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Summary

Computer Generated Forces (CGFs) have been used within military simulation-based, training and
decision support applications for decades. CGFs are autonomous or semi-autonomous entities that
typically represent military units such as tanks, soldiers, and combat aircrafts. Their main purpose,
at least within training applications, is to reduce human role playing, which allows for more efficient
use of military training facilities. Although CGFs are undoubtedly useful, their behavioral capabilities
are often limited to follow doctrines, rules of engagement or heuristics identified by human domain
experts that not necessarily represent the behavior observed in the CGF’s real-world counterpart.

In this report we introduce and provide a literature review of works related to the Data-Driven Behavior
Modeling (DDBM) approach, which is an alternative to the traditional domain expert based behavior
modeling approach. In DDBM computers are employed to analyze and identify behavioral patterns
in data using machine learning techniques. DDBM is believed to more efficiently produce CGFs that
are more objective and realistic compared to CGFs where the behavioral patterns mainly have been
identified using subjective human experts.

This report is the result of a collaborative effort between the Norwegian Defence Research
Establishment (FFI) and the Swedish Defence Research Agency (FOI), "Technical arrangement
number 4 FFI-FOI - Terrain Analysis and Synthetic Agents".
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Sammendrag

Datagenererte styrker har lenge blitt brukt i militeere simuleringsbaserte verktgy for trening og
beslutningsstette. Datagenererte styker er autonome eller semiautonome entiteter som representerer
militeere enheter, for eksempel stridsvogner, soldater og fly. Hovedformalet med bruk av datagenererte
styrker er & kunne gjennomfgre gvelser med mindre personell ved at en person kan styre flere militeere
enheter. Selv om datagenererte styrker er nyttige i dag, er den autonome oppferselen ofte begrensa
til & folge ideelle regler identifisert av domeneeksperter. De reflekterer ikke nedvendigvis den
menneskelige oppfarselen til de virkelige systemene som de datagenererte styrkene representerer.

Denne rapport introduserer og presenterer en litteraturoversikt over datadrevet
oppferselsmodellering (DDBM), som er et alternativ til den tradisjonelle domeneekspertbaserte
maten & modellere oppferselen til datagenererte styrker pa. | DDBM brukes
maskinleeringsalgoritmer for & analysere og identifisere oppferselsmenstre og for & generere
oppfarselsmodeller fra eksempler pa enska oppfersel. Malet er & kunne generere oppfarsel mer
effektivt og lage oppferselsmodeller som er mer objektive og realistiske.

Denne rapporten er resultatet av et samarbeid mellom Forsvarets forskningsinstitutt (FFI) og
Totalférsvarets forskningsinstitut (FOI) i Sverige, "Technical arrangement nummer 4 FFI-FOI -
Terrain Analysis and Synthetic Agents".
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1 Introduction

Computer Generated Forces (CGFs) are autonomous or semi-autonomous actors within military,
simulation based, training and decision support applications. CGFs are often used to replace
human role-players in military exercises to, ultimately, improve training efficiency. The modeling
and development of CGFs is a complex, time-consuming and expensive endeavor where military
domain expertise and doctrinal knowledge are interpreted and programmed into the CGF by hand.
Furthermore, CGFs often represent human actors and behaviors (pilots, soldiers, manned systems,
etc.) making it an even more challenging task.

In recent years the Artificial Intelligence (AI) research community has achieved some remarkable
results where Intelligent Agents (IA) successfully defeated human champions in games such as
chess [10], Jeopardy [17]] and Go [48]]. Al researchers have demonstrated that Machine Learning
(ML) algorithms [38]] can be used to learn IA behaviors from recorded observations such as log-files,
GPS coordinate traces and, more recently, pixels from images and video [40, 41]].

Modeling the behavioral rules of CGFs using machine learning, which we refer to as Data-Driven
Behavior Modeling (DDBM), has many potential advantages compared to the traditional modeling
approach where the behavioral rules are manually hand-crafted using subject matter experts and
doctrines. Using DDBM, the modeling efficiency with respect to cost and time may improve, in
particular, when modeling complex CGFs designed to mimic human actors and behaviors within
complex environments. The DDBM approach may also improve behavior realism and objectiveness
resulting in better and more realistic training and decision support tools.

This report is organized as follows. Chapter 2] provides a survey of work related to DDBM. We have
not tried to make and exhaustive search, but have included a selection of papers that provide an
overview of the state of the art in the field. More details about some of the papers are included in
Appendix [A] Potential benefits and challenges of using DDBM are addressed in Chapter 3]

1.1 Purpose of this report

The purpose of this report is to introduce the reader to the concepts of DDBM and to review related
works where DDBM, or a similar approach, has been evaluated and applied in the past.

The intended audience of this report are researchers in the military modeling and simulation
community and personnel/operators at military training and decision support facilities.

1.2 Terminology

Let us list a few terms that may be useful when reading this report:

* Artificial intelligence (Al): Intelligence shown by machines.
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Agent: In the Al-community an agent is defined as anything capable of perceiving and acting
upon its environment [43]].

Intelligent agent (IA): An 1A is an agent that acts humanly or rationally [45]].

Computer generated forces (CGF): The CGF is a specialization of an IA, primarily employed
in simulation based military decision support and training tools.

Supervised learning: Machine learning algorithms that learn from labeled datasets.
Unsupervised learning: Machine learning algorithms that learn from unlabeled datasets.

Reinforcement learning: Machine learning algorithms that learn by optimizing reinforcement,
reward or fitness functions.

Observational learning: Modeling behaviors from observations of the desired behavior.
Typically implemented using supervised machine learning techniques.

Experiential learning: Modeling behaviors using a trial-and-error approach where a target
simulator is used to improve the behavior model based on an evaluation, fitness or reward
function. Typically implemented using reinforcement machine learning techniques.

Hybrid learning: Combining observational- and experiential learning.

Data-driven behavior modeling (DDBM): Using observational, experiential or hybrid learning
to generate behavior models.
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2 Literature survey

DDBM is the use of machine learning techniques to automatically generate behavior rule{] from
examples of correct behavior or some measurement of what is correct, good, or representative.
Using machine learning it is possible to learn behaviors online, i.e. during operations, or offline, i.e.
prior to being applied. In this report we focus mainly on the offline learning techniques.

In this chapter we present the main findings of our literature review. The review has been organized
to emphasize the work-flow within the three main learning strategies, observational, experiential
and hybrid. Extended summaries of selected papers are listed in Appendix [A]

2.1 Observational learning

In observational learning, the goal is to develop a behavior model for a CGF entity by observing
the behavior of the agent whose behavior should be learned (so called original agent). The data
collected from the original agent performing an activity, in a simulation or in the real world, is used
to train a CGF entity to act similarly when attempting to perform the same activity under similar
conditions [52]].

Other terms used in the literature that are largely synonymous to observational learning or learning
from observation are learning from demonstration and learning by imitation. In learning from
demonstration a human purposely demonstrates how to perform a given task in order to make the
agent perform the same task, whereas in learning from observation, the one being observed does
not need to be a willing participant [44]]. Learning from imitation or mimicking refers to learning
the exact same actions, whereas observational learning is primary about learning to induce some
effects in the environments.

In the machine learning community, the term learning by observation is often used in a broad
sense and refers to the fact that the training data is a set of observations. However, although the
observed data is used to learn (e.g. in handwritten character recognition), in general, the data does
not demonstrate how to perform a task, or how to teach any behavioral skills [[15]. We use the term
observational learning in a more specific context, by learning from observation we mean how to
learn the behavior of an observed entity performing some activity.

Observational learning is essentially similar to supervised learning in the sense that it learns
from the observed data. However, there are some principal differences between these two. In
observational learning, the input data is a trace of human performance with different length, and it
is not necessarily clear where one example starts and where it ends. Furthermore, the labels are
implicit rather than explicit. In traditional supervised learning the input data is explicitly defined
with features and labels [52].

Several authors have investigated observational learning in different domains, using a variety of
techniques [44}, [15} 26, 27]. For instance, Johnson and Gonzalez [26, 27] presented a prototype

'With behavior rules we do not necessarily mean if-then-rules. It can be any kind of behavior representation, such as
a neural network or a decision tree.
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Figure 2.1 Observational learning.

with the focus on learning team behavior from observations. The approach is semi-autonomous and
observations are manually processed to identify domain specific contexts representing different
states of the observed behavior. In robotic research it is common to use learning from demonstration,
where a human demonstrates and teaches a robot on how to perform a given task [4, [8]].

The observational learning strategy can be divided into three steps as illustrated in Figure [2.1}

1. Data acquisition: In this phase raw data is acquired from sensors, exercises, simulations, etc.
The data is visualized and pre-processed to filter out any invalid data points and if needed
supplement the dataset with synthetic data points.

2. Feature extraction: In this phase the dataset is further processed using feature extraction
functions capable of identifying key features in the data that ultimately reduces the complexity
of the learning task.

3. Learning: In the learning phase machine learning techniques and algorithms are used to
identify rules, patterns and structures that define the CGF’s behavior.

2.1.1 Data acquisition

In observational learning the majority of the modeling work consists of collecting, visualizing and
pre-processing datasets that, at a later stage, can be fed into the machine learning algorithms. The
quality and quantity of the data is perhaps the most important contributing factor to successfully
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applying observational learning. Unfortunately, to the best of our knowledge, none of the modeling
and simulation frameworks or platforms available today embeds machine learning or DDBM
capabilities [[1]. Hence, there is a lack of software tools tailored for, and specifically targeting, the
requirements of the DDBM approach with respect to acquisition, visualization and pre-processing.
As a result researchers and modelers typically rely on a mix of general purpose and ad hoc tools
when modeling agents and CGFs using DDBM. In the remainder of this section we will briefly
highlight a few of these tools used for observational learning.

In recent years several companies turned to big data analysis and data mining techniques to gain an
advantage over their competitors, to better understand consumer behaviors etc. This trend resulted
in the development of several commercially available software tools, such as RapidMineIEI and
PredictionI Besides managing large amounts of data these tools are capable of analyzing and
identifying patterns in large datasets.

In the military domain a lot of work has gone into creating tools such as SIMDIﬂ that relatively
quickly can be used to reconstruct military incidents using Geographic Information Systems (GIS)
and data originating from sensors (GPS, sonar, radar, etc.). These tools typically include playback
functionality to improve the end-users ability to analyze incidents as they evolve over time.

Data acquisition and visualization tools are also used in military exercises for planning and evaluation
purposes. The Exonaut TEM (Training Exercise Managerﬂ which is used by the Swedish Armed
Forces, is an example of a relatively advanced tool capable of planning, coordinating and evaluating
large military exercises involving thousands of trainees.

A feasible way of collecting data is to employ a simulator and record the actions of a human
performer carrying out the task of interest in a simulated milieu. Using a simulator instead of the real
world to collect data offers several benefits. Simulated environment provides a much more flexible
settings to design specific scenarios (including difficult or dangerous situations), which support
the objective of the studied research. Furthermore, using simulation removes the requirements of
complex sensors and image recognition algorithms [[16]].

Argall et al. provide an overview of data acquisition methods for robots that are learning from
demonstration [3]]. Two potential correspondence issues are identified: 1) Do the recorded data
contain the exact states and actions that are experienced by the teacher? 2) Are the recorded states
and actions the same as those that the learner would observe?

Teleoperation is the simplest method for data acquisition in robotics. Here the teacher steers
the robot using a remote control and the states and actions are recorded from the robot point of
view. A corresponding method for CGFs would be to record the actions and states while manually
controlling the CGFs. A more complex setting would be to use records of human actions while
performing some task in the real world or in another virtual environment.

Active learning is a machine learning method in which the learning algorithm may interactively
pose queries to the teacher. The main idea behind active learning is that by choosing the data

2https ://rapidminer.com/

3https://prediction.io/

4https ://simdis.nrl.navy.mil/
Shitps://www.4cstrategies.com/exonaut-products/training-and-exercise-manager
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by which the algorithm learns, it can achieve performance of greater accuracy. Active learning
is especially well-motivated in scenarios where copious unlabeled data is available, but labeling
data manually is time-consuming and expensive [47]]. Since learning by demonstration permits
intervention with the learning process, it should be possible to apply methods and findings in active
learning to perform learning by demonstration.

Generative adversarial nets (GAN) [21]] is an interesting approach that can be used to generate
synthetic data using machine learning. The main idea of GAN is to learn two models using only a
limited amount of unlabeled training data. The first model is called the generator and its main goal
is to generate realistic data given some random input. The second model is called the discriminator
and its purpose is to classify and separate real (i.e. training data) from generated data. During
the learning phase these models are competing against each other and as a result they iteratively
improve their capability to generate and discriminate data respectively.

2.1.2 Feature extraction

Although computers are efficient in data processing, they generally do not perform well if the
data is not presented in an appropriate format. Hence, gathered raw data cannot typically be used
directly, and different pre-processing measures (filtering, partitioning, etc.) and feature extraction
are required to prepare the data and represent it in a way that is understandable and meaningful
for the ML algorithms. Pre-processing sometimes include transforming spatial data to a reference
system in order to ensure that the observation can be generalized to seemingly different but in fact
equivalent situations.

The simple act of observing human performers can be quite difficult, given that computers are not
as efficient as humans in processing visual data and recognizing patterns. Therefore, the first step in
learning by observation is to observe the behavior and represent it as data that is easily processed by
a learning algorithm [26].

Representing observed behavior can be performed manually, automatically, or by a combination of
these two approaches. For instance, Sukthankar ef al. manually annotated the data to label individual
domain-specific behaviors of human motion captures, such as walking, probing, inspecting, and
covering [53]]. In later work they used an automatic approach to identify physical team behaviors
from spatial relationships [55,154] in the military operations in urban terrain (MOUT) domain.

Modeling team behaviors is a challenging task since agents in the team often execute different
actions simultaneously. Teams operating in physical domains have spatial characteristics that can
be used to recognize the team behavior. Example of these characteristics are spatial formations
including the relative position of the agents and their positions in relation to buildings, doorways
and other static objects.

Sukthankar and Sycara [55] exploited the distinctive spatial structure to identify team behaviors
in MOUT operations. The main idea was to compare the spatial relationships between physical
entities in a static scenario with a model library to identify the team behavior based on a similarity
measure [S3]]. A collection of unique spatial models that had no temporal order represented each
team behavior. Features, such as positions of relevant entities, entity types, pairwise constraints
between entities (e.g., line of visibility or lack of visibility), and scaling constraints (e.g., limitation
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of distance between agents) constituted each spatial model. Although the scenario contained both
static (buildings, obstacles, etc.) and dynamic (foot soldiers) entities, the analyzed models are static,
i.e., they represent snapshots of spatial formations. To improve generalization capabilities, a set
of legal transforms (rotation, translation and scaling) must be defined. These transforms ensure
that a model developed for one scenario can match behaviors observed in other spatial layouts.
The ability of an identified model to generalize to similar circumstances is an essential part of
data pre-processing. Without generalization it is unfeasible to exhaustively enumerate all possible
occurrence of relationships in different layouts.

A more complicated scenario arises when the goal is to identify team behaviors considering the
temporal aspect and execution order of events. Although, certain team behaviors that include highly
discriminating spatial relationships can be identified from snapshots of states, many behaviors are
recognizable only by examining the succession of states as they unfold.

The overall structure of these problems is similar to problems in temporal pattern recognition (e.g.,
speech and gesture recognition) in that unobserved Markovian states are inferred from a sequence of
observed features. Hidden Markov Models (HMM) have been widely applied in speech recognition,
handwritten character recognition, and natural language processing. Thus, it is appealing to use
HMM for the problem of behavior recognition. Several researchers have successfully applied HMM
to behavior recognition [22} 54, 36].

Han and Veloso [22] use HMMs to represent and recognize strategic behavior of agents in simulated
robotic soccer, where it is advantageous for an agent to identify and predict the other agents’
behaviors. Although the robotic soccer domain is multi-agent, the work in [22] is limited to one
agent and the ball. In this application, the discrete set of states represent the agent’s mental state,
and the set of observations represent its physical state. Separate HMMs are trained and used to
represent the behaviors. Given an observation, the HMM with the highest probability determines
the current behavior and strategy of the robot.

Unlike domains such as speech recognition, which can naturally be segmented in words, the
segmentation of robot behaviors is not well-defined. The robot behavior changes continuously and
there is no gap (segmentation point) between different behaviors. To work around this problem,
new HMMs are instantiated at regular intervals. If a HMM is instantiated at a point of time close to
a behavior start time, then the behavior is recognized.

It is generally time consuming to create HMM of team behaviors through knowledge engineering
(manual creation of the model). Moreover, the hidden nodes of the HMM, which correspond to
the mental state of the agents are not always intuitively identifiable. Luotsinen et al. [36] have
developed an interactive application for the editing and manipulation of recorded observations to
simplify the identification and extraction of representative examples from relatively large observation
databases. The resulted set of representative examples is then used as training and validation data to
automatically learn teamwork behavior HMMs.

In [54], movement data (position and orientation) of members in a MOUT-team is recorded over time.
In this work, behavior recognition is performed using a set of HMMs (one for each recognizable
team behavior).

Johnson and Gonzalez [26, [27]] and Fernlund et al. [[15[16]] segment the behavior by dividing it into
different predefined contexts manually. The behavior in each context is learned separately. Stein

FFI-RAPPORT 17/01510 13



and Gonzalez show that dividing the behavior into contexts greatly reduces the complexity of the
learning process [51].

Behavior can also be divided into primitives, representing small parts of the task execution. The
use of primitives is particularly popular in robot motor control [46l], were the primitives represent
small parts of a movement. Recorded movements used for learning can be segmented into these
primitives and new motions can be realized by new combinations of primitives. Bentivegna and
Atkeson use pre-defined primitives to teach a robot to play air hockey [8]. When segmenting the
training data, a nearest neighbor algorithm is used to identify the most similar primitive.

2.1.3 Machine learning techniques

A variety of machine learning techniques that fall into the supervised learning category are used
for learning by observation. Supervised learning consists of a learning algorithm with training
data which include the inputs and expected outputs. The learning algorithm classifies the data and
creates a behavior model for the agent from the data. Examples of supervised learning algorithms
that are used for observational learning are back propagation for artificial neural networks (ANN),
decision tree learning, Bayesian networks, and support vector machines (SVMs).

In many cases the inputs and outputs are not explicitly defined and must be extracted from a sequence
of data demonstrating the correct behavior over time. The example behaviors and the corresponding
results are input and the behavior model is the output of the learning algorithm [26]].

An alternative technique targeting observational learning is inverse reinforcement learning (IRL)
[43]. The general idea of IRL is to learn a reward function from observations and then apply this
function within a reinforcement learning algorithm to model or learn the observed behavior.

In recent years deep learning (DL) [33} 20] has emerged as a promising technique capable of
learning from raw data (e.g., images, video, audio) without the need for explicit feature engineering.
That is, the feature extraction phase, as discussed in Section[2.1.2] is embedded within the learning
algorithm. There are several advantages with this approach: 1) it does not require the modeler to
develop complex feature extraction functions; 2) the hand-crafted features are selected based on
human intuition that not necessarily reflects the machine’s actual preferences for best performance;
and 3) computational performance is improved as there is no need to compute the hand-crafted
feature functions. Compared to traditional ANNs, often referred to as shallow learning, the DL
approach employs ANNs that are deeper (using more layers, neurons and connections). As a result,
DL models typically have higher capacity, i.e. they can model or approximate more complex
functions, at the cost of requiring larger datasets and more computational resources for training.

DL in supervised learning has significantly improved the performance of a wide range of applications
such as face recognition and identification [57], lip-reading [12], autonomous driving [11], image
description synthesis [29] and Q&A systems [[17]].

2.2 Experiential learning

In experiential learning, the main idea is that the CGF can learn and optimize its behavior using
a trial-and-error approach within the target simulator. The approach resembles human learning
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through practice when carrying out an activity, where the agent executes a sequence of actions in
different settings and learns from the outcome of actions taken [50]]. As illustrated in Figure
experiential learning is an iterative process. Usually the agent starts with a random behavior model.
In each iteration the agent use the behavior model to decide how to act. An evaluation, fitness, or
reward function is used to measure the performance of the agent, and some learning algorithm
updates the behavior model based on this measure.

While in observational learning, the objective is to create agents whose behavior are as similar to
observed behavior as possible, in experiential learning, the focus is to improve the performance of
the agents as much as possible [50]]. In experiential learning the agent explores the solution space
and learns by maximizing its performance measure within a simulator.

Contrary to observational learning, in experiential learning the performance measure cannot
determine the correctness of an action at any given time. Instead it grades the result of the behavior
as it unfolds over time [50].

One issue with experiential learning is that the agents may learn interesting but inappropriate
behavior. That is, although the performance criteria is met, the agent may not behave as one would
expect a human to carry out the activity.

There is a substantial body of research using the experiential learning approach, although they
do not explicitly use the term experiential learning (e.g. see [2,137,158]]). Aihe and Gonzalez 2],
propose using reinforcement learning to compensate for situations where the domain expert has
a limited knowledge on the subject being modeled. Merrick and Maher [37]] present motivated
reinforcement learning agents to create non-player game agents that explore their environment and
learn new behaviors, in response to interesting experiences. Teng et al. [58] use a self-organizing
neural network that learns incrementally through real-time interactions with the environment and
improves air combat maneuvering strategies of CGFs.

Reinforcement learning has also been applied using deep learning techniques to learn action
selection models capable of maximizing future reward. Mnih et al. [40,41] demonstrated this in
the context of playing Atari-games. Refer to Appendix for a detailed summary of this work.

As illustrated in Figure [2.2] experiential learning consists of two alternating steps, evaluation and
learning. The latter will be addressed in further detail in the next section.

2.2.1 Machine learning techniques

There are several well known machine learning techniques that can be used to implement experiential
learning. Reinforcement learning [56], genetic algorithms (GA) and genetic programming (GP)
[32] appear to be appropriate methods for experiential learning [S2].

Reinforcement learning (RL) is based on incremental rewards and punishments to teach the agent
how to accomplish a task successfully. It is a trial-and-error method, where the output cannot be
classified as correct or faulty at any point, but the outcome of taken actions are evaluated by the
learning algorithm. Actions that result in successful outcomes are reinforced, while those that result
in failures are weakened.

FFI-RAPPORT 17/01510 15
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Figure 2.2 Experiential learning.

Genetic algorithm [23]] is a stochastic search heuristic inspired by Darwin’s theories of evolution
and natural selection. In this method, a population of candidate solutions (individuals) are randomly
generated and evolved in an iterative process toward better solutions using genetic operators such
as selection, crossover and mutation. The iteration is stopped after a defined stop criterion is
fulfilled, and the solution with the best performance in all generations is presented as the solution
of the problem. GA usually uses linear binary array of bits to encode the individuals as a genetic
representation (chromosomes) of the solution space. This representation provides a convenient way
for simple implementation of genetic operations.

The size of initial population as well as the termination criteria, choice of genetic operators and
parameters, which steer to what degree these operators affect the evolution of the population, all
depend on the nature of the problem and require a lot of experiments. Another limitation of GA is
that like all other heuristic methods, there is no guarantee that it will find the global optimum and
may converge towards a local optimum.

Genetic programming [32] is a method that is closely related to GA. In GP, each individual in the
population is represented by a computer program. The computer program is modeled using a tree
structure where internal nodes represent functions (add, multiply, etc.) and statements (conditional,
loop, etc.). Leaves in the tree represent input data, constants and variables.

A difference between GP and GA is that the individuals in a GP population have a variable length
whereas individuals in GA are fixed length. In GP, the crossover operator typically swap subtrees of
individuals to generate new individuals. As a result, the crossover operator may end up increasing
the depth of the trees.
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Figure 2.3 Hybrid learning.

23 Hybrid learning

Several authors have used a hybrid approach, combining observational learning and experiential
learning methods [, 50]. The hybrid approach is similar to experiential learning, with the main
difference that the agent, instead of random initial solutions, improves solutions that are obtained by
observational learning. This is illustrated in Figure[2.3]

In the work of Bentivegna and Atkeson [8]], a robot playing air-hockey first observes and learns the
behavior of an expert. Second, a reinforcement learning process is used to improve the learned

behavior.

Stein and Gonzalez [50] use a hybrid method, in which agents learn tactical skills by observation
as well as by experiments (in different domains). The authors suggest that the agents using the
hybrid approach are both human-like and perform better than the original human. Learning from
observation makes the agents behave human-like, and during the experiential learning phase the
performance of the agent is optimized.

AlphaGo [48] is another example where hybrid learning is used to learn how to play the game of
Go. A thorough summary of this work is presented in Appendix
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3 Discussion and conclusion

In this report we have introduced and reviewed works related to the DDBM concept where machine
learning techniques are applied to create the ’behavioral rules” of a CGF using observations and
recorded data. The review covers two different strategies, observational learning and experimental
learning, and how they can be combined.

The main advantages of DDBM, if it can be successfully applied to real-world problems, are:

* The military end-users might be able to add new behavior themselves by showing a CGF how
to behave.

* It might be faster to add new behavior. This will depend on the cost of generating and
preparing training data.

* Observational learning might lead to behavior that is more human like. Human like behavior
is not always optimal or even rational, which makes it challenging to model with traditional
methods.

3.1 Challenges

Although the DDBM approach appears promising, it also presents a new set of challenges that
could limit its applicability in military simulation based tools:

* Not enough data: As the dimensions of the feature vectors increase, more data are required
to capture the observed behavior using the DDBM approach. However, more data also imply
more work for the modeler, which in turn may reduces the efficiency of the approach. There
are several dimension reduction algorithms, for instance Principal Component Analysis (PCA)
[14]] that can be applied to address this challenge. This problem is also related to the curse of
dimensionality [1]].

 Incomplete and noisy data: Data originating from military exercises or operations are often
noisy and incomplete, which ultimately affects the performance of the DDBM approach. To
address this challenge particle or Kalman filters can be used [28]].

* Terrain problems: The behavior of military entities depends on the surrounding environment.
Hence, it is important that these aspects are also encoded within the feature vector. This
challenge can be addressed by utilizing advanced geographical analysis tools to calculate
line-of-sight, accessibility of various terrain types, etc.

* Black-box problems: Machine learning algorithms typically generate models that are too
complex for any human to interpret. As a result, the models are considered black-boxes.
This is perhaps the most severe drawback of using DDBM or machine learning techniques
to model CGF behaviors. Although this challenge is addressed in initiatives such as the
explainable Al (XAI) progralrﬁ there is, to the best of our knowledge, no solution available
yet.

6https ://[www.darpa.mil/program/explainable-artificial-intelligence
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* Real-time requirements and processing bottle-necks: CGFs developed using DDBM rely on
feature extraction functions to process and adapt the raw data into a format compatible with
the selected machine learning algorithms. In military applications these feature will most
likely include advanced terrain analysis, which may impact the overall real-time performance
of the CGF. This problem can be solved by carefully weighing model fidelity vs. processing
performance.
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A Summaries of selected articles and papers

A1 Identifying physical team behaviors from spatial relationships

Assuming that team activities in physical domains have a distinctive spatial structure (e.g., the
relative position of the team members with each other and to static entities), this structure can be
used to identify the team behavior of Military Operations in Urban Terrain (MOUT). This paper [53]]
presents a Random Sampling and Consensus (RANSAC) based algorithm [[18] for recognizing
the behavior of a team by comparing the physical features of a team behavior with models from a
library of created models.

A similarity function scores possible configurations by comparing static entities (e.g., doors and
buildings), dynamic entities (e.g., opponents and teammates), transform validity, spatial proximity,
and preservation of visibility constraints. The feasibility of the method is demonstrated by
recognizing the physical behaviors in a simulated MOUT scenario of a firing team. The recognition
is performed by analyzing snapshots of an annotated 2D overhead map. The strength of the
algorithm, according to the authors, is that it is robust to spatial variations, generalizes across
scenarios, and can be executed in real-time.

In an initial phase, using an authoring tool, one or several spatial models corresponding to each
physical behavior are constructed. The library of spatial models then can be used to classify
formations of MOUT entities on a 2D map.

It is important to note that no particular temporal structure, or execution order is associated to the
models. Thus, the behaviors of MOUT team are represented only by spatial relationships of the
entities that are common during the execution of that behavior.

Models are generalized using the set of legal transforms (rotation, translation and scaling). Given
a set of spatial models and valid transforms, a statically robust technique (RANSAC) is used to
determine which spatial models are applicable to the current annotated map. This method can be
summarized as the follows: for each model under consideration, two entities are randomly selected.
Two candidate entities on the annotated map having compatible types are randomly selected. These
two pairs of points are sufficient to fully specify a transform matrix 7 (transform hypothesis). T is
used to transform the location of every entity in the model to the map. The obtained transform is
tested using the distance between the transformed entities in the model with corresponding entities
in the map, and models which have a score less than a threshold are rejected.

A.2 Automated robot behavior recognition applied to robotic
soccer

This paper [22], formulates robot behaviors (in robotic soccer domain) as Hidden Markov Models
(HMMs) to address the problem of autonomous high-level behavior recognition from observed
low-level state features. Robot’s behaviors is decomposed as the states in HMMs (called Behavior
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HMMs). A Behavior HMM is defined to have four different states: (i) initial state (the start of the
execution of the behavior), (ii) accept state (successful completion of a behavior), (iii) intermediate
state (between initial and accept states), and (iv) reject state (states not reachable or not relevant to
the behavior).

The transition probability Pr(S;+1 = s;|S; = s;) (for the state transition x; < s;), models the noise
in the system and any discrepancies between the model and the actual behavior. The observations
denoted by o; are generated from the location of the objects in the field. There are different methods
that generate the observations, depending on what behavior should be recognized. For example, in
absolute position, the location and orientation of the robot, (x, y, 8) are used to directly compute o;
(using a segmentation of the continuous space (x, y, #) into regions), while in object relative, o; is
computed using the relative location of an object to another (e.g., in the ball-centric behavior, the
value of (X,opot — Xballs Yrobor — Ybail, ) after segmentation is used).

Instead of modeling all behaviors together as one HMM, in order to avoid complexity, the authors
choose to use one HMM for each behavior, executing concurrently during recognition. Since
behaviors are not mutually exclusive (e.g intercept a ball and go to the ball behaviors), it is possible
that two HMMs shows high accepting probabilities simultaneously.

Each behavior is a sequence of state traversals, starting from the initial state, and completing at
the accept state. The robot will either idle or start executing another one, after it has executed one
behavior. It may also terminate the execution of an behavior and start executing a new one.

The Behavior HMM can recognize execution of a behavior, only if it is instantiated roughly at the
time when the real behavior starts executing. In non-continuous domains such as speech recognition,
this problem is addressed by word segmentation. However, the segmentation of the robot soccer
behaviors is not as well defined. The execution of a sequence of robot behaviors is continuous and
it is very hard to find segmentation points between behaviors. To address this problem, the authors
choose to instantiate a recognizer at regular intervals, expecting that the start time of the behavior is
close enough to one of these recognizers. In order to avoid the number of HMMs to explode, a
mechanism for removing HMMs from the system is required. The HMMs are removed if one of the
two conditions is fulfilled: 1) a behavior specific timeout threshold is elapsed, 2) a HMM reaches a
high probability of rejecting state, indicating that it is unlikely that robot is doing what the Behavior
HMM is trying to recognize.

A3 Automatic recognition of human team behaviors

In this paper [54], the authors present a method for recording, representing, and recognizing
human team behaviors in a simulated MOUT scenario. For this reason, they have developed a
customized version of the computer game Unreal Tournament, that logs all players data (position
and orientation), while team members participate in a scenario of a firing team moving through
an urban area. Team behavior recognition is achieved using a set of HMMs after the data are
translated into a canonical reference frame. Each behavior is modeled by a HMM and the behavior
corresponding to the model with the highest log-likelihood is identified as the behavior of the team
for a given sequence.

The following are the characteristics of the problem examined in the paper: (i) the team acts in a
(simulated) physical domain, (ii) all agents are always performing tasks relevant to accomplishing
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team goals (tightly coupled teamwork), (iii) the team is never concurrently executing multiple
group behaviors (to be compared with [22], where concurrent behaviors were possible), (iv) the
majority of the agent’s actions involve physical movement, and (v) the focus is on recognizing
the complex spatial relationships that exist between the human team members rather than simple
location descriptors (e.g., ’in room’).

Both spatial and temporal characteristics are used to perform behavior recognition (i.e. invariant
spatial relationships in state representation and temporal relationships in the transition matrix of
HMM). This can be compared with [55]], where the same authors use merely spatial relationships (in
MOUT scenarios) that are highly discriminative and rarely appear in other behaviors for recognizing
team behavior. However, the method in this paper is more powerful, since it can recognize behaviors
that are only distinguishable by examining sequences of spatial relationships as they evolve through
time.

The focus of this paper is on behaviors used to approach and enter a building, that is, stacked
movement, bounding overwatch, and buttonhook entry. Identifying these behaviors is difficult based
on their rather similar static snapshots, motivating using both spatial and temporal relationships.
However, in the performed experiments many spatial and temporal cues that exist in a real MOUT
scenario are deliberately omitted (to examine the raw accuracy of the classifier). For example, static
spatial features (e.g., doors and walls) are not incorporated into the model.

Moreover, the recognitions are performed at a very low-level and do not use inter-window
dependencies, which in reality are important cues to the behavior. For example, in a typical
building clearing operation, there are often long periods of bounding overwatch followed by a
single buttonhook entry through a doorway. Incorporating this higher-level domain knowledge
into the model, which provides more accuracy over a full-length MOUT scenario requires using a
hierarchical HMM and is postponed to future work.

To achieve translation invariance, at any given time, the configuration of the agent team is described
using the centroid of positions of the agents calculated as:

1
Cjt = Z Z Xa,j,ts
Ya

where a is an index over A agents, j is an index over W overlapping windows, ¢ is and index over
the T frames in a given window, and x, ;,; is the vector containing the position, (x, y) of the agent a
at frame ¢ in window j. However, instead of rotating each frame independently, the authors define a
shared canonical orientation for all the frames in a window. For this reason, the displacement of the
team centroid over the window: d; = C; 7 — C; 1 is used as the principal axis of the data points for
that window. Thus, the canonical coordinates, x’, is calculated by

’

Xajt

= Rjxajt = Cjr,

where R; is the rotation matrix that rotates all of the data in each window to align its canonical
orientation with the x-axis. Moreover, agents’ velocity is defined locally as
v(l,j,f = | |x;,j,f+1 - x;,j,t”'

The goal of the classification is then to select the most appropriate behavior model, for each
transformed window. This classification is performed using a set of HMMs, one for each behavior
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b. The model with the highest log-likelihood of generating the observed data is selected. The
observation space is continuous and approximated by a multivariate Gaussian distribution. The
structure for each behavior HMM is determined based on domain knowledge, and the number of
states differs among behaviors. One can say that, each hidden state is the idealized snapshot of the
team formation (at some point in time), where the observation tuple (in canonical coordinates) is
modeled by a Gaussian distribution.

A4 Learning collaborative team behavior from observation

Johnson and Gonzalez [26, [27]] present a prototype, called Contextually-based Observational
Learning of Teamwork System (COLTS), which is developed focusing on the learning of teamwork
behavior using observations. This work presents a semi-autonomous approach where observations
are manually processed to identify and create domain specific contexts representing the different
states of the observed behavior. The prototype is separated into three modules:

* The observer module which is responsible for acquiring observations and identifying contexts.

* The learning module used to automatically create behavior maps, one for each context, using
the processed observations. A behavior map relates situational information to an action and
the goal of the learning module is to identify actions for all situational combinations.

* The run-time module responsible for executing the behavior models created with the
aforementioned modules. The run-time module also contains a generalization technique to
ensure that the agents always will chose an action even if the situation was never seen in the
training data.

The use of contexts limits the observational training data to embed situations only relevant within
the context. This approach reduces the complexity of the learning process to ensure the scalability
and extensibility of the cloned behaviors.

The COLTS approach is tested using two discrete event simulations. In the first experiment a bucket
brigade team is created capable of efficiently moving water from a source (lake) to a sink (fire).
Observations are collected from the simulated team and fed into the COLTS prototype. Results show
that the COLTS prototype is able to imitate the team with perfect results. The COLTS prototype is
also tested using a more complex pursuit-evasion game with good results.

In future work the authors aim to automate the observer module, i.e. identification of contexts,
by extending on previous works where contexts have been automatically created for single, non-
cooperative agents. Furthermore, the authors plan on extending the prototype to include, in addition
to the discrete event simulations, continuous simulation environments.

A.5 A case-based reasoning framework for developing agents
using learning by observation

Floyd and Esfandiari [19] present the Java Learning by Observation Framework (jLOAF), which
is capable of learning behaviors by observation in complex, real-world and partially observable
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environments using a case based reasoning (CBR) approach. The main contribution of this work is
the abstract nature of the framework, which enables it to be used independently of the application
domain. The authors illustrate this by providing four different case studies:

¢ an obstacle avoidance robot with a touch and sonar sensor,
* a grabbing robotic arm with a color sensor, touch sensor and sound sensor,

* a soccer playing agent in simulated soccer environment having more complex sensory
capabilities that make it capable to sense objects and their locations, and

* asoftware agent playing Tetris.

The paper shows how inputs and actions from several different domains (both physical and simulated
environments) can be modeled in the JLOAF framework, and the same agent, without changing the
reasoning module, can learn a variety of behaviors and replicate them.

A.6 Learning from observation using primitives

Bentivegna and Atkeson [8] introduce a framework where an agent or robot first learns the behavior
of an expert or teacher by observing its behavior followed by a refinement process where the
behavior is improved, beyond the observed behavior, using a learning by practice approach. The
framework uses manually hand-crafted primitives, which represent abstract actions to reduce the
search space of the learning process to a manageable dimensionality. Primitives are solutions to
small parts of a task that can be combined to complete the task. A solution to a task may be made
up of many primitives, each of which may consist of smaller primitives. However, the number
of primitives are much less than the frequency at which the robot generates commands to all its
actuators.

In this work the framework is evaluated using a robot that learns how to play air-hockey. In this
domain typical primitives represent hitting the puck in different directions (right, left, straight),
blocking the puck, etc. The robot learns from observation by segmenting the available observations
into different types of primitives. During game-play a nearest neighbor algorithm is used to identify
among all observed primitives, the most similar primitive, given the current state or situation.

A7 Building high-performing human-like tactical agents through
observation and experience

In the work of Stein, Gonzalez and Barham [50, 52]] agents learn tactical skills by observation as
well as by experimentation (practice). Agent skills are acquired from three domains with increasing
complexity: 1) Chaser - The goal is to chase a single, pre-programmed, evading agent; 2) Sheep -
The goal is to force multiple, pre-programmed, sheep into a pen; and 3) Car - The goal is to control
a car, to avoid hitting other autonomous cars, and to complete as many laps as possible.

To acquire observational data two human players are asked to play the above-mentioned games
multiple times using a force-feedback joystick. The joystick activities are recorded in log-files and
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used to compare similarity between the observationally trained agents and the human performers.
For each domain a performance metric is developed that measures the agents as well as the human
players success while playing the games. The performance metrics are used to improve agent
behavior in the learning by experimentation phase.

The authors suggest that the hybrid approach is capable of creating agents that are human-like and
at the same time perform well or better than the original human. Learning by observation creates
the initial agent mimicking the human performer. This is followed by the experimental learning
phase that allows the agent to learn from random situations never experienced before. In other
words, in the first phase the agent is optimized with respect to human similarity and in the second
phase the agent is optimized with respect to performance.

Results are promising indicating that it is possible to use this approach when creating agents that are
human-like. Humanness is evaluated both qualitatively, using joy-stick logs, as well as quantitatively
using questionnaires. Furthermore, human players are allowed to evaluate humanness using haptics
by sensing the movement of the agent through the joystick’s force feed-back functionality.

In [51] the authors extend on their work to show that a divide-and-conquer approach, using context
based reasoning, towards machine learning problems is beneficial.

A.8 A two-stage genetic programming approach for non-player
characters

The work by Luotsinen et.al. [35] presents a two-stage learning by doing approach where first
tactical then strategic agent behaviors are learned using genetic programming. The approach is
evaluated using a simple game called feed-fight-mate (FFM). The approach is further evaluated
and compared against 11 other agent paradigms (neural networks, reinforcement learning, forward
reasoning, game theory, etc.) in [9] with respect to agent performance and amount of development
effort.

A9 Modeling physical capabilities of humanoid agents using
motion capture data

Sukthankar et al. [53]] demonstrate a method for modeling an agent’s physical capabilities (e.g.,
running, jumping and sneaking) using motion capture data from human subjects. From the motion
capture data a motion graph [31] is extracted and a cost map for the agent actions is created. A
planner then uses this cost model to select between equivalent goal-achieving plans.

Motion graph is a method for creating realistic (visually-smooth), controllable motion using a
collection of motion capture data. It is a directed graph consisting both of pieces of original motion
and automatically generated transition. In order to join pairs of frames in the database, one should
define a proper distance metric that secures that there is a match between the position and velocity
of corresponding body parts in subsequent segments of motion [31].
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Using a motion graph, all generated candidate sequences are visually smooth and human-like
behaviors. These different sequences are then evaluated based on their costs to choose the most
appropriate one. The cost is calculated using two criteria: 1) time, which is directly proportional
to the path length in frames (F’), and 2) goal achievement, that is the distance of the character’s
position (r(x, y)) and the desired goal position (g(x, ¥)). The cost metric is:

C=aF + Bllr(x,y) - g(x, I

where C is cost, and « and B are empirically-determined scaling factors.

A.10 Evolving models from observed human performance

Fernlund et al. use genetic algorithms to generate agents that simulate the behavior of different
drivers in a driving simulator [[16}(15]]. The behaviors of the drivers are categorized into different
contexts a priori, e.g. urban driving, intersection turning and traffic light driving. The agents learn
the drivers behavior in each of the contexts as well as when to change context.

Each agent is evaluated based on how good it is at simulating the behavior of the corresponding
driver, not on how good it is at driving. With this approach it is possible to generate slightly different
behaviors for the same situation. This can, for example, be used to create more unpredictable enemy
behavior models.

A.11 Learning human like behavior for computer games

Thurau, Sagerer and Bauckhage investigate learning strategic behavior in the commercial computer
game Quake II [59]]. In this game the strategic goals consist of collecting various items and securing
important areas. Artificial agents learn these goals from humans playing the game.

For a representations of the virtual world, a neural gas algorithm is used to learn a waypoint map.
The training data consist of all positions visited by a human player during various executions, and
the result of applying the neural gas algorithm is a set of positions that is frequently visited by a
player. The waypoint map is completed by connecting nodes when there is an observable player
movement from one node to the other. Every position on the 3D map is assigned to one of these
nodes called position prototypes using a nearest neighbor criterion.

A player’s state is represented by a vector consisting of the player’s inventory (which weapons
or items it has picked up), its current armor and health value. Similar observed player states are
grouped to form state prototypes using a neural gas algorithm.

Each position prototype is assigned to one state prototype, forming a cluster of positions for each
state. This clustering leads to a number of movement patterns for each state, consisting of a sequence
of positions that start when entering the sate and ends when a state change occurs.

For each state a potential field force distribution is computed that recreate the movement patterns
typically observed in that state. Changes in state, typically an item pickup, cause switches among
the force fields, leading the agent to pursue a new sub goal.
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Indirectly, what is learned is where the important items and areas in that particular game environment
are and how to move towards them. For military applications, it would probably be more interesting
to learn to identify strategic areas in a new environment based on the map.

A.12 The behavior modeling of computer generated warship forces
system based on neural network

Nan, Jiangyun and Yaoxing present a surface warship behavior model in a CGF system [42]]. They
train one feed forward neural network for target identification and one for threat assessment. The
target type and threat level were used together with knowledge of available weapons when deciding
whether or not weapons should fire immediately and if so, which kind of weapon should be used.

The target identification neural network is trained to distinguish airplanes, helicopters, ships,
missiles, torpedoes and submarines based on the targets vertical and horizontal velocity, height,
detection distance and radar cross-section. Training examples are generated from predefined rules
describing the different targets with the use of the same characteristics, i.e. vertical and horizontal
velocity, height etc. The advantage of using the neural network and not the predefined rules for
target identification is that the neural network can provide an answer for all input conditions.

A.13 Adaptive computer-generated forces for simulator-based
training

Teng, Tan and Teow present an adaptive CGF for simulation-based training [58|]. The CGF is used
for training 1-v-1 air combat maneuvers, and they argue that a CGF that is able to adapt to the
performance of the trainee will increase the realism of the training experience. The CGFs behavior
is realized by using a self-organizing neural network that is trained with reinforcement learning.

A.14 Demonstration-based behavior programming for embodied
virtual agents

Dinerstein et al. use a combination of programming by demonstration and data-driven behavior
synthesis to generate deliberate behavior for agents in complex virtual environments [[13]]. Target
behavior is demonstrated by the user and recorded as sequences of abstract actions that can be
recombined to produce novel behavior.

During training the user demonstrate behaviors by controlling the character. The demonstrated
behaviors are recorded as a sequences of actions based on fixed or variable time steps. All possible
sub-sequences with a given length are then organized by using the k-means clustering algorithm.
The result is a tree that is used when searching for a new sub-sequence to perform.

The goal of the agent is represented by a fitness function that can be explicit or learned during
demonstration. The agent planes its behavior by simulating the outcome of candidate behavior
segments and is able to plan and re-plan in non-deterministic environments.
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The findings suggest that a relatively small amount of demonstrated behavior is needed in order to
achieve interesting behavior, and the authors argue that limiting the action space to demonstrated
action sequences makes planning fast and the behavior natural. The technique is tested on several
applications with good results.

A.15 Goal-directed learning to fly

Issac and Sammut use learning by observation, or behavior cloning as they call it, to learn to fly
maneuvers in turbulence of an aircraft simulator [24]. The training data are collected from real
pilots flying the simulator. The training data consist of several behavior traces for each maneuver.
For example, the climb maneuver is recorded with four different climb-rates, the turn maneuver is
recorded with four different turn-rates (positive and negative) etc.

The learned control system is twofold with a goal level and a control level. First, the goal level learns
appropriate values for turn-rate, climb-rate and acceleration based on desired heading, altitude and
airspeed. Second, the control level learns PID controllers which use the difference between current
and desired turn-rate, climb-rate, etc. to controll elevators, ailerons, throttle and flaps.

Both the goal and the control level is represented by model trees, one for each variable. Model trees
are similar to regression trees, only the leaf nodes can be functions, not only constants.

A.16 Learning goal hierarchies from structured observations and
expert annotations

Konik and Laird describe a framework for learning higher level, goal directed behavior based on
expert observations [30]. The system uses a symbolic, rule based knowledge representation and the
agent architecture SOAR is used as the execution system of the agent program.

One major challenge when learning from observation is that the expert’s intentions are not directly
available to the learner. Konik and Laird tackle this by making the experts annotate the behavior
traces with the goals he/she was pursuing. The annotated traces that are used for learning consist
of the selected actions, a symbolic representation of the observed situation, and a symbolic
representation of the goal situation that motivates the actions. Additionally, general background
knowledge, like it is possible to go trough a door, is implemented separately and is available to the
agent at any time.

The behavior knowledge is represented as a hierarchy with goals and subgoals as internal nodes and
actions as leaf nodes. Four decision concepts are learned independently for each node: selection
condition (when it should be selected), overriding selection condition (when it should be selected
even when another is active), maintenance condition (what must be true for the node to continue
being active) and termination condition (when the node is completed and should be terminated).

An inductive logic programming (ILP algorithm) is used for learning. This algorithm first generates
a very specific rule using a single positive example. In the next step, rules consisting of substructures
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of this initial rule are generated in a heuristic search, where each one of these rules are tested for
coverage of positive and negative examples.

In the experiments, records of hand-coded SOAR agents are used to generate training data. This is a
cost-effective way to test the framework. At the end of learning, the learned concepts are compared
to the original hand-coded concepts. The results seems promising, but further experiments with
more complex data are required. The authors also plan to add a second mode to the learning system
where the agent generates behavior while the expert gives feedback.

A.17 Human-level control through deep reinforcement learning

A difficulty in Reinforcement Learning (RL) has been to derive efficient representation of the
environment from high-dimensional sensory inputs and to generalize from past experiences in order
to improve its performance to new situations. In this paper [41], the authors create a single algorithm
that would be able to develop a wide range of competencies on a varied range of challenging tasks,
which for long as been a central goal of general artificial intelligence.

To do this, they proposed a novel agent that uses a deep Q-network (DQN), a deep convolutional
neural network, to solve a RL problem. In order to showcase this result, the agent is trained to play
on a number of games in the Arcade Learning Enviroment (ALE), which emulates the Atari 2600
enviroment and its respective games [6].

By interacting with the environment through observations, actions and rewards, the agent in RL
selects actions in a fashion that maximizes its cumulative future reward. The DQN approximates
the optimal action value function as seen in the equation below where the maximum sum of rewards
r, that are discounted by +y at each time step ¢. This is achievable by the behavior policy m = p(als),
after making the observation s and taking the action a.

* 2
0 (s,a) = mcger[rt + Yt + (Y) 10+ s = 8,0, = a, ]

Since RL problems are known to be unstable when a nonlinear function approximator, such as
deep neural networks, are used to represent the action-value (also referred to as the Q-value),
the authors propose two methods of achieving a more stable learning process and increase the
potential convergence. The first one is called Experience Replay (ER) and is a biologically inspired
mechanism that saves a fixed number of past experiences to a memory. These experiences reuse a
randomly sampled batch in each training step of the network to smooth the data distribution and
reduce the correlations in the observation sequence, which results in better generalization in the
performance of the agent. The experiences are saved tuples of transitions from state, action, reward
and next state: (s;, ar, rs, S¢+1)-

The second method was to use two separate policy networks to estimate the action-values, an online
network with weights 6; and a target network with weights 6 (where 6; represent the weights of
the online network at an earlier iteration i). The online network was used to estimate the action
values Q(s;, a;; 6;) of each state s;, and target network was then used to estimate the target values
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Q(sr+1, ar150;) of the next state s;41, which would then be saved to the ER memory and later
be used to update the online network. The online network would be trained using mini batches
(including past experiences from the ER memory D) using the loss function below at iteration i:

Li(0i) = E(s,,a,r1.500)~U (D) [(rz +ymaxQ(ses1, are136;) — Qs ar; 91'))2]

The authors of the paper present results from where DQN agent was trained and evaluated by
comparing its performance on 49 games from the RL literature and professional human game testers.
Without incorporating any prior knowledge about the Atari 2600 games, it managed to outperform
the best previously existing RL methods on 42 out of the 49 games. Furthermore, the performance
of the DWN agent was at a level that was comparable to that of a professional human game tester
across all 49 games, achieving more than 75% of the human score on 29 out of them.

A.18 Dueling network architectures for deep reinforcement
learning

This paper [62] takes an alternative but complementary approach to the paper described in Section
The authors suggest a new network architecture that is suited for methods like Q-learning.
They define an advantage function A(s;, a,) that relates the value of the state V(s;) and action
values Q(s;, a;) such that:

A(st,ar) = Q(s, ar) = V(sy)

The value V(s,) is a measure of how good it is to be in state s, (e.g. are you winning or losing)
and Q(s;, a;) measures the values of choosing a particular action @, when in that state. What the
advantage function then represents is the relative measure of importance of each action, which leads
to better generalization of the agent over similar-valued states.

The proposed network architecture is separated into two steams, one estimating the single value
states V (s;) and another one estimating the action advantages A(s;, a;). The action values Q(s;, a;)
are derived through the combination of the output from these networks, using:

O(st,ar) = V(sy) + A(ss, ar)

The performance of the dueling network architecture is evaulated through, amongst other, the Atari
2600 enviroment [6] and shows dramatic improvements over previously existing approaches to
Deep Reinforcement Learning.

A.19 Asynchronous methods for deep reinforcement learning

The authors of this paper [39] suggest an alternative, asynchronous, method of training agents via
Deep Reinforcement Learning (DRL). Techniques like Experience Replay (ER), as described in
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Section has several drawbacks in terms of memory usage and computation per interaction.
Also, the stored samples in the ER memory were generated from an older policy, which requires
off-policy learning methods like Q-learning.

The asynchronous methods instead use a number of asynchronously executed agents in parallel
on multiple instances of the environment to collaboratively train a global model. This helps to
reduce the correlations in the agents’ data, since the agents are likely to be experiencing a variety
of different states at each time step. Also, asynchronous DRL methods do not rely on specialized
hardware, such as Graphical Processing Units (GPUs) or massively distributed architectures, and
can run on a single machine’s standard multi core Central Processing Unit (CPU) instead.

The authors developed four asynchronous DRL algorithms that they evaluate in the paper:

* Asynchronous one-step Q-learning
* Asynchronous one-step SARSA
* Asynchronous n-step Q-learning

* Asynchronous Advantage Actor-Critic (A3C)

where the A3C algorithm was separated into two variants: A3C with a feed forward neural network
(A3C-FF) and with an additional Long Short-term Memory (LSTM) layer (A3C-LSTM).

The methods of this paper are evaluated primarily on the same Atari 2600 domain as in Section
and the 3D car racing game TORCS [63]]. Further, the A3C algorithm is also evaluated using
the Mujoco domain [60] and Labyrinth from the DeepMind Labs enviroment [3]].

In the Atari 2600 environment, they manage to surpass previous state-of-the-art results with the
A3C algorithms while training for half the time. Further, they show that A3C also manages to
succeed at a variety of continuous motor-control tasks as well as navigating 3D mazes using a visual
input.

A.20 Mastering the game of Go with deep neural networks and tree
search

In this paper [48], it is described how several techniques were used to build a complex model (named
AlphaGo) consisting of different Deep Neural Networks (DNNs) that could outplay professional
players in the Chinese board game Go. It experiments with the approach of combining the following
methods of optimization:

* Supervised learning; by training a DNN to imitate expert moves.

* Reinforcement learning; training two DNNs by letting the model play against randomly
sampled earlier iterations of itself.

* Performing Monte Carlo Tree Search using the two new DNNs

The general idea behind AlphaGo was that all games of perfect information have an optimal value
function v*(s) that can determine the outcome of the game from every possible board position (or
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state s) given perfect play. This can be computed recursively using a tree search with approximately
b? possible sequences of moves, where the breadth of the game (also referred to as number of legal
moves per position) and the depth of the game (which is referred to as game length). The paper
uses the size of the search tree in chess (b = 35, d = 80) as an example to showcase how the search
tree size in the game Go (b = 250, d = 150) makes computing a recursive search tree unfeasible.
The authors propose two general principles to reduce the search space of Go. The first one is to
reduce the depth of the search space through position evaluation. This allows them to truncate the
search tree at state s and replacing the subtree below s by an approximate of the value function
v(s) = v*(s). The next principle is to reduce the breadth of the search by sampling actions from a
policy p(als) that describes a probability distribution of all available actions a in state s.

The first stage of training AlphaGo was to train it on predicting (or imitating) expert moves using a
dataset consisting of 30 million different positions (or states) within the game using supervised
learning. The trained network is referred to as the policy network p, with weights o-. Its architecture
consisted of a total of 13 hidden layers, including convolution layers and fully connected layers.
The final layer output a softmax probability distribution over all legal actions a. The training was
done by randomly sampling state-actions pairs (s, a) and using Stochastic Gradient Descent (SGD)
to update the network in the direction to maximize the likelihood of the human move a selected in
state s, using the loss function stated in the equation below.

0logps(asls;)
“ —_—

A
7 oo

In the second stage of training AlphaGo, the weights o were used to initialize an identically
structured policy network p,, such that p = 0. By letting the new policy network p,, play against
randomly selected previous iterations of itself, the network was further trained and improved using
Reinforcement Learning techniques. The reward function r(s) used in the reinforcement learning
would return zero for all non terminal states, +1 for winning and -1 for losing. The weights were
updated at each time step by SGD in the direction that would maximize the expected outcome
using the loss function in the equation below. By now, the p, would win against p,- in 80% of the
head-to-head games.

Ap « dlog pp(arlsy) r(s)
dp

The final stage of training AlphaGo focused on evaluating the position evaluation by estimating
the value function v? (), that would predict the outcome from position s by both players given
policy p. The value function was approximated using a value network vg(s) ~ v*(s), where v*(s)
would be the assumed hypothetical optimal value function under perfect play. Structurally, the
value network looked similar to the previous networks with the exception that it only output a single
scalar value. It was trained using regression in state-outcome pairs (s, ) and SGD to minimize the
mean squared error between the predicted value vy (s) and the corresponding outcome r(s;) using
the loss function in the equation below.

0logvg(sy)
Pt = AL
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(r(st) = vo(s))
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Ultimately, AlphaGo combines the policy and value networks in a Monte Carlo Tree Search-
algorithm that selects actions by a lookahead search. This resulted in a state-of-the-art artificial
Go-player that manages to beat previously existing artificial Go-players in 494 out of 495 games
(99.8%). AlphaGo also managed to beat the winner of 2013, 2014 and 2015 Go Championship Fan
Hui in five out of five played games.

A.21 Continuous control with deep reinforcement learning

These authors of this paper [34] adapt the ideas from the underlying success of deep Q-learning
(DQL) methods and experiment with applying them to the continuous action domain using an
Actor-Critic approach. While methods like DQL (as described in Section[A.T7) can solve high-
dimensional observation spaces, they can only handle discrete and low-dimensional action spaces.
Tasks such as physical control of objects have high dimensional action spaces and thus requires an
iterative optimization process that continuously optimizes at every step.

The Deterministic Policy Gradient [49] (DPG) maintains a parameterized Actor function u(s|6*)
which specifies the current policy by deterministically mapping states to that specific action, while
the Critic Q(s;, a;) is learned like in Q-learning.

The Deep DPG (DDPG) algorithm is similar to DQL [41], but instead uses two separate Actor and
Critic networks. Other features of the DQL algorithm, such as Experience Replay memory and a
slowly changing targets networks, are also used to improve the stability and the performance of the
DDPG agent. Furthermore, the authors solve the challenge of exploration while learning by treating
the problem of exploration independently from the learning algorithm. Given the exploration policy
', noise sampled form a suitable noise process N, to the actors policy:

w(se) = u(stlé'ﬁ‘) + N

The DDPG agents manage to learn how to play numerous MuColJo [61] control tasks (gripper, puck
striking and locomotion) through both low-dimensional state description, such as joint angles and
positions, as well as high-dimensional renderings of the environment. The DDQP agent also notably
learns in far fewer steps than the DQN algorithm (2.5 million steps, a factor of approximately 20
fewer steps). The authors ultimately conclude that it potentially may solve even more difficult
problems than what was experimented with in the scope of this paper.

A.22 Reinforcement learning with unsupervised auxiliary tasks

Most succesful and noted results in deep reinforcement learning come from agents that directly
maximise their cumulative extrinsic reward. With the notion that the environments contain a wider
variety of possible training signals, the authors of this paper [25] explore an alternative agent that
also maximizes many other pseudo-reward functions simultaneously, allowing it to also operate
with the absence of extrinsic rewards.
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The algorithm, named UNsupervised REinforcement and Auxiliary Learning (UNREAL), uses an
network architecture that approximates both the optimal policy and the optimal value function. In
addition to that, it also makes auxiliary predictions serve to focus the agent on important aspects of
the tasks. These include the long-term as well as short term predictions of cumulative rewards. To
further increase efficiency, it uses the Experience Replay mechanism as described in Section
preferentially replaying rewarding sequences.

The auxiliary tasks are incorporated to promote faster training, more robust learning and ultimately
better performing agents. By defining them as an additional pseudo-reward function in the
environment the agent is interacting with, the authors formally define the auxiliary control task ¢ by
the reward function 7). With the set of possible states S, the space of available actions A, this
can be expressed:

r9:SxA—-R

Given the total set of tasks C where each task ¢ € C, the agent has a separate policy for each task 7
and a base policy m. The overall objective in the training is then to maximize the total performance
across the auxiliary tasks. With the discounted return for auxiliary reward Rt(%n = Yie ¥ r,(c),
the set of parameters @ of 7 and all 7()’s, this can be expressed as:

argmaxE.[R.] + A, ZE”C [Rii,)o]
4 ceC

There are many types of auxiliary tasks, but the authors of this paper focus on two specific types:

* Pixel changes - Since changes in the perceptual stream often corresponds with important
events in an environment, the authors train the agent to maximize changing of perceived
pixels.

* Network features - The networks of an agent already learn how to extract task-relevant
high-level features of the environment and can hold useful quantities for the agent to learn to
control. Thus, the activation of the hidden units within the agent’s network is an auxiliary
reward in itself. The authors therefore train the agent to maximize the activation of the units
within a specific hidden layer of the network.

The UNREAL agent ultimately combines the benefits of two state-of-the-art methods in deep
reinforcement learning. Its primary policy is trained using Asynchronous Advantage Actor-Critic
(A3C) (as described in Section[A.T9)), while the auxiliary tasks are trained on recent sequences of
stored experiences that are randomly sampled.
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