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English summary

This note is part of an effort to improve numerical prediction of acoustic noise from Norwegian
military practice ranges. The focus is on low-frequency, long-ranging sound. A Parabolic Equation
method for sound propagation is summarised, implemented and tested. This method is considered
because of its ability to take into account quite general terrain data and sound speed profiles. The
implementation is validated against examples from the research literature. Numerical parameter
choices for low frequencies that ensure adequate accuracy are determined, and the resulting
computational efficiency is assessed. Some studies of physical parameter variation are included.
They demonstrate the code’s abilities, and provide some basic insights on model sensitivity.
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Sammendrag

Dette notatet er er del av et arbeid for forbedre numerisk prediksjon av akustisk støy fra norske
skyte- og øvingsfelt. Vi fokuserer på lavfrekvent og vidtrekkende lyd. En ’Parabolic Equation’-
metode for lydutbredelse blir oppsummert, implementert og testet. Grunnen til at vi ser på
denne metoden er at den kan ta i bruk nokså generelle terrengdata og lydhastighetsprofiler.
Implementasjonen blir validert mot eksempler fra forskningslitteraturen. Numeriske parametervalg
som gir adekvat nøyaktighet blir bestemt, og den resulterende regneeffektiviteten måles. Noen
studier med variasjon i fysisk parametre er inkludert. Studiene demonstrerer mulighetene koden
har, og gir noen grunnleggende innsikter.
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1 Introduction

This note concerns numerical prediction of sound propagation through the near-ground atmo-
sphere. The specific application in mind is blast noise from the Norwegian Defence’s shooting
ranges, where noise annoyance of neighbouring civilians must be kept low and under control.
Forsvarsbygg uses the software Milstøy II, developed at Sintef, to produce noise maps. A new
version called Milnoise is underway. Various computational algorithms are included in this code,
some based on measurements, some based on simplified acoustic models. In this note, we consider
a prospective theory-based algorithm, termed the Parabolic Equation (PE ) Method, which can
handle realistic weather and ground data.

Characteristic features of military noise are low frequency content (down to a few Hz), long range
(up to 10-20 km), short duration and nonlinear propagation near the source. The majority of
research work on environmental noise is driven by traffic and industrial noise, which is comparat-
ively high frequent, short-ranging, of longer duration and propagates linearly. Most methodology
in Milnoise is taken from traffic noise models, which leaves a need for better handling of low fre-
quencies and long ranges. These two requirements largely coincide for two reasons: The loudest
noise sources are low frequent, and high frequency signals are dissipated significantly in the air.
The handling of nonlinearity is in typical practice incorporated in source modelling and will not
be discussed here (some references are [5, 14]). Temporal aspects are not directly discussed as
computations are performed in the frequency domain.

We base our methodology around [8]. A second good general reference for outdoor noise propaga-
tion is [1]. Some more mathematical detail about the PE method can be found in [6]. A good
summary of more recent developments long-range outdoor acoustics can be found in [16].

The purpose of this note is to document the code we are developing and to justify choices of
parameters and strategies therein. The main focus is on numerical issues, but critical modelling
issues are also summarised and illustrated with examples. Both computational accuracy and
efficiency are discussed.

2 Summary of the Parabolic Equation Method

Since we largely follow the text book [8], we only provide a brief summary of the parabolic
equation model here. The main PDEs and boundary conditions will be explicitly and succinctly
stated in the following. In the model, radial symmetry is assumed, hence only two coordinates, the
range r (horizontal distance from source) and the vertical axis z are used. This means we have to
solve the Helmholtz equation for each frequency f , given by

qrr + qzz + k2q = 0, k = 2πf/c, q(r, z) =
√
rpc(r, z). (2.1)
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We write the temporal Fourier transform of the pressure as pc. The sound speed c can vary
spatially. At the ground we obtain closure with an impedance boundary condition

pz = − ika
Z
p. (2.2)

The normalised impedance value Z depends on the frequency and ground properties.

Derivation of the Parabolic equation approximation is based on restricting attention to sound
waves propagating away from source and not too steeply. The simplest form is the narrow angle
equation

2ikaΨr + Ψzz + (k2 − k2a)Ψ = 0, pc(r, z) = Ψ(r, z)eikar/
√
r. (2.3)

Here ka is a typical wave number (we use the k-value at the ground). Note that (2.3) is basically
a Schrödinger equation with r taking the place of time. Hence it is a well known parabolic PDE.
This brings us to the main point: The approximation (2.3) is much quicker to solve numerically
than the elliptic Helmholtz equation. Or strictly speaking, once we know Ψ as a function of z at
the source position r = 0, it is quicker to solve. Salomons suggests an analytical approach to set
the starting data Ψ(0, z) which we follow here (the forms (G.75) and (G.78) in [8] are used unless
stated otherwise).

The narrow angle equation has, for k = ka (iėin the absence of refraction), Fourier solutions

Ψ(r, z) = Ψ0 exp[i(lz − l2r/2ka)], (2.4)

where l is an arbitrary wave number in the z-direction. This is, in light of the Schrødinger equation
analogy, recognisable as a plane wave with phase speed l/2ka. The phase speed is a Taylor-
expansion around l = 0 to the exact phase speed (1 −

√
1− (l/ka)2)ka/l resulting from the

Helmholtz equation (the physical meaning of this ’phase speed’ is a propagation direction).
Conservation of energy is implied in the form(

1

2
|Ψ|2

)
r

− 1

2ka
( Re(Ψ)Im(Ψz)− Re(Ψz)Im(Ψ) )z = 0. (2.5)

At the impedance boundary the energy flux is −Re(1/Z)12 |Ψ|
2.

For outdoor sound propagation the following more accurate ’wide angle’ approximation is most
often used (

1 +
1

4k2a
L1

)
Ψr −

i

2ka
L1Ψ = 0, L1 =

∂2

∂z2
+ (k2 − k2a). (2.6)

The phase speed is adjusted to

[1− (l/2ka)2]−1
l

2ka
,

a Padé approximation of the exact case. Note the blow-up at the (unphysical) wave number
l = 2ka. A much less used, but about equally accurate parabolic model, is

2ikaΨr + Ψzz +
i

4k2a
Ψzzzz + (k2 − k2a)Ψ = 0. (2.7)
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Figure 2.1 The ’phase speed in the models. The x-axis shows the propagation angle of the wave
in the exact case. The wide-angle form shown is the Padė approximation

Its phase speed is simply l/2ka + l3/8k3a, a higher order Taylor expansion of the exact case. The
reason (2.6) is preferred over (2.7) is that (2.7) requires larger numerical stencils, leading to lower
computational efficiency and complicated boundary treatment. The respective phase speeds in
the models are plotted as a function of propagation angle in Figure 2.1. The wide angle model is
indistinguishable from the exact up to 35◦. This gives a simple visual justification of the parabolic
approximation. More sophisticated derivations can be found in the literature.

2.1 Terrain

The above procedure works for flat topography. In order to treat more general topography, we
approximate it with a piecewise linear terrain profile. For each linear range section with altitude
H(r) = H0 + Cr, we use the following generalisation of the wide angle PE (2.6):

Ψr +
i

2ka
L1Ψ +

1

4k2a
L1Ψr +

i

ka
CΨzr = 0. (2.8)

In this model z denotes height above ground. Equation (2.8) is a special case of the GTPE for
general smooth terrain included in [8]. The differential operator L1 is defined by

L1Ψ = (C2 + 1)Ψzz − 2ikaCΨz + (k2 − k2a)Ψ. (2.9)

Nonrefractive Fourier solutions have the form

Ψl(r, z) = exp

(
ilz + i

A

2ka

(
1 +

A

4k2a
− l

ka
C

)−1)
, A = −(C2 + 1)l2 + 2kaCli. (2.10)

Note that l = 0 corresponds to a wave that propagates parallel to the ground. The impedance
boundary condition at the ground becomes

Ψr sinα−Ψz(cosα)−1 =
ika
Z

Ψ− ikaΨ sinα, α = tan−1C. (2.11)
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2.2 Physical effects and data

Data input to the propagation model consists of the the specific ground impedance Z and the
effectice sound speed c. There are big uncertainties in both quantities. For the weather conditions
the main challenges are fluctuations and difficulty of measurement. Research in outdoor acoustics
often essentially consists of describing the environment, i. e. sound speed variation and ground
properties, and describing the sensitivity of sound levels to environmental parameters. General
references are the textbooks [8] and [1]. For more recent developments, a good review is given in
[16]. In this report we only briefly summarise the models we have implemented and tested.

For the ground interaction, basic modelling is difficult. We calculate the impedance Z from the
rigid frame porous model of [12], as was suggested in [11]. This impedance model requires as
its single input quantity the ground resistivity. We also use a generalisation of this one-parameter
model to a rigid frame porous layer over a hard (fully reflecting) surface. We remark that this
impedance boundary for a hard backed layer is derived by the taking the grazing angle limit value
of Z, which is reasonable for our application (see e. g. [4, 13]).

The effective sound speed is defined as the sound speed plus the wind component in the horizontal
propagation direction, which constitutes a widely used approximation. For now, we assume
that the sound speed only varies with the height z above ground. A realistic form (at least in
homogeneous terrain) that we will use as an example, is the loglin model [2]:

c(z) = c0 + c1z/zl + c2 log(z/z0 + 1), zl = 1m. (2.12)

The parameter z0 is called the roughness length, and is regarded as a property of the terrain. A
typical value for grassland is 0.1 m. For woodland 1− 10 m is reasonable. The gradient c′(z) is of
greatest interest. When c′(z) < 0 there is upward refraction and there will be a ’shadow’ zone near
the ground. When c′(z) > 0 there is ’downward refraction’ and sound energy is directed towards
the the ground, resulting in increased sound levels. Downward refraction typically occurs during
temperature inversions, and for downwind propagation.

We have incorporated turbulent fluctuations according to the model in [8]. It is a stochastic model,
consisting of an algorithm for constructing realisations of the perturbation µ to the mean refractive
index c0/c. The correlation function E[µ(r + δr, z + δz)µ(r, z)] behaves according to a desired
turbulence model with Gaussian and Von Karman correlation function given. The von Karman
correlation model is reported to give good results and is used here. Only isotropic models are
considered with horizontal and vertical correlations equal. It is a computationally expensive model
since Monte Carlo sampling is needed to obtain statistics, and also because generating a realisation
is costly.

In practice turbulent fluctuations have two important effects: One is that narrow interference
minima are obscured, making them difficult to predict with deterministic methods. The second is
that acoustic energy is scattered into shadow regions. therefore the non-turbulent simulations tend
to underestimate noise in shadow regions.
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2.3 Implementation

We use the finite difference scheme from [8] to solve the parabolic equation. The grid is uniform,
and z-derivatives are replaced with standard second order discrete forms. The Crank-Nicolson
method is used to advance the solution in the range direction, analogously with its typical usage
for time integration. Crank-Nicolson has the advantage of being unconditionally stable as well as
non-dissipative. For long-range sound propagation it is important to avoid numerical dissipation,
as it will lead to underestimation of sound levels. The lack of dissipation can sometimes be a
weakness, as it may lead to spurious oscillations when there are insufficiently resolved features.
Such issues are discussed in [6].

We have implemented the numerical algorithm in Matlab. Care has been taken to ensure efficiency
by using the right built-in Matlab features. The most time-consuming part is the solution of a
tridiagonal linear system at each range step. The Matlab sparse grid type was hence found crucial
for efficiency. The tridiagonal matrix M of the associated system changes each time the ground
slope C changes. Rebuilding M and solving the new system is costly, while in contrast, when C
stays constant we can apply sparse LU-decomposition to M and use the result until C changes
again. The code is able to take advantage of this, by dividing the range into sections of constant
slope. One small numerical detail should be noted about the range sections: The discrete version
of the terrain boundary condition (2.11) approximates Ψr with a second-order one-sided derivative
(−2Ψn + 1.5Ψn−1− 0.5Ψn−2)/∆r. For the first range step, the furthest data point Ψn−2 is missing.
A first-order one-sided derivative (Ψn −Ψn−1)/∆r can be used instead, as is standard procedure
for multi-step schemes. In our case, each time we start on a new range section (usually because
the slope C changes), we have to resort to the first order boundary discretisation. Technically, this
reduces the order of accuracy of the scheme when range sections are small. In practice the effect is
miniscule, as can be verified for a case with constant slope throughout the range.

The code can handle height varying sound speed, and range variation in impedance. Range-
varying sound speed profiles only requires a simple extension. In order to make it easy to change
the parameters, there are separate functions for the data inputs. The stochastic atmospheric
turbulence model described in [8] has been implemented to generate turbulent fluctuation in the
sound speed.

3 Computational examples from the literature

We first consider some examples taken from the literature. They serve to validate our implement-
ation, and to illustrative some important physical effects. The output quantity of interest is the
relative sound level ∆L measured in dB. It is defined by

∆L = 10log10
‖p‖2

‖pfree‖2
, pfree = S

eik
√
r2+z2

√
r2 + z2

, (3.1)

where pfree is the complex sound pressure due to a free sound source (i.e. absent of refraction and
ground interaction). Consequently, the measured sound level Lp in dB equals the sum of the free
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Figure 3.1 Relative sound levels for 100Hz over snow computed with the PE code.

source sound level in dB plus ∆L, regardless of source strength S. The sound speed is set to 340
m/s near the ground in all examples.

3.1 Ground effect example

An interesting example is given in the report [4]. It demonstrates a ground effect which the
standard methods in Milstøy do not model. The impedance boundary condition corresponds to a
14.5 cm thick layer of soft snow over a hard surface. Figure 3.1 shows relative sound levels from
our PE calculation. We observe good agreement with the figure from [4], which was produced
with an analytical, but computationally inefficient, formula. The PE calculation took about 0.3 s on
a laptop. Evidently, the PE method can handle surface wave phenomena provided the ground can
be represented by an impedance boundary. One feature to notice is the large variation with height
below 5m. There is a ’quiet height’ that persists from about r = 100m.

3.2 Examples by Salomons

Salomons [8] includes illustrative examples of PE computations. They can be used for validating
our implementation. We show here only a few of the more complicated cases from the book.
Figure 6.4 from [8] demonstrates upwind propagation over a hill at f = 300 Hz. The shape of the
hill is only provided graphically, so we approximate it using a cosine-shape peaking at a height
of 10m at r = 175m and with period of 250 m. Our resulting sound level graph, Figure 3.2, still
agrees well with [8]. A flat ground simulation is included in the plot for comparison. Note that the
hill feature has an effect of roughly 5dB even several hundred meters into the flat zone. On and
just behind the hill itself the effect is large.

12 FFI-rapport 2014/00260



Figure 3.2 Relative sound level for 300 Hz source over terrain. Reproduction of Figure 6.4 in
Salomons’ book. Source and receiver were both at 2 m above ground, and ground
properties given by σ = 200kPa s/m2. Sound speed of log-lin form (2.12) with
c1 = 0, c2 = 1 m/s and z0 = 0.1 m. These data could represent grassland vegetation.

.

Another example considers f = 500 Hz and a hill we approximated by the same cosine-shape,
this once peaking at ten meters height at r = 375 m and with period 500 m. Figure 3.3 shows
the resulting sound levels above the topography. We obtain good qualitative agreement. Absent
any refraction there is a strong shadow effect, while in the downward refraction case, interference
patterns are the most prominent features. The turbulent simulation reveals intermittent scattering
of sound energy into the shadow zone. In order to meaningfully describe the scattering pattern,
computationally expensive random sampling is necessary, at least with presently known tech-
niques. In many numerical experiments with turbulent shadow regions, the mean relative sound
level ∆L reaches a range-independent minimum, however there exists no simple formula for such
a minimum value. We also include a simulation with both downward refraction and the turbulence.
The diffraction patterns are altered by the turbulence. We used the same turbulence parameters as
in nonrefractive case. The largest mode in the realization of sound speed was of length 20π meters.
We expect this is adequate to capture inertial range fluctuation effects, since modes near the sound
wavelength dominate scattering. An artificial periodicity of about 20π meters is evident in this
individual realization, though.

Note the quiet band that runs along the ground, most clearly in the downward refraction case. The
turbulence simulation in Figure 3.3 indicates that the ’quiet height’ also exists under atmospheric
turbulence. Although sound levels fluctuate they stay low. The ’quiet height’ effect has been
studied in [15]. They concluded that it is a measurable and robust effect for night time downward
refraction conditions in the range 100-500 Hz.

FFI-rapport 2014/00260 13



Figure 3.3 Relative sound level (dB) for 500 Hz source over terrain. Reproduction of Figure 6.5
in Salomons’ book. Source at 2 m above ground, and ground properties given by
σ = 200 kPa s/m2. UL: Constant atmosphere. UR: Downward refracting, sound
speed of log-lin form (2.12) with c1 = 0, c2 = 1 m/s and z0 = 0.1 m. BL: Constant
atmosphere with turbulent fluctuations (Single realization). BR: Downward refracting
atmosphere with turbulent fluctuations (Single realization). Note that zero height on
the y-axis is set to the source height at 2 m above ground.
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Figure 4.1 Varying resolution with source height half a wavelength. We show vertical profiles of
relative sound pressure at range r = 100m.

4 Parameter studies

Most of the literature on PE methods does not address the low frequencies occuring in military
applications. Therefore it is necessary to justify choices of numerical parameters with additional
test simulations. In particular, Salomons recommends a grid resolution of one tenth wavelength
both horizontally and vertically. This may lead to data features being insufficiently resolved when
the wavelength is large. Once numerical parameters are set, it is also instructive to look at the
effects of varying the physical parameters.

4.1 Resolution of source height

The source height may in some cases not be resolved by the grid resolution. This seems not to
be an issue. For Figure 3.1, the source height was 1 cm above ground while the grid size was
34 cm. Figure 4.1 shows a case where the source is half a wave length above ground. Very soft
soil is considered. At high resolution we see some oscillation. This feature persists under further
refinement but has no practical significance. We conclude that source height should not influence
numerical resolution. Instead, proper representation of a ground-near source is taken care of by the
startdata alone.

4.2 Starting data

Salomons [8] uses a complicated analytical reprentation of a point source. Several versions of
varied level of detail are suggested, and special care is taken to represent ground reflections when
the source is near ground. The most and least sophisticated methods are compared in Figure 4.2
here. Analytical solution based on the grazing angle approximation is also shown. There are errors
with all startdata types, but we get tolerable results provided the spherical reflection coefficient
is used. Numerical resolution error was found to be dominated by the startdata error here by
refinement tests. Possibly, more accuracy can be achieved with the method of [10]. Large errors
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Figure 4.2 Startdata for near ground source. We show vertical profiles of relative sound pressure
at range r = 1 km.

due to startdata was reported in that paper for hard ground, however our codes do not reproduce
these. We conclude that the starting data (G.75) and (G.79) in [8] are adequate and efficient. For
the exponential integral function in (G.79) we use the implementation included in Matlab.

4.3 Absorption layer and domain truncation

The absoption layer is clearly necessary for controlling reflections from the artificial upper
boundary. Salomons does not provide absorption rates At for frequencies below 30 Hz. After
some trial and error we found that a value At = 0 at f = 0 Hz with linear interpolation up to the
30 Hz value kept reflections under control. The layer thickness was kept to 50λ as recommended.
With the absorption rate fixed, we tried to vary the thickness. For this experiment we considered
a fully reflecting ground (Z = ∞), a range of 20 km, a frequency of 1 Hz, and log-shaped sound
speed profiles with strengths c2 = −3, 0 and 3 m/s respectively. The regular domain was 1 km
high, a reasonable choice since sound rays reach a height of about 750 m (≈ (2πc0/c2)

−1/2r).
The source height was 2 m. Resulting sound levels are plotted in Figure 4.3. We get acceptable
errors at only 25λ, however we stick to the standard thickness for now. Even at 25λ, the absorption
layer dominates computation time for the lowest frequencies. Errors are especially pronounced
in the case of upward refraction, while the other weather scenarios are less sensitive to the layer
thickness.

A second parameter of importance is the truncation height ztop of the regular domain. Using the
same experimental setup as above we found some sensitivity to ztop in the upward refracting case
, as seen in Figure 4.4. In practice, scattering by turbulence will probably have an impact, so this
sensitivity is not very important. Taking the same height as we would for downward refraction
seems sensible. A thumb rule of one tenth of the maximum range is often suggested as a safe
choice in ’folklore’. We have at least found no reason to exceed it.
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Figure 4.3 Varying thickness of absorption layer. Top: No refraction. Mid: Upward refraction.
Bottom: Downward refraction.
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Figure 4.4 Varying truncation heights ztop. Same upward refracting profile as in Figure 4.3.

Figure 4.5 Grid resolution for underresolved sound speed gradient. Left: upward refraction, and
right: downward refraction.

4.4 Resolution of sound speed gradient

The effective sound speed may change abruptly with height near the ground. Hence, for low
frequencies the sound speed gradient will not be represented in much detail with standard grid
resolution. We used the same experimental setup as in the previous section to study the need for
further refinement. The grid resolution here is 34 m, which drastically reduces the level of detail in
the sound speed gradient. Simulation results are shown in Figure 4.5. For upward refraction there
is some effect, however it is likely insignificant compared to turbulent scattering. For downward
refraction we found little response to refinement beyond standard resolution. It appears that sound
speed gradient should not influence resolution.

4.5 Resolution of terrain

We also present a refinement study with terrain features. A sine-shaped hill of width λ/3 was
placed in the propagation path. Standard resolution gave adequate, but limited, accuracy (4.6). For
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Figure 4.6 Varying grid resoltion with smooth terrain. Fully reflecting ground.

Figure 4.7 Piecewise linear approximation to topography. Different segment length, otherwise
same parameters. For reference we plotted the result with segment size equal to grid
size λ/10. The terrain feature was a sine shaped hill of height 40 m and width 500 m.
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Figure 4.8 Relative sound level for fixed ground slope. Slope angle tan−1C is given in degrees.
The x-axis represents distance along ground.

efficient computation, it is best to describe the topography with linear segments that are as long
a possible, as suggested in [11]. Figure 4.7 shows an experiment with variable segment length.
Results are good when the segment length is down to one wavelength. This is enough to speed up
calculations. At two wavelengths segment length we also observe decent accuracy but highs and
lows are reduced. Probably, the terrain sample points can be chosen smarter to capture peaks and
valleys, as opposed to the simple uniform segment size used in this experiment.

4.6 Topographic limitations

The model has inherent limitations when it comes to terrain steepness. Technically, this only
affects terrain that has large slope variation, since the r and z-directions are somewhat arbitrarily
chosen (although atmospheric stratification gives a guideline). In this test we considered varying
spatially constant slope with full ground reflection. Since the directions are arbitrary, results
should be identical. Figure 4.8 shows sound levels for varying slope angle. Up to 20◦ results are
good, while 30◦ uphill propagation is severely underestimated. Salomons states that GTPE works
well if the local slope does not exceed about 30◦. Our experiment suggests 30◦ should at most be
attained only over a small region.

4.7 Ground impedance effects

Typical values of resistivity for Norwegian forests are quite low. We expect in the range 10-
100 kPa s/m2. The exact values chosen can play a large role as seen in Figure 4.9. The effect is
naturally most pronounced in the case of downward reafraction, while with upward refraction
it is more subtle. For this example a logarithmic sound speed profile of strength c2 =1m/s was
used. Since impedance is strongly frequency dependent, ground effect will also be. The purpose
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Figure 4.9 Varying the resistivity σ for downward refraction.

Figure 4.10 Different snow depths over a hard surface. The snow is soft with porosity Ω = 0.8.
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Figure 4.11 Snow depth varies with range as a sinusoid between 0 og 1m, the period is 8λ.

of showing this result is to point out that this is a critical feature of the model, and therefore an
important source of parametric (as well as modelling) uncertainty.

The ground effect will vary with season. In particular, frozen ground will reflect more, while snow
absorbs noise. Figure 4.10 demonstrates that snow cover can be an important parameter. A layer of
soft snow over hard ground is considered. As the snow depth goes from 25 to 100 cm the ground
changes type from basically fully reflecting to a soft single layer. Refraction was downward as in
Figure 4.9.

Ground characteristics are certainly not spatially constant, and the model can easily accomodate
a range-dependent impedance. We therefore present one study where snow depth varies with
range, Figure 4.11. The overall effect is absorption, but there are oscillations in the sound levels
that follow the snow depth. A natural question to ask is whether there is a single impedance
value that characterises the large scale behaviour. We have found that in such cases it is often a
good choice to use the average value of admittance β = 1/Z, and this is illustrated well with
this study. In practice, impedance will not be known very precisely. The uncertainty can be
modelled stochastically, as suggested in [7] (where range-dependence was ignored). We expect
mean admittance to be a key quantity also in the stochastic case. Indeed, a simulation with mean
admittance gives the mean complex sound pressure E(pc) plus an error term proportional to the
covariation between β and pc. In conclusion, sound levels have limited sensitivity to details of
ground impedance provided appropriate mean quantities are used. Note that the appropriate range-
independent impedance value does not necessarily correspond to any physical range-independent
ground configuration.
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Figure 4.12 Piecewise linear sound speed profile. Top left: upwind, top right: downwind. Soft
ground. Bottom: The sound speed profiles (colourmatched) in the upwind case.

Figure 4.13 An elevated inversion versus an adiabatic lapse rate. The two sound speed profiles
are shown on the right.
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Figure 4.14 Constant sound speed above 10 m (5 m/s in direction of propagation ). Varying
sound speed profiles underneath. 25 Hz (left) and 100 Hz (right).

4.8 Refraction effects

It is well established that wind and temperature is the major source of variability and uncertainty
in sound levels. For long ranges and downward refracting conditions, predictions must take into
account conditions several hundred meters up in the atmosphere. We look here at how the sound
speed gradient at different heights influence sound levels. For figure 4.12 only the gradient at a
medium height between 50 and 200 m height varied for a 10 Hz signal. Below 50 m winds rise
linearly to 10 m/s. Both upwind and downwind propagation are considered. As expected, for the
first 500 m of propagation, sound levels were the same. In the upwind case we see variation on the
order of roughly 5dB due to interference patterns. In the pure downwind case, the exact value of
the gradient at the medium height probably matters less, except in an unrealistically narrow inter-
ference minimum. The strongest effect is seen when upward refraction near ground is combined
with downward refraction higher up. Sound levels are increased with tens of dB compared to the
solely upward refracting case. A temperature inversion in remission due to ground heating would
look similar, an example of which can be seen in [3] from a tethersonde measurement series. This
type of atmospheric condition is very hard to infer from ground measurements. In Figure 4.13 we
consider a case roughly corresponding to the measurements from [3]. The elevated inversion case
is contrasted with the adiabatic lapse rate observed later in the day. At a distance of a few km, the
difference in sound level is dramatic.

We conducted a similar study for the lowest 10 m of the atmosphere. This height was chosen
because it is typically the height of meteorological measurements. We find, as could be expected,
that for low frequencies, this part of the atmosphere matters little. We show results from f =25
Hz and f =100 Hz. There is a some effect already at 25 Hz. For this experiment we considered
downward refraction, with the wind increasing continuously to 5 m/s at 10 m height, then being
constant further above.
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Figure 5.1 Left: Computation time as a function of frequency for a maximum range of 10km.
Range sections of size max(λ, 10 m). Third octave bands. Right: Corresponding
cumulative computation time as f increases.

5 Performance study

In making noise maps, it is necessary to calculate noise for several frequencies, directions, source
locations and possibly weather conditions. Computational cost accumulates, and good estimates
of computational time is important for choosing strategies of implementation, sampling etc.
Some general conclusions can be stated from the form of the numerical schemes. Roughly, the
computational time is proportional to the squared frequency f2. The reason is that the grid size
∆z = ∆r is proportiononal to f . Also the domain height is proportional, say one tenth, of the
maximum range. For low frequencies, we also need to take the absorption layer into account.
More precisely, for a maximum range R, the number of range steps is proportional to c−1Rf and
the number of vertical grid cells is proportional to (50f−1 + 0.1Rc−1)f . Hence efficiency should be
proportional to (50 + 0.1Rfc−1)Rfc−1. This is still rough, because the size of the range sections, i.
e. the resolution of the terrain, should also be taken into account, and there are costs with setting
up the problem etc.

Figure 5.1 shows computation times on a desktop. A range of 2-128 Hz was sampled in third-
octaves. First we considered flat ground (blue curve), hence one single range section could be
used. A second order polynomial fit is included in the plot, roughly equal to 0.043 s3 times f2. For
the nonflat case (red curve), each range section was one wavelength long, but we set a minimum
range section length to 10 m since available topographic maps are limited. Below 32 Hz (where
(λ > 10 m)), including the terrain increases cost by a factor between 2 and 3. Above, the extra cost
gradually decreased as expected. The cumulative cost of calculating for a whole frequency range
is most interesting in practice. On the right of Figure 5.1 we see the total cost for different upper
cut-off frequencies. Again, we considered third octaves starting with 2 Hz as the lowest frequency.
Total time with terrain was 40.7 s and without terrain 21.4 s. If we only consider f ≤ 32 Hz the
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costs are 6.8 s and 2.5 s respectively.

For a practical scenario, we assume that the weather and source position is known, and that noise
must be calculated up to a radius of 10 km in all directions. Assuming an angular resolution of
five degrees, we have to scale with a factor of 72 to include all directions. As a compromise, we
only allow 10 range sections in each direction, which gives no significant cost. We consider third
octaves from 2 to 32 Hz as above. Then the total computational cost is about three minutes, which
can be acceptable for a local shooting range planner.

A contrastingly demanding scenario is the creation of general purpose noise maps for a shooting
range. Let’s say the shooting range can be sampled with 100 source locations. We want to fully
include topography and average over weather based on 25 weather samples. Frequency is sampled
in third-octaves. For 2-128 Hz we end up with 85 days and nights of computing. Although some
improvements can probably be made, it will be necessary to use parallel processing to accomplish
this. Instead of just averaging over the weather samples etc. it may be more useful to store the
sound levels for later use, hence storage requirements are of interest. We assume that for each
individual direction and frequency, one sound level value is stored for every δr = max(λ, 10 m).
This becomes 10.300 values for the 2-128 Hz band and 4.340 values for the 2-32 Hz band. One
byte should be sufficient per data point. The total data amount becomes 75 and 31Mb respectively
per weather type, hence a few Gb should suffice.

The absorption layer adds significantly to the cost. Removing the layer reduced computation
time by a factor of 57% up to 32 Hz, and 75% up 128 Hz. There are alternative methods to deal
with upper truncaation, but each have associated costs. An alternative technique is to use a so
called ’Perfectly Matching Layer’ in place of the absorption layer. However, an extra layer of
thickness 20λ is still required [9]. Also note that in [6] it is pointed out that the PML technique
does not perform so well for long-range propagation. As a third alternative, a ’non-local’ boundary
condition (see [6] for details) was considered, but a more efficient numerical discretisation than we
have found in the literature is needed.

6 Summary

We have presented an implementation of a Parabolic Equation Method in Matlab, verified it
against known examples, and tested its low frequency performance. There are a number of
numerical parameters that determine the accuracy and efficiency of the method, and we have
developed recommendations for those. Generally we have found the recommendations in the text
book [8] to work well. Although that book focused on higher frequencies (above 100 Hz), we
have found the recommendations to largely translate to lower frequencies, at least as long as an
accuracy of 1-2 dB is sufficient. Hence, we can use a grid size of a tenth of a wavelength, even
though it may seem to result in poorly resolved physical background features. One wavelength
appears to be a good thumb rule for the terrain resolution. This parameter should be as large
as possible for efficiency, as explained above. Different starting data were considered, and we
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recommend the more sophisticated formula given in [8], although it is indicated to be of little
importance in that reference.

The domain needs to be artificially truncated above. We use the absorption layer technique to
avoid reflections from the artificial boundary. Suitable absorption rates for the lowest frequencies
have been determined, and we have found that the recommended absorption layer thickness of 50
wavelengths translates to lower frequencies. This means that the absorption layer may take up a
large percentage of computational time. Depending on the frequency band of interest, althernative
methods for domain truncation, especially the PML technique, may be worth testing.

Computation times at varying frequencies were measured. They imply that parallel processing
is in general necessary to produce noise maps with the PE method. The time needed strongly
depends on the frequency band of interest, as the computation time roughly goes as f2. It is
possible to make fairly fast, operational serial versions for a range of about 2-32 Hz, if some
compromises are made. Currently, the Milstøy code is not considered very reliable below 25 Hz,
hence this is an important conclusion. A different way to employ PE calculations is to produce
noise maps for selected parameter samples, which is then used by a table lookup routine.

A stochastic turbulence model for refractive index fluctuations has been implemented. It is a
valuable theoretical tool, however it can not be made operationally efficient. With advances in
modelling and computational techniques, turbulence models might become operational in the
future.

In the PE literature the ground model is nearly always given as a single infinite porous layer under
local reaction approximation. We have demonstrated that there is room to soften this restriction
by taking a grazing angle limit for the specific impedance Z (by grazing angle we refer to a wave
propagating parallel to the ground surface). Specifically, we can model a rigid porous layer over
hard ground.

We have included some examples that highlight the importance of physical input parameters,
focusing on ground impedance, snow depth and sound speed gradients at different heights.
Ground impedance value has a strong effect on sound level, even within the range of values
typically considered ’soft’, although not as strong an effect as the weather. Tests for range-
dependent ground impedance Z, indicated that the average admittance β determines the large
scale behaviour in many cases. This might explain why most authors are content with a constant
Z-value. For many parameters we have observed a nonlinear relationship with the sound level.
Often a saturation effect was seen at extreme ends of the parameter range, especially clearly so in
the snow depth study. In the case of upward refraction, the sound levels dropped below realistic
values for increasing refraction strength, while for downward refraction the saturation effect was
obscured by interference patterns.
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