the centre node on the playground.
The counter noOfRfWavesRxed sums up the number of RF waves reaching the coax input port on
the radio. RF waves reach the coax input port even though the radio is in a transmitting state. The
output shows that both nodes got a carrier sense alarm (CAS) on each RF wave received. Node 4
never experienced demodulation failure while node 8, which operated under poorer SNR

FFI-rapport 2009/00911 61

conditions, failed a number of times. The same output for the high traffic hour (session run 19)
follows here:

sim.host[4].nic.baseband::L1_DsssBaseband:noOfCasAlarms = 53636
sim.host[4].nic.baseband::L1_DsssBaseband:noOfRfWavesRxed = 58472
sim.host[4].nic.baseband::L1_DsssBaseband:noOfF1Errors = 3
sim.host[4].nic.baseband::L1_DsssBaseband:noOfPlcpErrors = 1078
sim.host[4].nic.baseband::L1_DsssBaseband:noOfCrc32Errors = 513

sim.host[8].nic.baseband::L1_DsssBaseband:noOfCasAlarms = 53280
sim.host[8].nic.baseband::L1_DsssBaseband:noOfRfWavesRxed = 58153
sim.host[8].nic.baseband::L1_DsssBaseband:noOfF1Errors = 16
sim.host[8].nic.baseband::L1_DsssBaseband:noOfPlcpErrors = 1021
sim.host[8].nic.baseband::L1_DsssBaseband:noOfCrc32Errors = 618

Here we see an increase in the demodulation failure rate due to collisions.

6 Simulator Design
A simulator is any computer program which implements the model described in chapter 4. To
design a simulator means to get a step further towards an implementation. This chapter describes
how the oTWLAN is designed to run under the OMNeT++ simulation framework [1]. The user
front-end is based on the Qt open source project [7].

6.1 Design Patterns

This section presents some general guidelines applied during the design and implementation of
oTWLAN. The objective is to have general schemes that are applicable for many of the protocol
layers. Usage of common patterns makes it easier to write, read and reuse software components.

The atomic models defined earlier are implemented as OMNeT++ simple modules (class
cSimpleModule) and the coupled models are implemented as OMNeT++ compound modules.

Gate names containing the string “c” (for control) are reserved for signalling of local control
information within a host, the content shall never be sent over the air interface. Control ports shall
never receive PDU/SDU messages. Gate names containing the string “d” (for data) are reserved
for PDU/SDU messages that are intended to be sent over the air interface (or to local terminals).
Data ports shall never receive local control information.

The message exchange between modules is based on classes which inherit the class cMessage.
The messages passing between layers follow the principle of the OSI Reference Model where
each layer entity adds protocol control information (PCI) for (n)-layer peer-to-peer
communication. Local information exchange between the (n)-layer and the (n-1)-layer is passed
as Interface Control Information (ICI), as illustrated by Figure 6.1.

 62 FFI-rapport 2009/00911

(n)-SDU

(n)-PCI (n)-payload

(n)-ICI
SAP

(n)-layer

(n-1)-layer

Figure 6.1 General principles for encapsulation and interface control.

The OMNeT++ framework includes functions supporting encapsulation/decapsulation and
addition of interface control information to messages. Therefore, all message exchange in the
situations identified by Figure 6.1 shall use the message template in Figure 6.2.

enum Constants
{
 OmnIni = -1; // means that values are taken from the omnettpp.ini file
 Undefined = -100000;// assign an illegal value (better to crash than
 // simulate with legal but uncontrolled values)
 StatDbg = -100001;// variables for statistics and dbg
};

message zzzPDU // (n)-layer peer-to-peer data
{
fields:

// Layer PCI
int constPciLength =...;//The total length of the PDU PCI in #bytes.
int yourPci1 = Undefined;

}

message zzzyyyNetInterface // (n+1)-layer <-> (n)-layer interface data
{
fields:

int yourVariable1 = Undefined;
int yourVariable2 = Undefined;

}

Figure 6.2 Templates for layer PDU and ICI. ”zzz” identifies the (n)- layer and ”yyy” identifies
the (n-1)-layer. These messages are compiled by the OMNeT++ message compiler
which produces two classes. A single variable constPci shall be defined for each
PDU to facilitate easy definition of layer overhead per layer in number of bytes.

An important principle for us is to save all model input data together with the output data from
the simulation experiments. We are then able to repeat our experiments later - we often do to
check, among others, the effect of bug fixes. Figure 6.3 illustrates the basic design scheme
applied to fulfil this work principle. All input/output shall be read/saved in XML-files and the
interactions with XML-files shall go via DOM trees.

FFI-rapport 2009/00911 63

XML file

DOM tree

class XML_Zzzz

read

write

class Container

class GUI_Zzzz

read

write

Figure 6.3 Creation and visualisation of XML file content.

6.1.1 Qt4 Based Models and Views

The Model-View-Controller (MVC) pattern described in [6, chapter 17] is used by the User
Interface (UI) software package specified in chapter 8. A model is the domain specific
representation of the information that the application operates. Views render the model into a form
suitable for interaction with people while the controller integrates the model and the view, and
decides how the user interface reacts to user input. The controller creates view/model instances
and connects them, see Figure 6.4.

Controller

View Model

presents data contains data

direct association

indirect association

Figure 6.4 Depicting the relationship between controller, view and model.

To concretise the meaning of MVC, we look at the playground editor in Figure 2.3 – one of the
first widgets seen by the oTWLAN user. The graphical node items on the playground are
implemented by the class GUI_PlaygroundNodeItem::public QGraphicsItem and the
GUI_PlaygroundScene::public QGraphicsScene implements the surface for managing node items
or other graphical items on the playground. The playground editor implemented by the MVC
pattern consists of the three classes (in sequence):

GUI_PlaygroundModel : public QAbstractTableModel
GUI_PlaygroundView : public QGraphicsView
GUI_PlaygroundController : public QObject

Note the base classes which are Qt4 classes.

 64 FFI-rapport 2009/00911

6.2 The User Traffic Module

The purpose of the user traffic models is to emulate the usage of the application layer services.
The atomic model named UE_UserTrafficDataModule23 defined in chapter 4 contains the traffic
generators. Notice that the UE_UserTrafficDataModule module operates above layer 7.

A data traffic generator is characterised by the following attributes (Figure 6.5):

• Arrival rate distribution [packets/s]
• Payload length distribution
• Traffic pattern distribution
• Quality of service: the ARQ distribution, priority distribution, lifetime

host (N>1): Host

coaxIn coaxOut

ChannelControl

Sim

Blackboard

Probe

UserTraffic

Figure 6.5 The QoS attributes.

The module emulates the users’ usage of the application layer services provided by the module
L7_DataProtocol. The simulator has only one instance of the UE_UserTrafficDataModule which
serves any number of Hosts. L7_DataProtocol objects become clients of the
UE_UserTrafficDataModule when they successfully have passed a registration procedure at run-
time. The message sent from this module to the client modules is shown below.

23 This is a bothersome name and should have been UserTraffic only. The name is inherited from another
simulator project where a multicast voice model also was implemented. That project has a
L7_VoiceProtocol module and a UE_UserTrafficVoiceModule.

FFI-rapport 2009/00911 65

message UserData // A message from the user environment
{
fields:
 int destAddr = Undefined; // range 0...netSize-1
 int srcAddr = Undefined; // range 0...netSize-1
 int priority = Undefined; // range 0...3
 bool useArq = Undefined; // false here disables ARQ within layers 3a,LLC
 double lifetime = Undefined; // [sec]
 int length = Undefined; // payload length in bytes
}

Note that we initialise the attributes to an illegal value which eases debugging.

6.3 The L7_DataProtocol Module

The L7_DataProtocol module (class L7_DataProtocol) is the highest layer protocol. This layer
operates in transparent mode, needs no PCI, and the messages received from the
UE_UserTrafficDataModule module are sent directly down to the L3_3aLayer or L4_Tcp
modules. The L7_DataProtocol is the end point for all incoming traffic in the exit nodes, and all
incoming messages received are deleted in this module.

message L7DataPDU // (n)-layer peer-to-peer data
{
fields:

// Layer PCI
int constPciLength = 0; // [bytes]

// variables for statistics and dbg
double arrivalTime = StatDbg;
int serialNumber = StatDbg;

}

message ApplNetInterface // (n+1)-layer <-> (n)-layer interface data
{
fields:

int destAddr = Undefined; // end destination address, range 0..
int srcAddr = Undefined; // end source address, range 0...(n-1
int priority = Undefined; // priority range 0...3
bool useArq = Undefined;
double lifetime = 60.0; // [sec]
int sduLength = Undefined; // constPciLength + payloadLength

}

Figure 6.6 The fields of the application PDU and the interface control information. The data
structure shown is compiled by the OMNeT++ meta compiler that produces C++
classes.

6.4 The L3_3aLayer Module

The network layer (class L3_3aLayer) is implemented as an OMNeT++ simple module, and the
module architecture is shown in the Figure 6.7. The 3a layer protocol is implemented in a
dedicated class named L3_3aPDP (Packet Data Protocol) which operates on a peer-to-peer basis,
that is, the class sees one remote node only. The module has knowledge of its neighbours and
creates one L3_3aPDP object for each remote peer entity.

 66 FFI-rapport 2009/00911

1

4

i

2
3

Protocol Entity i->2

Protocol Entity i->3

Protocol Entity i->4

3aLayer

Figure 6.7 The internal data structure of the L3_3aLayer module. Node i creates three separate
objects of the class L3_3aPDP; one for each of its three neighbours in the topology
shown.

The L3_3aLayer module within a host module receives SDUs from the layer above, looks up the
next hop address, and forwards the packet to the L3_3aPDP object which serves the destination.
The L3_3aPDP object in charge is determined by the destination address at layer 3. The
L3_3aPDP object takes over the responsibility for the packet and stores the data packet in its
queuing system (class L3_3aPDP::Buffer) for unserved data according the packet’s priority level.
The L3_3aPDP works on a point-to-point basis when it forwards packets. The
L3_3aLayer::poller() allocates execution cycles to the L3_3aPDP objects and the L3_3aLayer
interacts with the LLC layer module on behalf of the L3_3aPDP objects.

6.5 The L2_LlcLayer Module

The LLC layer enhances the quality of the radio channel by employing a selective-repeat ARQ
protocol (transmitter window <= 2). This in conjunction with the precedence and preemption
mechanism needed at this layer, makes modelling fairly complex. The LLC layer is implemented
as an OMNeT++ simple module and the module architecture is shown in Figure 6.8.

1

4

i

2
3

Llc Protocol Entity i->2

Llc Protocol Entity i->3

Llc Protocol Entity i->4

LlcLayer

Figure 6.8 The internal data structure of the LLC Layer module. Node i creates three separate
objects of the class L2_LlcProtocol; one for each of its three neighbours in the
topology shown.

FFI-rapport 2009/00911 67

The L2_LlcLayer module creates one protocol entity for each of its peer entities (a peer entity is
the active element in a host that executes the LLC layer protocol). The class L2_LlcProtocol
implements the LLC protocol. The L2_LlcLayer module within a host module receives LLC
SDUs from layer 3, looks up the LLC destination address and routes the packet to the
L2_LlcProtocol object serving the destination. The L2_LlcProtocol object in charge is determined
by the LLC destination address received from layer 3. The L2_LlcProtocol object takes over the
responsibility for the packet and stores the data packet in its queuing system for unserved data
according to the priority level. The L2_LlcProtocol operates on a point-to-point basis. The
L2_LlcLayer::poller() allocates execution cycles to the L2_LlcProtocol objects and interacts with
the MAC layer on behalf of the L2_LlcProtocol objects. The local interface flow control between
the LLC module and the 3a module is based on a Xon/Xoff message exchange via the control
ports.

6.6 The L2_MacLayer Module

The MAC layer module (class L2_MacLayer) uses no internal buffering and hence introduces no
queuing delay. This means that all outgoing packets reside in the LLC module and when served,
they are sent to the baseband module immediately. A sequence diagram for successful packet
scheduling is shown in Figure 6.9. The LLC module initiates the MAC scheduling by sending a
request signal to the input control port of the MAC module telling the priority level to use (t1),
and the MAC starts an internal scheduling timer. If the MAC module receives a busy signal from
the radio due to an incoming packet over the air interface, it aborts the scheduling and informs the
LLC module about this event (t2). When the scheduling timer expires, MAC requests data (t3),
and LLC sends the data without any delay to the MAC input data port (t4). MAC extracts the
payload from the SDU, builds a MAC PDU, and then forwards the data with zero delay to the
baseband data port. The radio starts serving this packet immediately.

The MAC module is blocked from further service until the radio is able to send more air frames.
This happens after the ongoing transmission is completed plus the backoff delay after each
transmission.

 LLC MAC

Tx request

DSSS

start
scheduling

t1

t2

t3
outgoing
RF wave

busy

send data

data data
t4

idleidle

Figure 6.9 Sequence diagram for successful MAC scheduling and sending.

 68 FFI-rapport 2009/00911

When the radio detects a preamble, the state changes from idle to busy and the radio informs the
MAC module immediately by emitting a local busy signal as shown in Figure 6.10. The MAC
module informs the LLC module about the state change (t1), and the LLC cannot request more
service before it receives an idle signal. The baseband module sends the incoming packet
successfully received, without any delay, to the MAC module (t2).

 LLC MAC DSSS

t1

t2

t3

incoming
RF wave

data

busybusy

data

idle idle

Figure 6.10 Sequence diagram for successful packet reception. Note the local control signals
which are forwarded by the MAC module to the LLC module.

6.7 The L1_DsssBaseband Module

The L1_DsssBaseband module (class L1_DsssBaseband) implements the DSSS baseband
processor. The air frame reception time sequence and the transmit time sequence are modelled as
finite state machines within the class L1_DsssBaseband, while processing of events that need
signal-to-noise calculations, are handled by the class L1_RFdecider.

The channel control module records transmissions, their signal levels and the timing. The
MChannelControl module makes an explicit copy of the RF waves for each DsssBaseband
module, and the DsssBaseband forwards these RF signals to the RFdecider. The RFdecider
determines the outcome of the DsssBaseband correlation/demodulation process from the
following information elements:

• The stage of the current captured packet.
• The signal levels of any overlapping transmissions.
• The relative time-delays between any overlapping transmissions.

The most complex part of the DsssBaseband is the receive process. With the assistance of Figure
6.11, we outline the normal receive process. Consider a network with one transmission only and a
wave arriving at an idle radio at time instance t1. The RF wave is sufficiently strong, compared to
the background noise, to trig a carrier sense (Cas) alarm. When the Cas alarm (preamble detected)
occurs at t2, the DsssBaseband emits a “state is busy” signal to the MAC module. The frame
demodulation phase starts upon successfully capturing a preamble. From this point in time the
radio starts to receive F1 and cannot jump to any overlapping preambles. The DsssBaseband
sends a “state is idle” signal at t4 after having entered the sync-search state.

FFI-rapport 2009/00911 69

rf wave

state is busy
rf wave

packet, crc status

state is idle

t1
t2

t3

t4

MAC DSSS Ch Control

Figure 6.11 Sequence diagram for incoming packet over the air interface

The simulator implements three packet capture models (L1_RFdecider::decide()). The purpose of
two of these, the perfect capture and zero capture, are to validate the simulator as well as giving
upper and lower bounds during traffic analysis. These capture models do not emulate real radios.
A short description of the three capture model follows below.

Normal

This is the normal operating mode described in section 3.4 where preamble detection, F1
detection and the SER are determined by the signal-to-noise level of interfering transmissions.
The baseband module keeps track of all the RF waves on the coax input port and performs
comprehensive calculations to emulate a real radio.

Perfect capture

When a preamble is detected on the first incoming RF signal with a sufficiently high SNR, the
receiver stays locked onto this air frame regardless of the number of overlapping transmissions.
F1, CRC16 and LI are always detected correctly. After the complete frame is received, the
probability of an error free payload is determined by the user input parameter “P(loss of
payload)” in Figure 2.5.

Zero capture

The preamble of the first arriving frame is detected if it has a sufficiently high signal level
compared to the background noise. Any overlapping transmission(s) in any stages of a
captured air frame always lead to receive failure. After the complete frame is received
successfully, the probability of an error free payload is passed to a second process which
determine the probability of payload corruption from a single input parameter, the “P(loss of
payload)” in Figure 2.5.

We now consider the principles of SNR calculation based on the RF waves. The baseband
module starts a Cas timer for every incoming RF wave when it is in the sync-search state (the
correlator searches for a preamble). Upon timeout, the corresponding RF wave becomes the
analysed signal and all the other RF waves on the channel are treated as interference. The
explanation of the processing of the RF waves relies on the terminology “stationary interference”
and “dynamic interference”. A dynamic interference is caused by a packet transmission which

 70 FFI-rapport 2009/00911

starts within the vulnerability period of the analysed signal. A stationary interference covers the
entire analysis period. When the baseband module analyses packet-B in Figure 6.12, packet-C is
treated as a dynamic interference and packet-D as a stationary interference. In a fully connected
network, the MAC protocol is able to give a disciplined access to the channel and we seldom
experience type D packets. However, as the topology alters and hidden nodes show up, the
amount of stationary interference increases.

tv

B

time

A
C

D

t1 t2

Figure 6.12 A packet transmission ends at t1 and all busy nodes within the neighbourhood that
have a common understanding of an idle channel state start their MAC scheduling.

Each baseband module holds a list of RF waves presented on the coax input port and establishes
lists of dynamic interferences and stationary interferences. These lists are processed to form a
total noise figure which is the basis for finding the probability of success according to the current
signal-to-noise ratio on the radio channel.

The simulator schedules a specific event for each of the captured frame stages; preamble, F1,
PLCP-header and payload (see Figure 3.13). Upon processing these events, the simulator
calculates the current SNR level that is one of the inputs to a stochastic process which determines
further actions. This process is implemented by the methods
L1_DsssBaseband::fsmPreamblePhase, L1_DsssBaseband::fsmDemodPhase and
L1_RFdecider::decide.

6.8 The MChannelControl Module

A radio in the real world emits a signal that propagates through the air. The counter part of an RF
signal in the simulator is modelled as the data structure shown in Figure 6.13. Every time a radio
emits a wave, the baseband module creates an instance of the class RFwave, inserts the
transmitting power level measured at its coax output port and sends the wave to the channel
control. The basic idea is that the channel control shall calculate the signal power level at the coax
input port for all other radios in the network and forward an explicit copy of the RFwave to each
baseband module.

FFI-rapport 2009/00911 71

message RFwave
{
fields:
double txPowerDbm; // Radiated power in dBm with which this packet is transmitted.
double rxPowerDbm; // Power in dBm at the receiver antenna input
double rxPowerW; // rxPowerDbm converted to W
double duration; // Time it takes to transmit the packet, in seconds!
double startedAt; // The time instance the wave reached the receiver antenna.
int srcNode; // The host identifier (>= 0) that sends this packet.
};

Figure 6.13 The attributes of the RF wave. The transmitter inserts the txPowerDbm while the
channel control calculates the rxPower.

7 Tips and Tricks
This chapter offers a number of hints about the practical usage of oTWLAN.

7.1 Sanity Checks of the Input and Output Data

Sanity checks of the output data are to inspect a number of output files with the objective to find
errors, either in the software or the input data files. One aid we have is the counters explained
earlier in this document (cf. the OMNeT++ term scalars). A counter is a simple variable within
the source code that counts something, e.g., a variable is incremented whenever a packet is lost,
or a broadcast is received. The simulator has implemented many counters and they are written
into the file counters_r1. The file name is tagged by the session run number it belongs to - “_r1”
in the example name emphasis that the file is an output from run number 1. Consider the three-
node chain in Figure 7.1.

node 0 node 1 node 2

g1 : pattern 0 -> 2

Figure 7.1 A chain of three nodes with one active traffic generator. The generator sends packets
from end source 0 to end destination 2, and does not request use of ARQ.

Here is the output from the counters within the LLC layer:

sim.host[0].nic.llc::L2_LlcLayer:noOfSDUsReceived = 6000
sim.host[0].nic.llc::L2_LlcLayer:noOfDataPDUsReceived = 0
sim.host[0].nic.llc::L2_LlcLayer:noOfBroadcastsReceived = 6000
sim.host[0].nic.llc::L2_LlcLayer:noOfAcksReceived = 0

sim.host[1].nic.llc::L2_LlcLayer:noOfSDUsReceived = 6000
sim.host[1].nic.llc::L2_LlcLayer:noOfDataPDUsReceived = 6000
sim.host[1].nic.llc::L2_LlcLayer:noOfBroadcastsReceived = 0
sim.host[1].nic.llc::L2_LlcLayer:noOfAcksReceived = 0

sim.host[2].nic.llc::L2_LlcLayer:noOfSDUsReceived = 0
sim.host[2].nic.llc::L2_LlcLayer:noOfDataPDUsReceived = 6000
sim.host[2].nic.llc::L2_LlcLayer:noOfBroadcastsReceived = 0
sim.host[2].nic.llc::L2_LlcLayer:noOfAcksReceived = 0

 72 FFI-rapport 2009/00911

This network is configured to have radio channels with an excellent SNR level and the offered
traffic is far below the throughput capacity. Thus packet loss shall not occur. The counters
confirm the following important facts about the network:

- node 2 shall only receive PDUs and no SDUs since its 3a layer shall not send data
- node 0 shall only receive SDUs and no PDUs since the only traffic generator we have is

in node 0
- node 1 shall receive both SDUs and PDUs, and the numbers shall be identical.
- none of the nodes shall receive acknowledgement packets

The latter bullet is obvious because ARQ is disabled. However, a frequent cause of errors is
incorrect setting of the traffic generators and additional checks against the counters often discover
errors in the simulator’s input data. Additional aid you can use before starting the simulator’s
kernel thread is the status widgets in Figure 7.2.

Figure 7.2 The XML Input File Status widget is activated by the meny ”View->XML File
Status”.

7.2 How to simulate without the GUI part

We have so far described simulation runs from the GUI front-end where a single network scene is
taken from a single setup directory. Often we have many different network scenes to simulate,
and typically we want to start a bunch of simulations at Friday to have the results ready at
Monday morning. Batch simulation without use of the GUI is possible when each network scene
is specified in separate setup-directories. If you run the simulator as a console application (class
GUI_SimWithoutGui) using the runSet and simDir arguments below then the program starts
without the GUI:

yourBinName -runSet yourRunSet -simDir fullPathToSimulationHomeDirectory

The yourRunSet confirms to the OMNeT++ syntax (1-5, 1,2,4, etc).

Assume you want to estimate throughput as function of the offered traffic at the three different
power levels: {1W, 2W, 3W}. Then use the GUI front-end to create a home directory named

FFI-rapport 2009/00911 73

power1W, specify the offered traffic (run set 1 to 7), specify the other data and set the
transmitting power to 1W. Copy this directory to two new directories named power2W and
power3W, and set the transmitting power to 2W and 3W, respectively. Then you open a
console/xterm window and writes24:

yourBinName - runSet 1-7 -simDir /home/tore/simulations/power1W
yourBinName - runSet 1-7 -simDir /home/tore/simulations/power2W
yourBinName - runSet 1-7 -simDir /home/tore/simulations/power3W

The outputs will be placed in power1W/output, power2W/output, power3W/output, respectively.

7.3 How to remove the GUI software

This situation occurs if you want to remove the GUI software (remember that simulation without
the GUI is possible). Figure 7.3 shows the software dependency graph and we suggest that you
start to remove the cpp-files prefixed by GUI. Use the compiler to determine the next steps.

OMNeT++

INET

Qt

oTWLAN kernel

oTWLAN GUI

graphviz

oProbe oTCP

Figure 7.3 Software dependency graph. oTCP is an optional module.

7.4 How to remove the kernel part

This situation occurs if you want to reuse the source code that implements the input data editors.
We suggest you start out with the class GUI_MainWindow as basis for your software. KDevelop
users shall establish a new project of the type <C++><QMake project><Qt4 Application> and
create an object for the GUI_MainWindow in the main.cpp as we have in our source code. Then
use the compiler to resolve missing classes and modify the code to prevent dependency of the
class oProbe::OMNET_Thread.

24 Hint: Use a text editor to do a copy/paste into the console window, or write a script.

 74 FFI-rapport 2009/00911

8 The Software Architecture
The purpose of this chapter is to analyse the software environment for the oTWLAN project and
end up with a naming convention for C++ class names. The analysis model below expresses that
we are bounded by three external interfaces. A UI25-package provides widgets to the human user
by which he can edit input parameters, perform execution control and handle output data in
different formats. A MySimulator-package contains the functions required to implement an
oTWLAN simulator based on the OMNeT ++ software components. The simulator needs functions
to collect data and execute data analysis in real-time. These functions are provided by the oProbe-
package. oProbe is an external software package described in [2].

UI MySimulator

OMNeT++
source code area

cEnvir
cSimpleModule
cSimulation
...

oProbe

Figure 8.1 The analysis model for the oTWLAN project. The three most important interfaces to
the external environment are shown as red lines. The solid arrows should be read as
”depends on” (e.g., the UI-package depends on the oProbe-package).

The MySimulator-package implements the modules defined in the previous chapter by using the
OMNeT ++ API. Data shall not be sent directly from the MySimulator-package to the OMNeT++,
but shall be stored in files and read via the OMNeT++ kernel when the simulator starts (cf.
OMNeT++::initialize()). The same principle shall apply to output data (cf. OMNeT++::finish()).

Building a simulator is to implement OMNeT++ modules as C++ classes and to build a front-end
based on the Qt class library [7], see Figure 8.2. The GUI widgets are based on the Qt GUI
module and when we program classes that shall operate “near the user” (front-end classes) the
functionality of the Qt API is used as much as possible. In the opposite direction we have the
OMNeT++ section where the simple modules are implemented.

The input data is configured via GUI widgets and saved into XML based files. When the user
activates “start simulation” from GUI kernel launcher (class GUI_OmnetStartEditor), oTWLAN
builds the omnetpp.ini file automatically (class UTL_OmnetIni) and starts the OMNeT++ kernel
as a thread (class oProbe::OMNET_thread). The modules take their input data from the XML
files.

25 User Interface

FFI-rapport 2009/00911 75

Qt based
GUI widgets

Qt class library

OMNeT++
source
codefront end

classes

extension
files

ordinary
OMNeT++ setup files
omnet.ini, *.ned,...

DsssBaseband:
cSimpleModuleabc:

cSimpleModule

Figure 8.2 The software architecture.

The analysis model in Figure 8.1 is expanded to the design package diagram shown in Figure 8.3,
and the packages outside the red dotted rectangle are external packages. The analysis package UI
(User Interface) is expanded to the packages GUI (Graphical User Interface) and GUIA (GUI
Automatic). This project uses the Qt4 Designer for widget production; the C++ classes produced
by this tool belong to the GUIA-package. The GUI-package uses the GUIA-package to build
widget for interaction with the user. The XML-package is based on the QtXml-module and the
classes using this module belong to this package. Classes implementing the UE-module belong to
the UE-package. oTWLAN has a separate OMNeT++ module for each OSI layer and we introduce
a software package for grouping the software that deals with the protocol stack. To concretise, the
class L3_3aPDP implements functions belonging to the OSI layer 3 (L3) and the “3aPDP”
indicates that this is the 3a layer Packet Data Protocol (PDP).

Every software project has a set of class which has general usage or is difficult to put in a specific
category. oTWLAN is no exception and we specify a UTL26-package as a container for these.

26 utility package

 76 FFI-rapport 2009/00911

GUI

oProbeGUIA

UTL

OMNeT++

L1

L3

L2

UE

XML

L4

L7

Figure 8.3 Design packages and their relationship.

The UE-package contains the classes for modelling the usage of the application layer services,
while the oTWLAN protocol layer modules specified in the design chapter belong to the Lx-
package, where x denotes the number of a layer. The XML-package contains the classes that
handle transformation of data to and from XML. The package UTL (Utility) contains classes of
general usage, and is used by many internal packages.

A problem that often occurs when combining a number of open source projects is name clashes in
C++ programs. A namespace is a mechanism for reducing the risk of this problem. Therefore, we
put the namespace name OTWLAN around all declarations in the header files.

The file and class name convention used for the project is to tag the names with a prefix to
identify the design/implementation package they belong to. In our project, we do not find it
practical to differentiate between a design package diagram and an implementation package
diagram. When you see ZZZZ_zzzz, you know that this class belongs to the ZZZZ-package
defined in Figure 8.3, while zzzz expresses something about its functionality. For example,
L2_LlcLayer belongs to the L2-package (software that implements OSI layer 2 functions) and
implements the LLC layer as a cSimpleModule, while the L2_LlcProtocol is a class that
implements the LLC layer protocol.

FFI-rapport 2009/00911 77

9 Validation and Parameter Optimization
The purpose of this chapter is to evaluate the correctness of the simulator and find protocol
parameter values which optimize the network throughout. We must have an analytical
performance model as a reference to achieve the task. By defining a simplified operating
scenario, we can use the MAC throughput model outlined in [5, chapter 5]. The following
parameters remain constant in this chapter:

Network topology - “all-hearing-all” (AHA)
The radio link pathloss model is set to 10 dB fixed loss and the transmitting power to 1W.
These values give high quality radio links and any observed degradations must be caused by
the intra network layer protocols.

Layer 7 Offered traffic
Arrival distribution: Poisson with variable rate
Layer 7 payload size: fixed 400 bytes
Pattern: Uniformly distributed over all destination addresses
Lifetime: 60 sec

The simulator supports three capture models and this chapter uses the normal capture model if not
otherwise noted. Under low collision rates this model shall behave as the perfect capture model
due to the excellent radio conditions given; the signal level at the receiver side is 20 dBm. The
transmission time for an air frame carrying a layer 7 payload of size 7LI bytes is given by:

Equation Chapter 9 Section 9
1 78 (20) /dt v F payloadt t t LI f= + + ⋅ + (9.1)

The transmission time for an LLC acknowledgement is given by:

1 8 11/ack v F payloadt t t f= + + ⋅ (9.2)

The PCI sizes are stated in Table 9.1 while the other parameters are given by Table 3.1. Given
fixed sized L7 payload, the perfect capture model and low collision rates, the average channel
busy period is approximately identical to the air frame size27. An analytical expression for the
throughput capacity for ARQ traffic is then:

,lim 7 / ([] (1) /)p net I dt ack net netp LI E C t t p n p nλ = ⋅ + + ⋅ + − [bytes/s] (9.3)

This expression becomes inaccurate as the bit-error rate increases since the nodes turn to backoff
after detecting bit errors, but comply reasonably well for the perfect capture model where the first

27 The channel busy period range is [tdt, tdt + tv] as long as the nodes have the correct understanding of the
channel state.

 78 FFI-rapport 2009/00911

packet succeeds in case of collisions. Nodes also turn to backoff after a transmission but this
effect becomes small in large networks.

Layer DT PCI [bytes] LLC ACK PCI [bytes] ACK at 3a layer
L7 0 - 0
L3a 6 - 4
LLC 4 1 4
MAC 6
PHY 4 (F1 excluded)
Total: 20 11 18

Table 9.1 Protocol Control Information (PCI) sizes.

The nominator is the time delay to deliver the packet and to receive the acknowledgement. netp is

the probability of successful packet reception and is given by [5]:

1 1 1 11
1

n

net
p p

np
n n b n b

⎡ ⎤⎛ ⎞
⎢ ⎥= − − + ⎜ ⎟⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

 (9.4)

We have mentioned earlier that the optimum bp-value depends on the traffic conditions. To
illustrate this, Figure 9.1 plots the normalised throughput versus bp=3 under different layer 7
payload lengths. Normalised throughput is the throughput from equation (9.3) divided by the air
frame payload transmission rate in bytes per second. The figure illustrates clearly that it is better
to select a large bp -value than a small value. The figure gives also an impression of the increased
cost of sending short packets relative to long packets in a fully-connected network.

20 40 60 80 100
b3

0.2

0.4

0.6

0.8

1

desilamroN
tuphguorht

1000 bytes

500 bytes

100 bytes

50 bytes

Figure 9.1 Normalised throughput as function of b3 in a network with 25 active nodes. The
legend expresses the L7 payload size.

Some readers may find the ordering of the forthcoming sections discursive since they are not
strictly ordered according to validation/optimalisation. Sections 9.1, 9.4 and 9.6 deal with
validation and sections 9.2, 9.3 and 9.5 consider optimalisation.

FFI-rapport 2009/00911 79

9.1 AHAn2

The purpose of this section is to validate the correctness of the simulator’s time base. We use a
two-node network with simplex deterministic traffic since this give an easy scenario to analyse.
Node 0 transmits to node 1 using a deterministic packet arrival distribution with 1.0Λ =
packets/s and the fixed payload size 100 bytes. The channel busy period measured by node 1 is
given by dt on cast t t− − msec since node 1 detects a busy channel after having detected the
preamble, while the channel idle period becomes1 dt on cast t tΛ − + + . We use (,) (3, 20)p pa b = ,

one priority level only and ARQ is disabled. The power level is set sufficiently high to have an
error-free radio channel.

The system operates at a low load level and only the MAC service time contributes to the end-to-
end delay, given by (2)v p p dtt a b t+ + , which equals to 25.88 msec at 100kbps. The minimum

end-to-end delay is given by 14.48p v dta t t+ = msec and the maximum is

() 37.28p p v dta b t t+ + = msec.

Table 9.2 compares simulated results and theoretical results, and the table show excellent
conformity between theoretical and simulated results.

 Radio version Estimators
100 kbps 1 Mbps 10 Mbps

simulated 0.99008≤1.8ÿ10-5 0.999008≤1.8ÿ10-6 0.999901≤1.8ÿ10-7 Channel idle period
[sec] analytical 0.99008 0.999008 0.999901

simulated 25.7484≤0.18 2.57484≤0.018 0.257484≤1.8ÿ10-3 End-to-end delay
[msec] analytical 25.88 2.588 0.2588

simulated (14.48, 37.28) (1.448, 3.728) (0.1448, 0.3728) End-to-end delay
(min,max) [msec] analytical (14.48, 37.28) (1.448, 3.728) (0.1448, 0.3728)

Table 9.2 Comparison table between simulated and analytical results with ARQ disabled.
Estimations of first order moments are presented as 95% confidence intervals.

9.2 Optimising bp

The aim of this section is to find a value for the priority delay bp given the single priority level P3.
The bp parameter is the most important parameter for the efficiency of the MAC protocol since it
regulates the probability of collision (equation 3.1) and the channel idle period (equation 3.2).
These equations are only valid for the heavy-load case where all nodes have at least one packet in
the buffers. It is not possible to find a single value that gives maximum throughput under all
conditions because throughput depends on many parameters; the number of nodes in the network,
the network load level and the packet size distribution, to give a few examples.

Figure 9.2 plots the impact of the priority delay factor when using the single priority level P3. The
throughput performance under the b3-set {5,10,20} suffers from a high collision rate. This

 80 FFI-rapport 2009/00911

conclusion can be drawn by the shape of the plot; the throughput drops from a maximum. The b3-
set {100,200,500} gives neither maximum throughput; the collision rate is low but the average
idle channel period is too long. The optimum b3-value under this traffic condition is 50.

2000 4000 6000 8000 10000 12000
Offered traffic @bytes êsD

2000

4000

6000

8000

tuphguorhT
@

setyb
ês
D

b3=500

b3=200

b3=100

b3=50

b3=20

b3=10

b3=5

Figure 9.2 Throughput (90% confidence intervals) as function of the offered traffic. Only
priority P3 traffic is used. Radio version: 100kbp (simDec11a).

Figure 9.3 substantiates the statement of performance degradation due to a high collision rate for
3 5b = since the number of retransmissions by the ARQ protocol within the LLC layer is very

high compared to the 3 500b = case.

2000 4000 6000 8000 10000 12000
Offered traffic @bytes êsD

1

2

3

4

5

6

oN
fo

snoissimsnarter

b3=500

b3=200

b3=100

b3=50

b3=20

b3=10

b3=5

Figure 9.3 The course of the number of retransmission with increasing load level for radio
version 100kbps. Estimation is done without confidence control (simDec11a).

How can we be certain of that our interpretation of the situation is correct and is not caused by a
software bug? Here is where the counters become a valuable tool. A printout of some of the
counters from the 3 5b = simulations at maximum load is:

FFI-rapport 2009/00911 81

sim.host[0].nic.baseband::L1_DsssBaseband:noOfCasAlarms = 39947
sim.host[0].nic.baseband::L1_DsssBaseband:noOfRfWavesRxed = 78499
sim.host[0].nic.baseband::L1_DsssBaseband:noOfF1Errors = 2
sim.host[0].nic.baseband::L1_DsssBaseband:noOfPlcpErrors = 5576
sim.host[0].nic.baseband::L1_DsssBaseband:noOfCrc32Errors = 4807

The same counter set for b3=500:
sim.host[0].nic.baseband::L1_DsssBaseband:noOfCasAlarms = 20272
sim.host[0].nic.baseband::L1_DsssBaseband:noOfRfWavesRxed = 20489
sim.host[0].nic.baseband::L1_DsssBaseband:noOfF1Errors = 0
sim.host[0].nic.baseband::L1_DsssBaseband:noOfPlcpErrors = 2
sim.host[0].nic.baseband::L1_DsssBaseband:noOfCrc32Errors = 70

The data confirms a considerably lower air frame corruption rate for the 3 500b = case.

Figure 9.4 and Figure 9.5 show the simulated results for the two other radio versions. Maximum
throughput is reached for 3 50b = in both cases. This is identical with the 100kbps case and is

expected since all three radio versions use the same preamble/SER probability distributions. The
difference is only the chip rate.

200000 400000 600000 800000 1×106

Offered traffic @bytes êsD

200000

400000

600000

800000

tuphguorhT
@

setyb
ês
D

b3=500

b3=200

b3=100

b3=50

b3=20

b3=10

b3=5

200000 400000 600000 800000 1×106

Offered traffic @bytes êsD

1

2

3

4

5

6

7

oN
fo

snoissimsnarter

b3=500

b3=200

b3=100

b3=50

b3=20

b3=10

b3=5

Figure 9.4 Throughput as 90% confidence intervals (top picture) for the 10Mbps radio version.
The picture below shows the course of the number of retransmission (no confidence
control) (simDec11b).

 82 FFI-rapport 2009/00911

25000 50000 75000 100000 125000 150000 175000
Offered traffic @bytes êsD

20000

40000

60000

80000

tuphguorhT
@

setyb
ês
D

b3=500

b3=200

b3=100

b3=50

b3=20

b3=10

b3=5

25000 50000 75000 100000 125000 150000 175000
Offered traffic @bytes êsD

1

2

3

4

5

6

oN
fo

snoissimsnarter

b3=500

b3=200

b3=100

b3=50

b3=20

b3=10

b3=5

Figure 9.5 Throughput as 90% confidence intervals (top picture) for the 1Mbps radio version.
The picture below shows the course of the number of retransmission (no confidence
control) (simDec11c).

9.3 Selecting (ap,bp)-values

There exists no single bp-set that maximises the network throughput under all traffic conditions.
When bp shall be considered, we must have some guidelines on the offered traffic priority
distribution. If not, the system may suffer from a high collision rate.

Yet we have not looked at the priority delay factor ap. ap does not affect the collision rate directly
as the bp parameter. Its function is to give a fixed MAC level access delay such that a high
priority packet in node A is granted access to the radio channel before a lower priority packet in
node B, given that both nodes start the MAC scheduling process at the same time instance. We
select the ap-set 3 2 1 03, 4, 5, 6a a a a= = = = . Hence the lowest priority packets get a fixed

delay of 6tv while the highest priority packets get the fixed delay 3tv. Any MAC entity scheduling
a low priority packet aborts its scheduling when it detects a busy channel tv-second after a higher
priority packet is sent on the air.

Let Λ denote the offered network traffic and pΛ the offered network traffic at priority level p. In

this document, we use the offered traffic priority distribution {P3,P2,P1,P0}={0.1,0.2,0.3,0.4}
such that

3 2 1 00.1 , 0.2 , 0.3 , 0.4P P P PΛ = ⋅Λ Λ = ⋅Λ Λ = ⋅Λ Λ = ⋅Λ

FFI-rapport 2009/00911 83

Section 9.2 “Optimising bp” found 3 50b = to be a good choice for the traffic conditions given.

Here in this section, we assume a nearly identical traffic condition with the exception of multiple
priority levels using the priority distribution above. If we fail to select a non-optimum value, the
best what can happen is to select a larger value to achieve a lower collision probability. This is
especially beneficial for multihop networks where the MAC protocol is less efficient due to
hidden nodes. If we select the bp-set 3 2 1 0{ 20, 30, 50, 100}b b b b= = = = then section 9.2

concluded that we experience non-optimal parameter values when the offered traffic becomes so
high that only priority P3 packets are served. However, this is not a normal operating mode and
we consider this bp-set further by conduction some simulation experiments.

Figure 9.6 to Figure 9.8 present the simulated throughput and shows that the MLPP function
works perfectly. However, there is a question about the overall capacity loss compared to a
network without priority handling.

Section 9.2 optimised bp for the single priority level P3 and found the network throughput
capacity in Table 9.3. The rightmost column in the table presents the cumulative throughput for
P0...P3 measured in this section. By comparing the two columns, we get an indication of the cost
of implementing the MLPP in terms of throughput capacity loss, which is approximately 3%.

Radio version Section 9.2 This section
100 kbps 8294 ± 83 8184 ± 90
1 Mbps 83821 ± 562 81520 ± 534
10 Mbps 797368 ± 4575 769102 ± 4524

Table 9.3 Network throughput capacity [bytes/s].

2500 5000 7500 10000 12500 15000 17500 20000
Offered traffic @bytes êsD

2000

4000

6000

8000

tuphguorhT
@

setyb
ês
D

P3

P2

P1

P0

sum

Figure 9.6 Throughput versus offered traffic. No confidence control is used for the plots

showing throughput per priority. Radio version: 100kbps (simNov26a).

 84 FFI-rapport 2009/00911

50000 100000 150000 200000
Offered traffic @bytes êsD

20000

40000

60000

80000

tuphguorhT
@

setyb
ês
D

P3

P2

P1

P0

sum

Figure 9.7 Throughput versus offered traffic. No confidence control is used for the plots
showing throughput per priority. Radio version: 1Mbps (simNov26c).

200000 400000 600000 800000 1×106 1.2×106 1.4×106 1.6×106

Offered traffic @bytes êsD

200000

400000

600000

800000

tuphguorhT
@

setyb
ês
D

P3

P2

P1

P0

sum

Figure 9.8 Throughput versus offered traffic. No confidence control is used for the plots
showing throughput per priority. Radio version: 10Mbps (simNov26b).

FFI-rapport 2009/00911 85

9.4 Capacity per priority

The purpose of this section is to make further investigation of the ap-set and the bp-set proposed in
the previous section. The scenario considered is still a fully-connected network of 16 nodes
having the same excellent radio condition. The offered traffic distribution remains identical unless
otherwise stated.

The main performance metric in this section is the throughput capacity per priority under the
condition of using one single priority level at a time. The priority levels use different bp -values
and hence the packets experience different collision rates at the network saturation point. Besides
the main goal, our ambition here is also to validate the correctness of the simulator.

It is important to have established a set of invariants before any experiment starts. For this
section, the following invariants apply:

I1: The zero-capture model shall give the lowest throughput performance compared to the
other two models.

I2: The performance under the perfect capture model shall outperform all other capture
models.

I3: The performance under the normal capture model shall always be embraced by the
throughput for the two other models where the zero capture case represents the lower
limit.

I1 follows from the fact that packet reception never succeed in case of collision under the zero-
capture model. I3 follows from I1 and that the normal capture model accepts one overlapping
transmission28 while the perfect capture model accepts any number of overlapping transmissions.

The implementation of the perfect and the zero capture models are less complex than the normal
capture model and thus are less prone to software bugs. The perfect capture model also has the
benefit that it confirms reasonably well to the analytical throughput model.

Figure 9.9 shows simulated throughput versus offered traffic for priority levels P3 and P0. Under
low traffic loads the system experiences few collisions and the performance of the three capture
models shall be identical. This is confirmed by the plots which show a linear progress up to the
offered traffic rate 40000 bytes/s (100 packets/s).

Based on the theoretical throughput model from equation (9.3), we have a means to calculate the
performance for the perfect capture case. The theoretical probability of collision at the saturation
point for priority P3-traffic is 0.56 compared to 0.15 for priority P0-traffic. Despite the higher
collision rate for the P3-case, it outperforms the P0-case since the P3-case has a shorter []IE C

28 This is determined by the modulation and the coding (class RadioSER).

 86 FFI-rapport 2009/00911

and the first packet of two overlapping packets succeed. The green horizontal lines in the figure
represent the theoretical throughput capacity.

20000 40000 60000 80000 100000 120000 140000
Offered traffic @bytes êsD

20000

40000

60000

80000

tuphguorhT
@

setyb
ês
D

analytic

zero

perfect

normal

20000 40000 60000 80000 100000 120000 140000
Offered traffic @bytes êsD

20000

40000

60000

80000

tuphguorhT
@

setyb
ês
D

analytic

zero

perfect

normal

Priority P0

Priority P3

Figure 9.9 Network throughput under different capture models. The offered traffic uses the
single priority level marked on the plots. (simJan5a).

The throughput capacity under the zero-capture model degrades faster with increasing collision
rates since packet reception always fails in case of collision. Thus the system performance can be
improved by increasing b3; the collision rate decreases but []IE C enlarges.

Table 9.4 and Table 9.5 present a more detailed comparison between simulated and theoretical
results. We have no theoretical expression for the normal capture model but know that its
throughput capacity shall be lower than the perfect capture model. The perfect capture model is
compared with the analytical model and the largest deviation we observe is 2.7%.

FFI-rapport 2009/00911 87

 Capture model Network capacity

 [bytes/sec] Normal Perfect
simulated 75135≤418 <91796, 92207> P3 (highest)
analytical 90065 (-1.9%)

simulated 78855≤510 <88986, 89235> P2
analytical 87889 (-1.2%)

simulated 79527≤444 <84791, 85067> P1
analytical 84357 (-0.5%)

simulated 74562≤604 <77596, 77800> P0 (lowest)
analytical 77713

Table 9.4 Comparison of simulated and theoretical results of network capacity per priority.
The normal capture model is included to illustrate the performance of a “real”
radio. Radio version: 1Mbps (simJan9a).

 Radio version Network capacity

 [bytes/sec] 100k 10Mbps
simulated <9146, 9184> <925907, 931372> P3 (highest)
analytical 9006 (-1.5%) 900649 (-2.7%)

simulated <8842, 8903> <895841, 900158> P2
analytical 8789 (-0.6%) 878893 (-1.9%)

simulated <8439, 8503> <853016, 858023> P1
analytical 8436 843568 (-1.1%)

simulated <7735, 7794> <777140, 782539> P0 (lowest)
analytical 7771 777129

Table 9.5 Comparison of simulated results and theoretical results under the perfect capture
model.

The simulator operates with a lower probability of collision since the nodes are forced into a
backoff state after transmitting a data packet and after detecting bit-errors in incoming packets.
The perfect capture model shall not experience bit-errors with our input data and receipt failure
shall be caused only by preamble detection failure. The counter output confirms this and the
following section is reprint from a randomly selected host:

sim.host[10].nic.baseband::L1_DsssBaseband:noOfCasAlarms = 59061
sim.host[10].nic.baseband::L1_DsssBaseband:noOfRfWavesRxed = 69395
sim.host[10].nic.baseband::L1_DsssBaseband:noOfF1Errors = 0
sim.host[10].nic.baseband::L1_DsssBaseband:noOfPlcpErrors = 0
sim.host[10].nic.baseband::L1_DsssBaseband:noOfCrc32Errors = 0

Many RF waves do not generate Cas alarms but the frames coming in are free from bit-errors.
The counter noOfRfWavesRxed is incremented even though a radio is in a transmitting state since
the RF wave is present on the coax input port. Before leaving this section we present the network

 88 FFI-rapport 2009/00911

capacity for the three capture models when the offered traffic employs all the priority levels. As
seen by Figure 9.10, the normal capture model gives a capacity close to the perfect capture model.
However, the zero-capture model, which does not tolerate any overlapping transmission, has a
much lower capacity. The capacity of the latter may be improved by increasing bp.

20000 40000 60000 80000 100000 120000 140000
Offered traffic @bytes êsD

20000

40000

60000

80000

tuphguorhT
@

setyb
ês
D

zero

perfect

normal

Figure 9.10 Simulated network throughput using multiple priority levels. The priority
distribution is {P0,P1,P2,P3}={0.4,0.3,0.2,0.1}. Radio version 1Mbps.

9.5 Capacity versus network size

Up to now, we have optimised the bp -set for a network containing 16 nodes. Consider a very
large network. As the number of active nodes increases with increasing offered traffic, the
network will reach a point where the collision rate leads to performance degradation. The MAC
protocol would benefit from having an adaptive mechanism which increases the bp -values under
these conditions. Figure 9.9 illustrates different throughput courses versus offered traffic. Any
system has a capacity limit and the curve marked as “perfect course” shows the idealized case.
The worst situation is to have the instable course where the system collapses completely. We
have experienced this situation when the backoff after CRC-error is removed. The network
should be designed to have a graceful degradation as illustrated.

throughput

offered traffic

instable

graceful
degradation

perfect course

Figure 9.11 Illustration of possible throughput progress versus offered traffic.

FFI-rapport 2009/00911 89

Simulated throughput results for different network sizes are shown in Figure 9.12. The {9,16,25}-
networks are all stable and the throughput-offered traffic relationship is nearly perfect. This in
contrast to the {50,60}-networks that exhibit a graceful degradation due to a high collision rate.
The cure against this is to increase the bp-values but then smaller networks suffer from severe
capacity degradation. A closer look at the {25}-network plot in the figure shows a small
throughput drop from run 7 (120000 bytes/s) to run 8 (140000 bytes/s). Therefore we believe the
bp -values should be increased when the network size becomes larger than 30 nodes. The {3}-
network operates at a very low collision rate but suffer from a long average channel idle period.
Remember we have the backoff after transmission that also reduces the collision rate which
obviously has a high impact in small networks.

20000 40000 60000 80000 100000 120000 140000
Offered traffic @bytes êsD

20000

40000

60000

80000

tuphguorhT
@

setyb
ês
D

n=60

n=50

n=25

n=16

n=9

n=3

Figure 9.12 Estimated throughput using multiple priority levels. The priority distribution is
{P0,P1,P2,P3}={0.4,0.3,0.2,0.1}. The legend expresses the network size as number
of nodes. Radio version: 1Mbps. (simFeb2a).

Yet we have not validated the simulator for different network sizes. By using the single priority
level P0 and setting the capture model to “perfect” for the scenario above, we have a network that
confirms well to the theoretical throughput model described by equation (9.3) for large networks.
Table 9.6 shows the deviation between simulated results and theoretical results. A perfect result is
when the theoretical throughput falls within the simulated 90% confidence intervals. The
deviation expresses how far outside the confidence interval the theoretical value is.

As expected we have a significant deviation for the 3-node network where the backoff after
transmission leads to enlarged mean channel idle period not included in the theoretical model. For
network size larger than 9-nodes, we achieve a high conformity between simulated and
theoretical results. Note the high accuracy29 of the simulated results which are better than 1%.

29 half_width/mean

 90 FFI-rapport 2009/00911

Network size Simulated Theoretical model Deviation [%]
3 nodes 48538± 296 54183 11
9 70338± 302 71112 0.7
16 77710± 222 77713 0
25 81872± 163 81445 -0.3
50 86015± 145 85232 -0.7
75 87540± 142 86609 -0.9
100 88001.5± 151 87321 -0.6
150 87865± 169 88050 0
200 87325± 170 88420 1.1

Table 9.6 Throughput capacity [bytes/s] as function of the network size. Perfect capture and
single priority level P0. Otherwise identical to the scenario in Figure 9.12.
(simFeb2b)

9.6 Summary

By defining a simplified operating scenario and using the perfect capture model, we got a system
that can be described analytically. We executed a number of experiments under these simplified
conditions and compared the simulated results against analytical results. The validation phase
discovered many errors that were corrected and new tests were done. Finally we got excellent
conformity between the theoretical and simulated results. The scenarios developed in this chapter
can serve as regression tests after modification and enhancements of the software.

FFI-rapport 2009/00911 91

10 Multihop Networks
This chapter deals with multihop networks and does a comparative analysis between different
scenarios. When we turn to multihop cases, we no longer have any mathematical model that can
give us an indication of the correctness of the simulation results. Therefore the strategy used is to
gradually increase the complexity. The first section considers a multihop network where all the
network nodes are within the same radio coverage area30. Here the MAC protocol prevents
collisions effectively while the overhead caused by the 3a layer protocol is included. Section 10.2
takes this scenario as input and reconfigures the pathloss matrix to have disjoint radio coverage
areas. Mobility is an important issue in ad-hoc networks. As mobile users move around, the
network capacity becomes a function of time. Section 10.3 considers a complex scenario where
the capacity of different user applications is measured as the nodes change their locations on the
playground. The first sections use a fixed pathloss model, we get sharp radio ranges since the link
cost values are either one or infinite (no connection). Section 10.4 studies a multihop network
using the Egli pathloss model and the link cost values are quite different on the radio links. The
maximum packet lifetime (see section 3.6) is set to 60 seconds in this chapter.

10.1 The Cost of Multihop Communications

The aim of this section is to illustrate how much transmission capacity multihop traffic consumes
compared to single-hop traffic. We specify a beneficial scenario without hidden nodes but include
the effect of the 3a level store-and-forwarding. This is accomplished by conducting the following
two steps:

1) Specify a fixed pathloss matrix and set the transmitting power sufficiently high to have
20 dBm receiving power over the entire playground.

2) Specify a routing matrix which forces the system to use multiple hops despite the fact that
the end destinations are within radio range.

Under these conditions the network operates as a multihop network, but the MAC protocol
prevents the hidden-node problem and operates at low collision rate. Section 10.2 takes this
example a step further by analysing the effect of hidden nodes. We use a single level priority P0,
a fully connected network, the 100kbps radio version, the normal capture model and 400 bytes
fixed payload size at layer 7. The traffic pattern and the routing matrix used are specified in
Figure 10.1. Note the special traffic pattern and that the relay nodes N10 and N11 do not generate
fresh traffic. If we use an “all-to-all” traffic pattern, we would see no or little difference in the
network throughput because the throughput statistics would be overwhelmed by samples from
single-hop traffic streams. The increase in the average channel idle period caused by the pacing
protocol will be grabbed by the single hop traffic.

30 The pathloss is set to 10dB for all links while the routing matrix forces the nodes not to use shortest path.

 92 FFI-rapport 2009/00911

0

1

9

10

12

13

21

11

Generator 1:
{0,...,9} {12,...,21}

Generator 2:
{12,...,21}{0,...,9}

{0,...,9} {10} {11} {12,...,21}
Routing:

radio coverage ”all-hearing-all”

Figure 10.1 A fully-connected network containing 22 nodes where the traffic is forced to traverse
3-hops.

The forced idle time after transmission is not actually needed here. The system uses low priority
traffic only and the MAC protocol then introduces a sufficiently long channel sensing period to
keep the network stable. Therefore, the fixed backoff is set to zero in this section.

The single-hop system that serves as the reference network in this section also uses the end-to-end
traffic pattern in Figure 10.1, but the routing matrix is modified to give a single-hop network.
Hence N10 and N11 never send packets with this routing matrix. In summary, we have defined
the following four scenarios to be included in this experiment:

Case A1: ARQ and one hop
Case A3: ARQ and three hops
Case B1: No use of ARQ and one hop
Case B3: No use of ARQ and three hops

Given the traffic matrix and the routing matrix above, N10 and N11 operate solely as relay nodes
and layer 3a ARQ is always used on the link 10 11N N↔ for case A3. ARQ at layer 2 will
never be used on that link.

Figure 10.2 shows the simulated results. First we consider the capacity degradation to be expected
going from a single-hop network to a 3-hop network. Since the traffic traverses three hops, we
should immediately expect 2/3 capacity reduction compared to the one hop cases. Based on the
B1 simulated results, the performance of the B3 case should be lower than 8000 / 3 2667=
bytes/s. Maximum throughput for case B3 is measured to 1718 bytes/s which represents 64%
capacity reduction. The throughput drop after run number 5 (2000Λ = bytes/s) is mostly caused
by packet lifetime expiry within the relay nodes. Queues build up in the relay nodes while the
queues at the originating nodes remain short. The end-to-end delay is approximately 4 seconds in
run number 5 and became 50 seconds in the next run (2400Λ =).

FFI-rapport 2009/00911 93

2000 4000 6000 8000
Offered traffic @bytes êsD

1000

2000

3000

4000

5000

6000

7000

8000

tuphguorhT
@

setyb
ês
D

A1
B1

A3

B3

Figure 10.2 Simulated throughput versus offered traffic for the cases A1, A3, B1 and B3. 90%
confidence intervals (simFeb17d).

B3 does not use ARQ and hence the pacing delay is not applied to the traffic. This in contrast to
case A3 where the pacing protocol adds a 0.9 second delay already at 800Λ = . This chokes
down the MAC offered load and collisions rarely happen in this network. Maximum throughput
for A3 is measured to approximately 935 bytes/s, a 88% capacity reduction compared to case A1.
The measured number of retransmissions per packet delivered was estimated to 0.23 0.02± for
case A3, which is higher than expected under low collision rate. The retransmission timer at layer
3a is set to 2 *pacing and this seems to be too short for A3. The timer times out too early and
Figure 10.3 shows that it is beneficial to increase the timeout interval.

500 1000 1500 2000
Offered traffic @bytes êsD

250

500

750

1000

1250

1500

tuphguorhT
@

setyb
ês
D

5

4

3

2

CreTx

Figure 10.3 Case A3 throughput capacity for different multiplying constants CreTx. The 3a layer
retransmission timer is set to CreTx * pacing.

 94 FFI-rapport 2009/00911

10.2 Network Fragmentation

As the connectivity of the fully connected network studied in the previous section deteriorates,
the MAC protocol is unable to regulate access to the channel in an orderly manner due to hidden
nodes. The objective of this section is to study the performance when the network suffers from
the hidden-node problem. The only deviation between this section and the previous section is the
pathloss matrix, which is modified to split the two 10-node groups into two none interfering radio
coverage areas, see Figure 10.4. Node N10 and N11 operate as relays and experience identical
traffic conditions.

0

1

9

10

12

13

21

11

Generator 1:
{0,...,9} {12,...,21}

Generator 2:
{12,...,21}{0,...,9}

{0,...,9} {10} {11} {12,...,21}
Routing:

radio coverage area 1
”all-hearing-all”

radio coverage area 2
”all-hearing-all”

Figure 10.4 The scenario is divided into three radio coverage areas. Two regions contain 11
nodes and one region contains the two nodes {10,11}.

Let i jH → denote the hidden-node set for the link from node i to node j. 0 10 {11}H → = and

10 11 {12,..., 21}H → = are two example sets for the current scenario. The link 0 10→ is sensitive

to the load level at N11 while the passive acknowledgement 10 0→ seldom fails to reach N0
since the MAC protocol works efficiently among the nodes {0,...,9,10} . The forwarding of
packets on the link 10 11→ may often fail since N11 has many hidden-nodes. Likewise, the
passive acknowledgement 11 10→ may experience a high likelihood of being hit by a
transmission from one of the nodes in the set {1,...,9} (assumes N0 is the originator and its pacing
timer is running).

A successful packet transmission from N10 to N11 depends on two events: 1) N11 must be in the
preamble search state and 2) The number of overlapping transmissions must be less or equal one.
One hit gives 0 dB SNR that again gives the demodulation success rate 4220.999 0.66= while
two hits give -3 dB SNR and the success rate 4220.85 0= . See appendix A.

Figure 10.5 shows the simulation results where the 3-hops plots from Figure 10.2 have been
included.

FFI-rapport 2009/00911 95

1000 2000 3000 4000 5000
Offered traffic @bytes êsD

500

1000

1500

2000
tuphguorhT
@

setyb
ês
D

No ARQB3
section 10.1

A3 section 10.1

ARQ

Figure 10.5 Simulated throughput versus offered traffic using a two-way traffic pattern between
the two 10-node groups (simFeb23a).

Firstly, we look at the system when ARQ is not activated and note that the maximum throughput
(1752 bytes/s) is of the same magnitude as in the previous section. More MAC transmission
capacity becomes available in this section because the two 10-nodes groups have separate radio
channels and can feed their relays faster. However, the end-to-end delay has increased from 4
seconds to 12 seconds31. Also note the increase in packet loss probability which has increased
from approximately 14% ()1 1718 2000− to 56% ()1 1752 4000− . The hidden-node effect

increases the packet corruption rate in the order of 10% and only N10 and N11 show a significant
corruption rate. The major cause of loss is lifetime expiry.

The capacity for ARQ traffic drops from 1500 bytes/s in section 10.1 to 1100 bytes/s when
hidden-nodes are introduced. This represents 26% performance loss.

10.3 Mobility

The purpose of this section is to illustrate how oTWLAN can be used to estimate performance for
mobile users. We consider a hypothetical scenario where 16 users move while one stays at a fixed
location to maintain connectivity to a head quarter located somewhere in a backbone network.

A Battlefield Management System (BMS) provides location of friendly forces in the combat
arena. The BMS tracks the soldiers within the group but also gives information from higher
operating levels, e.g. a common operating picture. The former service is named “BMS-internal”
and the latter “BMS-global”. BMS-global is not considered to be mission critical and is therefore
assigned the lowest priority level (P0). The group coordinates their activities through an internal
message system and this application is assigned priority level P2 since it is mission critical. The

31 Confidence control has not been applied to delay measurements and they might be inaccurate.

 96 FFI-rapport 2009/00911

group may receive important alarm and intelligence (AI) information from the head quarter. This
application sends packets at a low rate. It is assigned the highest priority level because the
information content is important and must be given precedence at the network level over other
traffic streams. Table 2.1 specifies the relative traffic volume for each application type and the
layer 7 payload size distribution. The 100kbps radio version is used in this section and the
applications enable use of the ARQ protocols at the network level.

Application type Priority Percentage share Payload size [bytes]
Alarm and intelligence P3 (highest) 5% fixed 100
Internal message exchange P2 35% fixed 100
BMS internal P1 10% rand(50,400)
BMS global P0 (lowest) 50% rand(50,400)

Table 10.1 Applications types and traffic parameters. Payload size refers to layer 7.
”rand(50,400)” means randomly distributed in the integer range r, 50 400r≤ ≤ .
The “percentage share” column gives the traffic volume per application relative to
the network offered load in packets per second.

The initial position is shown in Figure 10.6. All nodes are within the radio coverage area of each
other at time instance t0. As they move towards the target area at the lower right corner of the
playground, they experience changing radio coverage caused by a varying terrain profile. The
group splits into two equally sized groups when they reach the hill. At time instance t1 (Figure
10.7), node N1 and N9 stays behind to keep the two groups connected but also to maintain the
radio connection to N0. The traffic pattern is specified in Table 10.2. Note the AI traffic and the
BMS-global traffic which are one-way, and that the originators are always attached to the Wide
Area Network (WAN).

Application type Time instance t0 Time instance t1 and t2
Alarm and intelligence (AI) 0 {1,...,16}→ 0 {2,...,8} {10,...,16}→ ∪

Internal message exchange (IME) {1,...,16} {2,...,8} {10,...,16}↔

BMS-internal {1,...,16} {2,...,8} {10,...,16}↔

BMS-global 0 {1,...,16}→ 0 {2,...,8} {10,...,16}→ ∪

Table 10.2 Application types and traffic pattern.

FFI-rapport 2009/00911 97

N0

N1...N16

WAN

Figure 10.6 Playground layout at time instance t0. All the network nodes are within the same
radio coverage area. N0 operates as a gateway to the WAN.

N2...N8

N0

N1

N9
N10...N16

Figure 10.7 Playground layout at time instance t1.

N0

N1

N9

N=12N2

N10

Figure 10.8 Playground layout at time instance t2.

 98 FFI-rapport 2009/00911

Figure 10.9 presents the simulated results for time instance t0. The relative traffic volume per
application refers to packets per second, but since the payload size distributions are different, the
relative traffic volume in bytes per second is different. When the network load level is 1
packets/s, the offered traffic in bytes/s is 175, and we have the traffic volume in bytes/s relative to
the offered traffic Λ [bytes/s]:

 {0.05,0.35,0.1,0.5} {100,100,225,225} /175i = {0.029,0.200,0.129,0.643}.

The set ordering is P3...P0.

2000 4000 6000 8000 10000 12000
Offered traffic @bytes êsD

0.25

0.5

0.75

1

1.25

1.5

1.75

2

dnE
−

ot
−

dnE
yaleD
@

ces
D

P3

P2

P1

P0

2000 4000 6000 8000 10000 12000
Offered traffic @bytes êsD

1000

2000

3000

4000

5000

tuphguorhT
@

setyb
ês
D

avg

P3

P2

P1

P0

Figure 10.9 Simulated performance for time instance t0. Confidence control is only applied to the
cumulative throughput plot.

FFI-rapport 2009/00911 99

Network saturation performance is defined as the measurements taken at a traffic level where the
network starts to drop packets due to an overload condition. The network invokes the precedence
function (MLPP) when the offered traffic increases beyond this level. The lower level priority
traffic experience longer end-to-end delays and the packet loss rate due to lifetime expiry
increases.

The network capacity limit is defined as the load level at which the network starts to drop mission
critical traffic which means priority level P1 in this section. TCP-based applications retransmit
lost packets and the increased end-to-end retransmission rate normally leads to exponentially
increased offered traffic.

The maximum throughput for the BMS-global application (priority P0) is 1850 bytes/s, see
Figure 10.9. However, the delay plots show that the delay increases rapidly at 2625Λ = and the
throughput capacity for this application 0.643 2625 1687λ = ⋅ = bytes/s in practise. Note the
elapse of the P3 delay curve that exhibits a higher delay than lower priority traffic P2. Here we
see the effect of the forced backoff after transmission which has great impact since the network
has one single node sending this priority level. The network saturation performance is:

AI traffic (P3): 76 bytes/s @ 0.05 sec32
IME (P2): 525 bytes/s @ 0.05 sec
BMS-internal (P1): 338 bytes/s @ 0.1 sec
BMS-global (P0): 1688 bytes/s @ 0.6 sec
Cumulative P0...P3: 2625 bytes/s @ 0.3

The throughput plot shows a linear progress for the priority levels P1...P3 and we cannot deduce a
capacity limit from the plot. However, the delay plot shows a fast increasing delay for P1 traffic
at the highest load level, and thus we assume that the capacity limit for this priority level is
approximately 0.129 12250 1580λ = ⋅ = bytes/s. The performance measured at this point is:

AI traffic (P3): 355 bytes/s @ 0.6 sec
IME (P2): 2450 bytes/s @ 0.3 sec
BMS-internal (P1): 1580 bytes/s @ 1.0 sec

The network serves multihop traffic at time instance t1 and the routing matrix used specifies the
following routing paths:

AI and BMS-global traffic:
 0 1 { 2,..., 8}N N N N→ → and 0 9 { 10,..., 16}N N N N→ → 2-hops

IME and BMS-internal traffic:
 { 2,..., 8} 1 9 { 10,..., 16}N N N N N N↔ ↔ ↔ 3-hops

32 Notation is throughhut@end-to-end-delay

 100 FFI-rapport 2009/00911

The relay nodes N1 and N9 are no longer included as end-destinations as they were at time
instance t0, see Table 10.2. N1 and N9 are relay nodes so the traffic is passing by anyway and we
do not mix single hop statistics with multihop statistics. This should give a more realistic picture
of the multihop traffic capacity.33

The BMS-global traffic reaches its maximum at 1000Λ = and drops rapidly as the offered
traffic increases. The delay plot shows that the end-to-end delay becomes high above this level
and we estimate the maximum throughput capacity for the BMS-global application to be
approximately 0.643 1000 643λ = ⋅ = [bytes/s]. The throughput curve for the BMS-internal
traffic (P1) has a flat course and peaks at 1925Λ = giving the P1 throughput

0.129 1925 171λ = ⋅ = [bytes/s]. However, many packets are lost due to lifetime expiry at this
load level. The loss starts already at 962Λ = for P0 traffic and 1225Λ = for P1 traffic.
We conclude that the network saturation performance is:

AI traffic (P3): 28 bytes/s @ 0.4 sec
IME (P2): 192 bytes/s @ 1.7 sec
BMS-internal (P1): 124 bytes/s @ 2.0 sec
BMS-global (P0): 618 bytes/s @ 2.2 sec
Cumulative P0...P3: 962 bytes/s @ 1.9

The capacity limit is estimated to:

AI traffic (P3): 35 bytes/s @ 0.7 sec
IME (P2): 245 bytes/s @ 2.8 sec
BMS-internal (P1): 158 bytes/s @ 3.3 sec

The two groups move into the forest at time instance t2 with the exception of N2 and N10. They
stop on the outskirts of the forest and are given the task to maintain the backward radio
connectivity. Moving into a forest always means a dramatic reduction of the radio coverage area.
The intention of this section is not to end up with a discussion of radio range and transmission
capacity in a forest. Therefore we assume the group operates close together such that the radio
connectivity among the nodes {3,...,8} {11,...,16}∪ remains good. The radio links

2 {3,...,8}N → and 10 {11,...,16}N → are also assigned optimistic pathloss values (10dB).

Figure 10.11 presents the simulated results for time instance t2. The BMS-global traffic (P0)
reaches its maximum at the offered load 1050Λ = bytes/s given the maximum throughput 445
bytes/s for this application. However, the packet loss starts already at 262Λ = and we conclude
that the network saturation performance is:

33 The simulator has not yet implemented probes for collecting statistics per node. Applying confidence
control of such probes may lead to impractical long run-times.

FFI-rapport 2009/00911 101

500 1000 1500 2000
Offered traffic @bytes êsD

200

400

600

800

1000
tuphguorhT
@

setyb
ês
D

avg

P3

P2

P1

P0

500 1000 1500 2000
Offered traffic @bytes êsD

2

4

6

8

10

dnE
−

ot
−

dnE
yaleD
@

ces
D

P3

P2

P1

P0

Figure 10.10 Simulated performance for time instance t1. Confidence control is only applied to
the cumulative throughput plot.

AI traffic (P3): 7 bytes/s @ 1.2 sec
IME (P2): 53 bytes/s @ 0.04 sec
BMS-internal (P1): 34 bytes/s @ 0.06 sec
BMS-global (P0): 168 bytes/s @ 3.8 sec
Cumulative P0...P3: 262 bytes/s @ 2.0

Both the IME traffic (P1) and the BMS-internal traffic (P2) have low delays because most packets
traverse only one hop. Only transmissions between N2 and N10 take two hops but are of course
invisible in a network average estimate. The low foliage loss and the traffic pattern give an

 102 FFI-rapport 2009/00911

insignificant loss of the P1 and P2 traffic and the capacity limit cannot be deduced from the
results. P3 also has insignificant loss but a much higher delay because the packets traverse two or
three hops. The special form of the P3 delay curve is caused by the adaptive pacing delay.

500 1000 1500 2000
Offered traffic @bytes êsD

200

400

600

800

1000

tuphguorhT
@

setyb
ês
D

avg

P3

P2

P1

P0

500 1000 1500 2000
Offered traffic @bytes êsD

1

2

3

4

5

dnE
−

ot
−

dnE
yaleD
@

ces
D

P3

P2

P1

P0

Figure 10.11 Simulated performance for time instance t2. Confidence control is only applied to
the cumulative throughput plot.

FFI-rapport 2009/00911 103

10.4 Multihop in Egli terrain

This section uses the Egli pathloss model and studies a network containing 25 nodes located on
the regular grid shown in Figure 10.12. The network connectivity is changed by altering the
transmitting power and the only parameter that we modify between the nodes is the node position
on the playground. The preamble and the payload field in the radio frame have different SNR
characteristics and hence different ranges. These ranges as function of the radiated power and the
radio parameters used are stated in Table 10.3.

demodulation range

preamble range

Figure 10.12 The playground layout with grid spacing 100 meters. The node positions are the
upper left corners of the red boxes. The arrows indicate the preamble range and the
demodulation range for node 0 when it sends at -10 dBm.

14261848-10

17372251-6.5

22602929-2

253732870

4512584610

Demodulation range [m]Preamble range [m]Transmitting power [dBm]

EgliPathloss model

0 dBiAntenna gain (tx/rx)

2m Antenna height

100kbps versionRadio hardware

ValueParameterA B

Table 10.3 Radio coverage as function of the transmitting power (table A) using the radio
parameters in table B.

The longest link in the network is 2262 meters and when transmitting at 10dBm all nodes are
reached under high SNR levels during low traffic periods. Table 10.4 expresses the link cost

 104 FFI-rapport 2009/00911

values versus the transmitting power seen from node N0‘s point of view. The infinite sign
signifies that the destination is outside the radio range. The number of usable radio links is
expressed in the column “degree”. Remember that the link cost range is 1 1.49r≤ ≤ where 1 is a
high quality link (SNR > +3dB). Section 5.4 specified the lower SNR threshold for a link to be -
6dB. The link cost is determined at time instance zero and is based on the background noise only.
As the traffic increases, the SNR decreases due to collisions.

Tx power
[dBm]

N1 N3 N4 N9 N12 N13 N14 N17 N18 N19 N22 N24 degree

10 1 1 1 1 1 1 1 1 1 1 1 1 24

0 1 1 1.05 1.08 1 1 1.16 1 1.11 1.26 1.16 1.38 24

-2 1 1 1.16 1.19 1 1.06 1.27 1.06 1.22 1.37 1.27 ∞ 23

-6.5 1 1.14 1.41 1.44 1.08 1.31 ∞ 1.31 1.47 ∞ ∞ ∞ 19

-10 1 1.33 ∞ ∞ 1.27 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 12

Table 10.4 Link cost values from node N0 to other nodes at different transmitting power levels.

A new routing table is calculated for each power level. However, we have a single-hop network at
10dBm and 0dBm. All nodes are reached within two hops under the other power levels.

This is a heterogeneous network and is therefore difficult to analyse. The edge nodes {0,4,20,24}
operates under more severe RF conditions than the centre node N12. The MAC protocol relies on
correctly detecting the channel state busy/idle. However, nodes failing to detect the preamble
correctly, assume the channel is idle and may transmit. The result is lower SNR in the network.
Nodes detecting the preamble but operating near the demodulation range, behave differently.
They frequently experience CRC errors and enter the forced idle state. They are prohibited to
transmit for a period of time or until a successful packet receipt has occurred.

The layer 7 traffic data for this scenario is presented in Table 10.5. randInt is a uniform random
distribution in the integer range 50 400r≤ ≤ , that is, the average layer 7 payload size is 225
bytes.

Parameter Value
Message arrival distribution exponential, variable mean

Payload distribution randInt[50, 400] bytes

Pattern uniformly distributed

Priority distribution Single level P0(lowest)

Table 10.5 Traffic data for user terminals (offered traffic to layer 7).

Figure 10.13 and Figure 10.14 present the simulated throughput results for the different power
levels. The throughput curve shows significant performance degradation when the power level
drops to -2dBm even though we have a good connectivity; the nodal degree for the corner nodes
are 23. The majority of the packets reach their destinations in one hop. The challenge in this

FFI-rapport 2009/00911 105

network is the high interference level that occurs with increased traffic. The MAC protocol fails
to coordinate the access to channel as more hidden nodes are introduced. A further discussion of
this example is done in appendix B.

2000 4000 6000 8000
Offered traffic @bytes êsD

1000

2000

3000

4000

5000

6000

tuphguorhT
@

setyb
ês
D

−10dBm

−6.5 dBm

−2dBm

0dBm

10dBm

Figure 10.13 Throughput versus offered load.

200 400 600 800 1000
Offered traffic @bytes êsD

2

4

6

8

10

dnE
−

ot
−

dne
yaled
@

ces
D

−10dBm

−6.5 dBm

−2dBm

0dBm

10dBm

Figure 10.14 End-to-End delay versus offered traffic.

 106 FFI-rapport 2009/00911

10.5 Discussions and Conclusions

This chapter has estimated the performance of multihop communication and showed that the
throughput capacity drops dramatically compared to single-hop communication. It is the 3a layer
pacing protocol that serves multihop traffic and thus the protocol has a great impact on the
performance. We do not argue that this protocol is the most efficient protocol compared to other
protocols (e.g. the RTS/CTS protocol). However, we believe it has reasonable efficiency
compared to other solutions.

TCP traffic streams must be served by an ARQ protocol on each radio hop to avoid end-to-end
retransmission at the TCP level. Therefore the ARQ simulation results are most interesting.
Network efficiency34 (Figure 10.15) is the ratio between the network level throughput [bytes/s]
and the radio payload transmission rate [bytes/s]35. The network efficiency for the experiments
conducted in this chapter is:

1-hop traffic (section 10.1): 7650/12500 = 0.61
3-hop traffic without hidden nodes (section 10.1): 1500/12500 = 0.12
3-hop traffic with hidden nodes (section 10.2): 1100/12500 = 0.09

These numbers give an impression of the cost of serving multihop traffic. Even a protocol which
handles the hidden-node problem perfectly gives significantly lower efficiency compared to
single hop cases. An interesting research question is: shall we design a long range low capacity
radio or a short range high capacity radio?

RadioRadio NetworkNetwork

RFB RC NC

Radio efficiency:
[/]

[]
R

R
RF

C bits s
B Hz

β =

Network efficiency: [/]
/ 8 [/]
N

N
R

C bytes s
C bytes s

β =

Figure 10.15 Efficiency defined as the ratio between the payload capacity provided and the
capacity ”consumed”. BRF is the RF bandwidth occupied by the radio. CR is the
physical layer payload transmission rate. This should actually have been the
physical layer throughput to include the overhead at the radio level such as the
preamble. CN is the network throughput.

34 Often referred to as normalised throughput
35 12500 bytes/s for the 100kbps radio used in this chapter

FFI-rapport 2009/00911 107

Section 10.3 conducted a more practical study of multihop networks than the other sections.
Table 10.6 summarises the results and presents an efficiency factor referred to the cumulative
throughput for the single-hop case. We give a final observation about the pacing protocol. The
pacing protocol showed to be an efficient flow control mechanism because the queue sizes
increased at the 3a layer within the entry-nodes while the 3a layer transit nodes remain short as
the offered load increases. Some similar experiments were conducted with pacing disabled and
now the system suffered under long transit queues.

Application type t0 t1 t2
Alarm and intelligence (P3) 76 bytes/s @ 0.05 28 bytes/s @ 0.5 sec 7 bytes/s @ 1.2

IME (P2) 525 bytes/s @ 0.05 192 bytes/s @ 2.0 sec 53 bytes/s @ 0.04

BMS internal (P1) 338 bytes/s @ 0.1 124 bytes/s @ 2.4 sec 34 bytes/s @ 0.06

BMS global (P0, lowest) 1688 bytes/s @ 0.6 618 bytes/s @ 3.2 sec 168 bytes/s @ 3.8

Cumulative P0...P3 2627 bytes/s @ 0.3 962 bytes/s @ 2.6 262 bytes/s @ 2.0

Efficiency 1 0.37 0.10

Table 10.6 Efficiency calculated from the network saturation performance.

11 Installation
This chapter explains how to install the oTWLAN project. A prerequisite to succeed is that the
following software components have been installed on your computer:

• Qt version 436
• the omnetpp version 3 including INET

The build process assumes the following default paths:

$OMNET /usr/local/omnetpp-3.3
$OMNETI /usr/local/INET-20061020
$OTWLAN The directory where the oTWLAN tar ball is unpacked
$HOME The login directory on Linux

The default path can easily be altered by editing the configuration files. The project is a qmake
based project where the *.pro files specify the software environment. If the omnet files are
located in other directories, make changes to the *.pro files to reflect your software
environment. The file $OTWLAN /otwlan/INSTALL gives additional details. The installation steps
are basically identical to any standard qmake based project:

 cd to_the_subproject_dir; qmake the_pro_file.pro; make clean; make37

36 The development was done under 4.3.1.
37 A make distclean will also delete any existing Makefile

 108 FFI-rapport 2009/00911

oTWLAN has three subprojects located under inet, otcp and oprobe. The directory oprobe
contains the enhanced/modified oProbe source code. Be aware of that the oTWLAN main project
($OTWLAN /otwlan/src) is based on a number of subprojects and the build sequence is: libinet.so,
liboprobe2a.so, libotcp.so. The classes needed from the INET project are linked into the library
libinet.so.

The installation steps described herein have been tested on an “out-of-the-box” installation of
Mandriva 2008.0. No testing has been conducted on other Linux variants, nor on Windows.

11.1 Basic Build

The basic build describes how to install oTWLAN without using the oTCP project. Follow the
steps below.

Step 1 Unpack the tar file

Go to the directory where you want to install the project ($OTWLAN) and then execute the
command “tar xvfz otwlanV1.tar.gz”. The simulator configuration files and source code files are
extracted from the tar ball. Check that your directory structure looks like this:

+- doc/html : The location of doxygen documentation for the project. Top level is index.html.
+- inet : A subproject which compiles and links the INET objects required into the

dynamic library libinet.so.
+- otcp : The oTcp project organised as a subproject which builds the DLL libotcp.so.
+- oprobe : The oProbe project organised as a subproject which builds the DLL

liboprobe2a.so.
+- src : The source code area for the oTWLAN specific classes.

Step 2 Build the libraries (libinet.so, liboprobe2a.so)

The previous step placed the oTWLAN source code under $OTWLAN/otwlan. Use the basic
qmake build sequence described above with one exception. When building you must issue a
”qmake inetNoTcp.pro” to prohibit inclusion of the TCP related classes. After a successful build,
check that the directory structure looks like this:

FFI-rapport 2009/00911 109

If not, this step failed and you have to search for error messages in the text stream. To bring the
installation back to the initial stage, just type “make distclean” and the Makefile created by the
qmake is also removed.

We have experienced that some Linux versions complain against unresolved symbols even
though we build dynamic libraries. To solve this problem enable, the QMAKE_LFLAGS added at
the end of all *.pro files, by removing the starting “#”-sign.

Step 3 Build bin/otwlan

Do a “cd $OTWLAN/otwlan/src” and execute the sequence “qmake otwlan.pro; make clean;
make”.

Step 4 Build Makefile at the top level

Change working directory to $OTWLAN and do a qmake otwlan.pro at the project top level and
then a make just to see that all the subprojects have been built successfully. Warning: If you
execute a “make clean” at this level, all the subprojects are also cleaned!

Step 5 Run-time link bindings

Add the following line to the Linux system file /etc/ld.so.conf:

$OTWLAN/otwlan/lib

 110 FFI-rapport 2009/00911

Then make the change active by the Linux command ldconfig.

Step 6 Start oTWLAN
Please read section 11.3 before going on with this step. oTWLAN is started by executing
$OTWLAN/otwlan/bin/otwlan.

11.2 Build with TCP Support

This section explains how to build oTWLAN with TCP support.

Step 1 Unpack the tar file
Same as step 1 in section 11.1.

Step 2 Build the libraries (libinet.so, liboprobe2a.so, libotcp.so)
Same as step 2 in section 11.1 with the exception that you must issue a ”qmake inet.pro” instead
of ”qmake inetNoTcp.pro”. Then change working path to $OTWLAN/otwlan/otcp and do the
usual “qmake;make clean;make”.

Step 3 Build bin/otwlan
Do a “cd $OTWLAN/otwlan/src” and execute the sequence “qmake “CONFIG+=usetcp”
otwlan.pro; make clean; make”.
Step 4, 5, 6
Identical to the steps 4 to 6 in section 11.1.

11.3 Running the First Time

oTWLAN remembers its setting across sessions and this information in stored in a file. This
function uses the Qt class QSettings which stores information under “$HOME/.config” on Linux.
We have assigned the organisation name gosikt and the application name otwlan. The absolute
file name then becomes $HOME/.config/gosikt/otwlan.conf.

The first time the program starts this file is missing and you are requested to give some addition
information. Set the project directory to $OTWLAN/otwlan and the simulation directory to
$OTWLAN/otwlan/examples/myfirstrun. The latter is a simple two node network that should run
immediately without any additional configurations. Use the oTWLAN menu “Setting->Show” to
inspect your configuration variables.

Figure 11.1 shows the variables specified by the otwlan.conf file. The [project].home must point
to the $OTWLAN/otwlan because the program must have access to the files in the directory
$OTWLAN/otwlan/nedFiles. The simulationHomeDirectory should point to a valid simulator
input data set as explained in chapter 5. However, wrong setting is not fatal. The program starts
with an empty playground. Use “Project->Open” to open a valid data set.

FFI-rapport 2009/00911 111

Figure 11.1 The content of the otwlan.conf. A copy is supplied under $OTWLAN/otwlan.

12 Conclusions and Remarks
The oTWLAN software is developed under the FFI-project Fundamental Technologies and Trends
in Information Security (GOSIKT) and is the first step towards developing a simulator that shall
model NATO PKI in the tactical domain where the network nodes must rely on radio based
communication with limited transmission capacity.

Model validation. Much effort has been made to validate the simulator. Chapter 9 simulated some
scenarios where analytical expressions are available. Here we compared simulated results and
theoretical results. As we progress towards multihop networks in chapter 10, analytical results
become unavailable and the strategy was to gradually increase the complexity with the objective
to detect abnormalities.

Scenario initialization. A common pitfall is not to initialise the simulation scenario correctly.
oTWLAN provides a set of graphical editors by which the user configure the simulator’s input
data. These editors make some consistency checks and produce XML files that are processed by
simulator kernel upon start. Practical experience has shown that the run-time checks done in the
kernel catches most of the inconsistencies in the input data. However, they are trapped by
assert()-statement. This may be inconvenient for inexperienced users but was a shortcut we had to
take due to lack of programming resources. Upon termination, oTWLAN produces a file
containing a set of counters, which is sampled data per node basis. Counters showed to be an

 112 FFI-rapport 2009/00911

effective tool to detect erroneous setting of the input data. For example, if node N0, say, detects
many CRC errors despite the fact it should not, this may indicate inappropriate setting of the
power level in the network.

Output data analysis. Many simulators have no tools to do statistical analyses and some studies
have pointed out that this is a practical problem [4,24]. By means of the open source project
oProbe [2], oTWLAN inserts probe objects in the program code. These probes collect samples and
perform data analysis of steady-state performance at run-time. The simulation process terminates
automatically when the desired accuracy is reached. oTWLAN is an infinite horizon simulator,
that is, we suppose as the simulator runs longer and longer, a limiting steady-state distribution
independent of the initial state exists. If the transient period is set too short, biased results are
produced. However, the statistical analysis package implemented tests the sampled data for
correlation and automatically prolong the run length until a predefined upper limit is reached.
This technique solves the problem with correlated samples but also makes the simulator less
sensitive to short setting of the transient period.

Software quality assurance. The source code has been compiled with “warn all” enabled and all
warnings have been corrected. Memory leaks and use of un-initialised variables have been
detected by means of valgrind. We have extensively used the assert()-statement in our code to
detect fatal software errors as early as possible since this disburdens the debugging process. It
also prevents producing simulation results from inconsistent or erroneous input data. When
simulating a complex scenario, it is often impossible to detect errors in the simulator’s input data
from the output data.

Object-oriented modelling. RF communication is modelled according to the real world where a
wave propagates through air and experience a pathloss depending on the distance. All incoming
RF waves to a receiver go through comprehensive analysis where interference, background noise
and the air frame section considered determine the next receiver state. The benefit of this
approach is a good emulation of a real scenario. The drawback is a higher computational cost and
networks larger than 200 nodes may run slowly depending on the connectivity.

Why not NS-2? The most used simulator in MANET research is NS-2 [27]. Some of the project
team members have experience with the NS-2 and found it more attractive to develop a new
simulator rather than modifying the NS-2 software. The focus for our research is MANETs for
the military tactical domain where both the protocols and the radio solutions differ from what is
modelled in NS-2. NS-2 also has some shortcomings with regard to structure. For example, NS-2
has no module concept as OMNeT++. The concept of modules appeared to be an efficient tool
for structuring the simulator.

FFI-rapport 2009/00911 113

Appendix A Symbol Error Rate
All the three oTWLAN radio versions use the same symbol error rate (SER) table

Demodulation: -5 -4 -3 -2 -1 0 1 2 3 4
F1: -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

Figure A.1 SER versus SNR for demodulation (CRC16, LI and PHY payload) and F1.

 114 FFI-rapport 2009/00911

Appendix B Egli Single-hop Network
This appendix continues the analysis of the scenario specified in section 10.4. We modify the
traffic generators to restrict the traffic streams to neighbours only (single hop network). This is
done by activating the optional user facility “to all RF neighbours using link cost limit” on the
traffic pattern page in the traffic editor. Here we may also apply a link cost condition to control
whether a link shall receive traffic or not. All RF connected neighbours of the originator receive
packets when the link cost limit is set to 1.49. Only high quality neighbours receive packets if the
link cost limit is set to 1.00. All transmitters send at -6.5dBm while the other node parameters
remain at the same values as earlier.

From figure B.1 we can see a sudden drop in performance when the link cost limit increases from
1.3 to 1.4. More low quality links are taken into use and the LLC retransmission rate increases.
Figure B.2 illustrates a high retransmission rate even at low load level when the low quality links
carry traffic.

2000 4000 6000 8000
Offered traffic @bytes êsD

1000

2000

3000

4000

5000

6000

tuphguorhT
@

setyb
ês
D

1.49

1.45

1.40

1.30

1.20

1.10

1.00

Figure B.1 Throughput versus offered traffic. The legend expresses the link cost limit applied.
The plot for link cost 1.20 and 1.30 are identical.

FFI-rapport 2009/00911 115

2000 4000 6000 8000
Offered traffic @bytes êsD

0.1

0.2

0.3

0.4

0.5

xTeRN
ta

CLL

1.49

1.45

1.40

1.30

1.20

1.10

1.00

Figure B.2 Average number of retransmissions at the LLC layer retransmission versus offered
traffic. The legend expresses the link cost limit applied. The plot for link cost 1.20
and 1.30 are identical.

 116 FFI-rapport 2009/00911

Acronyms
AHA All hearing all (complete network topology)
ARQ Automatic Repeat reQuest
CAS Carrier Sense
CL ConnectionLess
CNR Combat Net Radio
CO Connection Oriented
DARPA Defence Advanced Research Projects Agency
DOM Document Object Model
DSSS Direct Sequence Spread Spectrum
DT-PDU Data Protocol Data Unit
GUI Graphical User Interface
GUIA GUI Automatic
ICI Interface Control Information
IP Internet Protocol
IP-SAP Internet Protocol SAP
ISO International Organisation for Standardisation
LLC Logical Link Control
MAC Medium Access Control
MAC-E MAC Entity
MAC-SP MAC Service Provider
MANET Mobile Ad-hoc NETwork
MLPP Multi-Level Precedence and Preemption
NIC Network Interface Card
NM-SAP Network Management SAP
OS Operating System
OSI Open System Interconnection
PCI Protocol Control Information
PDP Packet Data Protocol
PDU Protocol Data Unit
PTT Push To Talk
RF Radio Frequency
SAP Service Access Point
SDU Service Data Unit
SQL Structured Query Language
TCP Transport Control Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
UDP User Datagram Protocol
UE User Environment or User Equipment
UI User Interface
UTL Utility

FFI-rapport 2009/00911 117

WAN Wide Area Network
XML Extensible Mark-up Language
xxx-E xxx Entity (e.g., LLC-E)
xxx-SAP xxx Service Access Point (e.g., LLC-SAP)
xxx-SP xxx Service Provider (e.g. MAC-SP)

 118 FFI-rapport 2009/00911

References
[1] The Discrete Event Simulation OMNeT++, www.omnetpp.org
[2] Tore J Berg, ”oProbe - an OMNeT++ Extension Module”,

http://soureforge.net/projects/oprobe
[3] Bjørnar Libæk, “A TCP module for the oTWLAN”, in preparation.
[4] Kurkowski, Camp and Colagrosso, ”MANET Simulation Studies: The Incredibles”, ACM's

Mobile Computing and Communications Review, vol. 9, no. 4, pp. 50-61, October 2005.
[5] Berg, et.al, ”Spread spectrum in mobile communication”, The Institution of Electrical

Engineers, 1998, ISBN 0-85296-935-X
[6] Alan Ezust and Paul Ezust “An introduction to design patterns in C++ with Qt 4”, Prentice

Hall 2007, ISBN 0-13-187905-7
[7] Qt Centre, www.qtcentre.org
[8] John Jubin and Janet D. Tornow, “The DARPA Packet Radio Network Protocols”,

Proceedings of the IEEE, January 1987.
[9] Edward N Singer, “Land Mobile Radio Systems”, Second Edition, Prentice Hall 1994
[10] Ramakrishna Gummadi, et.al., “Understanding and Mitigating the Impact of RF

Interference on 802.11 Networks”, 2007, www.seatle.intel-research.net/Publication/2007
[11] Daniel Willkomm and Marc Loebbers, “A Mobility Framework for OMNeT++ User

Manual”, January 12th, 2007.
[12] I. Ramachandran and S. Roy, “On the Impact of Clear Channel Assessment on MAC

Performance”, Global Telecommunications Conference, 2006.
[13] Marc Lobbers and Daniel Willkomm, “A Mobility Framework for OMNeT++”, January

12th, 2007, www.omnetpp.org.
[14] Open system interconnection - Basic reference model,

ISO/IEC 7498.
[15] Conventions for the definition of OSI Services,

ITU-T Recommendation X.210.
[16] Krzysztof Pawlikowski, “Steady-State Simulation of Queueing Processes: A Survey of

Problems and Solutions”, ACM Computing Surveys, Vol. 22, No.2, June 1990.
[17] R. G. Cole and B. S. Farroha, “Implications of Precedence and Preemption Requirements

on Packet Based Transport Architectures”, MILCOM 2007.
[18] B. S. Farroha et.al, “Requirements and Architectural Analysis for Precedence Capabilities

in the Global Information Grid”, MILCOM 2006.
[19] William Stallings, “Data and computer communications”, Macmillan Publishing Company,

1985.
[20] Mathematica, www.wolfram.com
[21] John G. Proakis, “Digital Communications”, McGraw-Hill international editions, Third

Edition 1995
[22] Thomas Dreibolz, et.al. , “SimProcTC - The Design and Realization of a Powerful Tool-

Chain for OMNeT++ Simulations”, 2nd International Workshop on OMNeT++, March 6th,
2009.

http://www.omnetpp.org/�
http://www.qtcentre.org/�
http://www.seatle.intel-research.net/Publication/2007�
http://www.omnetpp.org/�
http://www.wolfram.com/�

FFI-rapport 2009/00911 119

[23] Frank Y. Li, et.al. , “Does Higher Datarate Perform Better in IEEE 802.11-based Multihop
Ad Hoc Networks?”, Journal of communications and networks, 2007, Vol 3.

[24] Kurkowski, Camp and Colagrosso, ”MANET Simulation Studies: The Current State and
New Simulation Tools”, Technical Report MCS-05-02, The Colorado School of Mines,
February 2005, http://toilers.mines.edu.

[25] NATO Consultation, Command and Control (C3) Board, “NATO Public Key Infrastructure
(NPKI) Certificate Policy”, AC/322-D(2004)0024-REV2, 2008.

[26] NATO Consultation, Command and Control (C3) Board, “Statement of Technical
Characteristics for the NATO Public Key Infrastructure, AC/322-N(2008)0004, 2008.

[27] The NS-2 simulator, http://nsnam.isi.edu.nsnam/index.php.

http://nsnam.isi.edu.nsnam/index.php�

	1 Introduction
	2 Learning to Drive
	2.1 Creating the Playground
	2.2 Radio Planning
	2.3 Creating the Routing Table
	2.4 Creating the Traffic Generators
	2.5 Activating Probes
	2.6 Sanity Checks of Input Data
	2.7 Running the Experiment
	2.8 Output Data Analysis

	3 The Protocol Stack
	3.1 The 3a Layer
	3.2 The LLC Layer
	3.3 The MAC Layer
	3.4 The Physical Layer
	3.5 Priority Handling
	3.6 Lifetime Control

	4 Modelling a Network of Radios
	5 Input Data Structures
	5.1 Playground
	5.2 Pathloss Matrix
	5.3 Data Traffic
	5.4 Routing
	5.4.1 A case study

	5.5 Radio Data
	5.6 Probe Data
	5.6.1 Rate probes
	5.6.2 Probe objects
	5.6.3 Counters

	6 Simulator Design
	6.1 Design Patterns
	6.1.1 Qt4 Based Models and Views

	6.2 The User Traffic Module
	6.3 The L7_DataProtocol Module
	6.4 The L3_3aLayer Module
	6.5 The L2_LlcLayer Module
	6.6 The L2_MacLayer Module
	6.7 The L1_DsssBaseband Module
	6.8 The MChannelControl Module

	7 Tips and Tricks
	7.1 Sanity Checks of the Input and Output Data
	7.2 How to simulate without the GUI part
	7.3 How to remove the GUI software
	7.4 How to remove the kernel part

	8 The Software Architecture
	9 Validation and Parameter Optimization
	9.1 AHAn2
	9.2 Optimising bp
	9.3 Selecting (ap,bp)-values
	9.4 Capacity per priority
	9.5 Capacity versus network size
	9.6 Summary

	10 Multihop Networks
	10.1 The Cost of Multihop Communications
	10.2 Network Fragmentation
	10.3 Mobility
	10.4 Multihop in Egli terrain
	10.5 Discussions and Conclusions

	11 Installation
	11.1 Basic Build
	11.2 Build with TCP Support
	11.3 Running the First Time

	12 Conclusions and Remarks
	Appendix A Symbol Error Rate
	Appendix B Egli Single-hop Network

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.16667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.16667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

