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Hardness tests used to establish constitutive models  

1 INTRODUCTION 

Good material models are necessary requisites for applying computer simulations. To achieve 
predictability of these mathematical material models, they are usually tuned to experimental 
data from tests very different from the actual set up for a specific computer simulation. The 
reason for this procedure is that most material models have many free parameters, which 
always can be tuned to match a specific problem. By establishing material data from one type 
of test, and achieving good simulation results for very different types of tests, good credibility 
of material models are achieved.  
 
Typical scientific tests for establishing constitutive models are the simple compression test, the 
bending test, the unilateral compression test and the split Hopkinson bar test. Extensive 
engineering use is made of the hardness test. The hardness is simply the resistance of a 
material to plastic deformation. The test is very simple to make, it is quick, and requires only a 
small specimen. The only specification for the test specimen is that there is at least one plane 
surface. On the other hand, hardness measurements have only rarely been employed in 
scientific studies because of the objections that the hardness test involves a complex state of 
stress, and that it measures not one but several properties [3]. A relationship between hardness 
and yield point has been shown in reference [9]. A linear relation between tensile strength and 
the Brinell hardness of quenched and tempered alloys of steel has been found in reference [10] 
The hardness is in close correlation with the fundamental atomic and crystalline properties [4-
7]. Relations have been found between the hardness of pure metals and their compressibility 
and temperature [1,2,8] 
 
On the continuum level analytical relations between the hardness and the main parameters of a 
constitutive model is difficult to achieve unless the material is assumed to be perfect 
elastic/plastic and incompressible. During the hardness test the pressure/von Mises-stress 
fraction is much larger than for most other compression/tension tests. This is of special 
importance for brittle materials since the yield stress and the fracture stress are strongly 
dependent on the pressure.  
 
Of large interest for the MP ammunition is the ability to simulate penetration of hard cores of 
Wolfram Carbide into different targets. We have earlier presented a material model 
constructed on data from the compression and bending tests [11-13].  
 
This study starts by revising the results from a newly developed exact analytical theory for the 
spherical cavity expansion for incompressible materials. The theory is based on the cavity 
theory for penetration. Thereafter the theory is expanded to include compressibility and strain 
hardening. The theory is then applied to hardness measurements of materials that strain harden. 
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We apply hardness tests on Wolfram Carbide, steel, human bones and brass jackets of 12.7 
mm projectiles. We show experimentally that the indentation forces have to be above a certain 
value in order to achieve constant hardness for a given indenter and a given material.  This 
level is increasing with the hardness of the material. Below the critical value the hardness is 
dependent on the applied force. We also show experimentally that the hardness depends 
somewhat on the form of the indenter. This last experimental result is in disagreement with the 
main assumption of the cavity theory.  
 
Of special interest is also whether in situ hardness measurements can be used as quality check 
of materials. This is of special importance for hardmetals and ceramic materials, which are due 
to processing difficulties causing inhomogenity of the material.  
 
In general we show that material data from the hardness tests are important inputs to 
constitutive models. 

2 THE STATIC CAVITY THEORY  

The cavity theory gives for an expanding spherical cavity the following radial stress and 
pressure for a spherical cavity in an infinite material when using the stationary equation of 
motion 
 

( )

( ) ( )

2 ( ', ) ( ', )
( , ) ', ( )

'
1 1( , ) 2 ,
3 3

r
r r

def

r r

r t r t
r t dr r S t

r

p r t

θ

θ φ θ

σ σ
σ

θ φσ σ σ σ σ σ σ

∞ −
= ≥

= − + + = − + =

∫
 (2.1) 

 
where S(t) is the inner radius of the spherical cavity as a function of time, p is the pressure and  rσ  is 
the radial stress and θσ  is the circumferential stress . Symmetry gives when assuming a von Mises 

material that 
 

von Mises stress 0,r θσ σ− = − ≤  (2.2) 
 
From the spherical symmetry it follows from the material conservation that 
 

( ) ( )

0

32 2 2
0 0 0 0

( , )

4 4 ( , ) 3

def

mod

r r u r t

r dr r dr r u r t r
r

/π ρ π ρ ρ ρ

= +

∂ ⎡ ⎤= ⇒ − =⎢ ⎥⎣ ⎦∂

 (2.3) 

 
where u(r,t) is the displacement ,  is the Lagrangian radial coordinate and r is Eulerian radial  
coordinate. 

0r

0ρ  is the initial density and ρ  is the current density. The boundary condition is 
, where S(t) is the position of the inner surface.  Equation (2.3) is easily solved 

when assuming the incompressibility relation
( ( ), ) ( )u S t t S t=

0ρ ρ= . It follows from (2.3) that 
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1/33 3

3
( )( , ) 1 1 , ( ( ), ) ( )a S tu r t r u S t t S t a

r

⎡ ⎤⎛ ⎞−⎢ ⎥= − + = −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (2.4) 

 
where a is the initial hole radius of the cavity. From (2.4), the definition and the spherical 
symmetry the radial velocity follows as 
 

( )
2

2
/ ( ) (/ /

1 /

def u t V t S tu t v u r v v
u r r

∂ ∂
∂ ∂ + ∂ ∂ = ⇒ = =

−∂ ∂
)

 (2.5) 

 
where V(t) =  is the radial velocity of the inner surface (assumed to be quasi-static). ( )S t
 
In addition, the logarithmic strains follow from the definition, equation (2.4) and the spherical 
symmetry, to read 
 

( )

( )

3 3

3

3 3

3

2 ( )1 / 1
3

1 ( )1 / 1
3 2

def

r

def

r

a S tLn u r Ln
r

a S tLn u r Ln
rθ φ

ε

1ε ε ε

⎛ ⎞−
= − − ∂ ∂ = +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞−

= − − = = − + = −⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.6) 

 
Inserting (2.4) and (2.5) into (2.6) gives directly that 
 
 

,r r r DD v vv
dt t r r dt t r r

θ θ θvε ε εε ε ε ∂ ∂∂ ∂ ∂
= + = = + =

∂ ∂ ∂ ∂ ∂
 (2.7) 

 
which show that by applying spherical symmetry the strain rates are given as the total 
derivative of the logarithmic strain. Moreover the reduced strains are given by 
 

( )
1/ 2

2

1(1/ 3) ,
2

2 ,
3

def

r r r r r

def

eff ij r

e e

e e e

θ φ θε ε ε ε ε ε= − + + = = = −

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

re

)

 (2.8) 

 
By applying a material model where von Mises = ( effM e , the integration (2.1) can be 

performed to give the radial stress and the pressure if the strains are inserted. Consider the 
specific test example  
 

( ) ( )( )1 3 / , .
mod

eff eff .Mis e Y Exp e G Y Y const G const= − − = =  (2.9) 

 
where Y is the ultimate plastic stress, and G is the shear modulus. Inserting the strains in (2.6) 
into (2.2) and (2.9) gives that 
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( )
2 / 2 /3 3 3 3

3 3
( ) ( )1 1 1 1

G Y G Y

r eff
a S t a S tMis e Y Exp Ln Y

r rθσ σ
⎡ ⎤⎛ ⎞⎡ ⎤ ⎛⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥− = − = − − + = − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝⎝ ⎠⎣ ⎦

⎞

⎠
 (2.10) 
Inserting (2.10) into (2.1) gives the radial stress as 
 

( ) ( )

2 /3 3

3
( )2 1 1

'
( , ) ', ( )

'
1 2( , ) 2 ( , )
3 3

G Y

r r

r r eff

a S tY
r

r t dr S t a
r

p r t r t Mis eθ

σ

σ σ σ

∞

⎛ ⎞⎛ ⎞−⎜ ⎟− − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

= − + = − −

∫ ≥  (2.11) 

 
Thus at the inner cavity surface r= S(t) 

2 /3 3

3

( )

( )2 1 1
'

( ( ), ) '
'

G Y

r S t

a S tY
r

S t t dr
r

σ
∞

⎛ ⎞⎛ ⎞−⎜ ⎟− − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝= ∫ ⎠

u

 (2.12) 

 
Substituting that  gives that 3 3 31 ( ( ) ) / 'a S t r+ − =
 

( )

2 /1
3 3/ ( )

3 3/ ( ) 0

2 /2 / 31
3 3 3/ ( )

3

2 1( ( ), )
3 1

2 2( ( ), ) ,
3

2 2 1 2( ( ), ) ( ( ), ) 1
3 3 1 3 ( )

G Y

r a S t

ra S t

G YG Y

r eff a S t

a

Y uS t t du
u

Y GLim S t t HarmonicNumber
Y

Y u Y ap S t t S t t Mis e du
u S t

Lim

σ

σ

σ

→

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟−⎝ ⎠

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− ⎜ ⎟= − − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

∫

∫

3/ ( ) 0
2 2 2( ( ), )
3 3S t
Y G Yp S t t HarmonicNumber

Y→

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.13) 
 
Observe from (2.13) that the radial stress at the inner surface is independent of the cavity 
radius S(t),  although the material model strain hardens, when the initial radius of the cavity 
hole goes to zero. 
 
Assume a linear elastic/plastic material. In the elastic region we have 
 

( ) ( )

( ) ( )

(1 ) 2 ,
(1 )(1 2 ) (1 )(1 2 )

2 3
(1 )

r r

r r r r

E E

E G e e Ge

rθ θ θ

θ θ θ

σ ν ε νε σ ν ε ε
ν ν ν ν

σ σ ε ε
ν

= − + =
+ − + −

− = − = − =
+

+
 (2.14) 

 
For the plastic region we state the conventionall Mises relation. Thus the following model is 
applied for an ideal elastic/plastic material 
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( ) 3 when
3

( ) when
3

eff eff eff

eff eff

YMis e Ge e
G

YMis e Y e
G

= ≤

= ≥
 (2.15) 

 
Further, denote the elastic/plastic interface by r = s(t), thus the position of this interface 
follows from (2.6) and (2.15) as  
 

( )1/33 33 3

3 1

1/3 3

3

( ) 1 / ( )( )3 2 1 ( )
( )

1
2

2( ) ( ) 1 1
2 ( )

eff

S t a S ta S tGe Y G Ln Y s t
s t YExp

G

G Y as t S t when and
Y G S t

−⎛ ⎞−
= ⇔ − + = ⇔ =⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎛ ⎞− −⎜ ⎟⎜ ⎝ ⎠⎝

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠

/ 3

⎟
⎠  (2.16) 

Only the approximate solutions are known from the literature. Observe that the position of the 
plastic surface is proportional with the position of the inner surface of the cavity for large radii 
compared to the initial radius. Plastic flow starts instantaneously at the inner surface and 
moves ahead of the inner surface.  At the inner surface r = S(t), we get from (2.1), (2.2) and 
(2.16) the stress 
 

( )

2 /3 3 3
3 3( )

( ) ( )

2 /3

3 1/ 3 3
1 1

2 ( )

( )2 1 4 1( ) '
( ( ), ) ' ',

' '

1( ) 42 1
( ) 3( )

G Y

s t
r S t s t

G Y

Y aExp
G S t

a a S tY G LnS t r
S t t dr dr

r r

Ln ua s t GY Ln
S t uS t

σ
∞

⎛ ⎞−⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ −− ⎜ ⎟ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠ ⎝ ⎠= − + ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ −⎛ ⎞⎜ ⎟= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

∫ ∫

0
1/ 3

3

1/3

2 /3

23 3 3

3 3

2 /3

3 3

3

1 1
2 42 21
3 3( ) 1 1

( ) ( )

2 21
3 ( )

1
( )

G Y

G Y

du

Y YExp Exp
Y a GG GLn Li

S t a a
S t S t

Y a GLn
S t aY

S t

−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎜ ⎟≈ − − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ −

∫

22 1 ... 1
3 4 3 2
Y Y Ywhen

G G

⎛ ⎞
⎜ ⎟
⎜ ⎟ − + +⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.17) 

 
where  is the Jonquieres function of second order.  ( )2Li

 
The hardness is defined as the force on a penetrator divided with the projected contact area 
along the axis of the penetrator.  
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According to the cavity theory applied to indentation of rigid penetrators, the axial force on the 
penetrator is equal to the radial stress from the spherical cavity theory times the projected 
contact area. Using this theory together with the definition of the hardness we achieve that 
theoretically the hardness H should be given as 

( ) ( ) / ( ) ( ( ), ) ( ) / ( ) ( ( ), ) .
def mod

r rH x F x A x S t t A x A x S t t constσ σ= = = =  (2.18) 
 
where F is the force,  x is the indentation distance and A(x) is the projected contact area. Thus 
the hardness for a given material is theoretically given as the radial stress calculated from the 
spherical cavity theory. Thus the hardness becomes independent of the indentation distance for 
large cavities and in general independent of the form of the nose of the indenter. Experiments 
below will show that the hardness is indeed dependent on the form of the penetrator.  
 
Experiments below also show that the hardness tends to decrease for small indentation forces 
or distances. The reason for this, we believe, is that during the initial phase of the indentation 
the cavity is far from spherical.  
 
Assume for simplicity that the material behaves linearly elastic. The radius, a, of contact 
between a sphere of radius R and a flat surface is according to the Hertzian solution given by 
 

( ) ( )
1/3 1/31/3 1/3 1/31/3 1/32

1/3 1/3 2 /3
3 31 , 1
4 4

F R a Fa
RE E R

σ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2σ−  (2.19) 

 
where E is the Young’s modulus, F is the force and σ  is the Poisson ratio. The force per 
projected contact area (the hardness) then becomes 
 

( ) ( )

2/3

1/3
2 2

1 4 4 ,
3 1 3 1

F E EH F
2

a
Ra Rππ σ π

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟⎜ ⎟− −
⎝ ⎠

σ
 (2.20) 

 
Thus it follows that the hardness is inversely proportional with the radius of the spherical 
indenter or proportional with the force raised to the power of 1/3. Also the force is linearly 
dependent of the radius of the contact area. 
 
The necessary force (or the indentation distance) to reach the prediction of the cavity theory is 
uncertain. First of all the linearity in the Hertzian solution ceases to be valid for some 
penetration distance. To account for this, we first renormalizes (2.20), hopefully  to be valid 
for large strains. Our suggestion is  
 

( )2 2
4 ,

3 1
F aH Mis

Raπ π σ
⎛ ⎞= = ⎜ ⎟
⎝ ⎠−

 (2.21) 

 
where Mis is again the von Mises stress. Totally we suggest that 
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( )2
4 ,

3 1
aH Min M Cavity theory
Rπ σ

⎛ ⎞
⎛ ⎞⎜= ⎜ ⎟⎜ ⎝ ⎠⎜ ⎟−

⎝ ⎠

⎟
⎟

)1−

 (2.22) 

 
In general we expect that when the fraction a/R becomes large, the cavity prediction is 
reached. Thus the indentation distance should be above a certain value. This value is dependent 
of the hardness of the material. A hard material needs large forces to achieve the minimum 
indentation distance.  
 
The cavity theory is in the literature based on the incompressibility assumption. We now 
consider a compressible material and expand the theory accordingly.  The equation of state is 
as an example assumed to be given by  
 

( 0/
mod

p K ρ ρ=  (2.23) 
 
where K is the bulk modulus . Inserting into the material conservation equation (2.3) gives that 
the density can be eliminated, to read 
 

( ) ( ) ( )
1/ 3

3 2 2
( )

( , ) 3 1 / ( , ) 3 1 ( ) /
r

S t
r u r t r p K u r t r u p u K du

r
∂ ⎡⎡ ⎤− = + ⇒ = − +⎢ ⎥ ⎢⎣ ⎦∂ ⎣ ⎦∫ ⎤

⎥

)

 (2.24) 

 
when we assume large cavity holes compared to the initial hole. The reduced effective strain to 
be inserted when the material is compressible,  is necessary.  Our basic assumption is that the 
volumetric change is small (not necessary small strains). Let 
 

(0/ 1 2r θρ ρ ε− ≈ − + ε

K

 (2.25) 
 
It then follows from (2.24) and (2.26) and the definitions that 
 

( )( )(1/ 3) 2 /(3 )eff r r r re e pθε ε ε ε= − = − − + ≈ − −  (2.26) 

 
According to the definition ( )1 /r Ln u rε = − −∂ ∂ . It follows from (2.24) that 
 

( )

( )

2

2/ 3
2

( )

1 ( ) /( , )1
3 1 ( ) /

r
r

S t

r p r Ku r tLn Ln
r

u p u K du
ε

⎛ ⎞
⎜ ⎟+∂⎛ ⎞ ⎜= − − = −⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎡ ⎤+⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠∫

⎟  (2.27) 

 
Thus we have from (2.26), (2.27) that 
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( )

( )

( )

( )

2

2 /3
2

( )

22 2
2

2 /3 2 /3 5/ 3( )
2 2 2

( ) ( ) ( )

2 / 33 3

1 ( ) /
3

3 1 ( ) /

( ) / ( )2
3

3 3 3

1 / 1 ( ) /

eff
r

S t

r

S tr r r

S t S t S t

r p r K pe Ln
K

u p u K du

r p r Kr uLn r du
K

u du u du K u du

Ln S r p r K

λ
λ

λ

λ λ λ

λ
−

⎛ ⎞
⎜ ⎟+⎜ ⎟= −
⎜ ⎟⎡ ⎤+⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟≈ + −
⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= − + −

∫

∫
∫ ∫ ∫

( )

p u p
−

( ) ( )

( ) ( )

2
( )
3 3 3

2
2 /3

( )3 3 2
3 3 3 ( )

2
( )3 3
3 3 3

2 ( )

31 /

2 ( )2 ( )1 / , 3
3 31 /

2 ( )2 21 / ,
3 31 /

r

S t

r
rS t
S t

r

S t

u p u du p
KKr S r

u p u dup r pLn S r u du
K KKr S r

u p u du pLn S r when
KKr S r

λ λ

λ λ λ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟
−⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎡ ⎤≈ − − + − − ⎢ ⎥⎣ ⎦−

≈ − − ≈
−

∫

∫
∫

∫
 (2.28) 

 
Here λ is a parameter that is equal to one or zero,  depending on whether the compressibility is 
to be accounted for. Equation (2.28) has to be solved together with equations (2.1) and  (2.2), 
to read 
 

( )

( ) ( )
( ) ( )

2
( )3 3
3 3 3

2 ( )
( , ) , ( ), ( )

2 ( )2 ( )( , ) 1 / ( )
3 31 /

1 1( , ) 2 3 2 ( ) , ( )
3 3

eff
r r

r

S t
eff

r r eff

Mis e u
r t du r S t a

u

u p u dup r pe r t Ln S r b
K KKr S r

p r t Mis e cθ

σ

λ λ

σ σ σ

∞
= − ≥

= − − + − −
−

= − + = − +

∫

∫
λ  (2.29) 

 
 
Equation (2.29) is solved by iteration. First, only the first term on the right hand side in (2.29b) 
is used for the effective reduced plastic stain. The corresponding radial stress is calculated 
when inserting into equation (2.29a). The pressure is then calculated according to (2.29c). 
Thereafter, for the next approximation, the reduced effective plastic strain is found by inserting 
the radial stress into (2.29b). The next approximation for the radial stress is calculated by 
inserting into (2.29a), etc. In the next section the solution of (2.29) was achieved numerically 
and is compared with the experimental results of the hardness. The von Mises function as a 
function of reduced strain and the elastic constants were input to the numerical calculations. 
The simple tension or compression tests have earlier been used to develop the von Mises 
function. 
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3 THE EXPERIMENTAL SETUP 

For the hardness measurement three different diamond indenters where used: 
- A conical indenter (Rockwell indenter) with an angle of 120°.  
- A pyramidal indenter (Vickers indenter) with an angle of 136° between the faces. 
- A pyramidal indenter (custom fabrication) with an angle of 90° between the faces. 
 

 
Figure 3.1: Conical indenter. 

 
Figure 3.2: Pyramidal indenter (136°) 

 
Figure 3.3: Pyramidal indenter (90°) 
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4 HARDNESS TEST OF WOLFRAM CARBIDE HARDCORES   

The hardness of a specimen of Wolfram Carbide was examined. Different approaches were 
performed. The form of the indenter and the force were varied. Also the surface of the 
specimen was handled differently. 
 

 
Figure 4.1: The indentations in a specimen of Wolfram Carbide (G15) using a conical indenter 
at different loads. 
 

                                                          
Figure 4.2: Indentation in Wolfram Carbide (G15). Conical indenter. Load 30 kg. 
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Figure 4.3: Close up of a split indentation hole in Wolfram Carbide (G15). Conical indenter. 
Load 45 kg. 
 

 
Figure 4.4: The indentation hole in Figure 3.4 seen from the side. 
 

G15 - Average values - Conical diamond indenter (60° half angle) - cut surface
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Figure 4.5: The measured hardness for different forces with a conical indenter. 
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G15 - Average values - Conical diamond indenter (60° half angle) - polished surface 
(1µm)
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Figure 4.6: Analytical and experimental values. The function is equation (2.20). 

G15 - Conical indenter (60° half angle)
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♦ Polished  surface (1 µm)  ■Cut surface 
Figure 4.7: The measured hardness for a specimen with a polished surface and a cut surface 
with conical indenter. 
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G15 - Average values - Pyramidal diamond indenter (136° angle between faces) - 
Polished surface (1µm)
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Figure 4.8: The measured hardness of G15 for different forces when using the pyramidal 
indenter. 
 

G15 - Average values - Polished surface (1µm)
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♦ Conical (120°) indenter  ●Pyramide (136°) indenter 
Figure 4.9: The measured hardness for the conical and the pyramidal indenter from Figure 
4.6 and 4.8. 
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H10N - Conical diamond indenter (60° half angle)
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♦ Polished  surface (1 µm)  ▲Cut surface 
Figure 4.10: The measured hardness for a specimen with a polished surface and a cut surface 
with conical indenter. 
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Figure 4.11: The measured hardness for different forces with a pyramidal indenter. 
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H10N - Average values - Polished surface (1 µm)
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♦ Conical (120°) indenter  ●Pyramide (136°) indenter 
Figure 4.12: Comparison of measured hardness for Wolfram Carbide (H10N) with different 
indenters. 
 
Notice from figure 4.7 and 4.10 that the difference between the cut surfaces and the polished 
surfaces are not very large. Thus in situ measurements of hard cores should give reliable 
results. Also observe from figure 4.8 that the conical indenter approaches an almost constant 
level somewhat below the pyramidal results for forces above 500 N. The reason for the low 
values for the conical indenter for small forces is that the conical indenter is not quite conical. 
The top of the cone has a more spherical form with a large radius of curvature compared to the 
much more pointed pyramid (figure 3.1, 3.2 and 3.3). Thus the results for the cone should stay 
below the pyramidal results, while approaching asymptotically the same results for large 
forces. The conical results become closer to the pyramidal results for large forces, but we are 
not quite sure that we reach the same level of hardness for large forces. We have not been able 
to test this for the Wolfram Carbide specimen since we could destroy the indenter when using 
larger forces (>500 N). 
 
The pyramidal result reaches the steady state value for small forces around 10 N, although 1 N 
also could be used tentatively. The top of the pyramid is rather pointed. Thus it follows that the 
pyramidal form is applicable for microhardness measurements on small areas. 
 
There is a slightly downward bend on the asymptotic part of the hardness curves (figure 4.7) 
for a load of 294 N when using the conical indenter. We speculate whether the reason for this 
is that fracture surfaces are created. It is observed that when the forces are higher than 150 N, 
cracks develop. They start along the surface of the contact between the indenter and the 
specimen and diverge radially outwards for the conical indenter (see figure 4.2, 4.3). The 
hypothesis is not supported by the results of the H10N hardcore in figure 4.10. H10N does not 
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show any such decrease in the hardness for the conical indenter. Instead it is observed that the 
hardness of the H10N hardcore do not reach a steady level when using the conical indenter.  
 
The von Mises stress and the shear modulus of the G15 hardcore were found from a simple 
compression test [12], to read 
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Using the equation set in (2.29) the different stresses as a function of the relative radial 
distance are given by figures 4.11-4.15. 

 
Figure 4.11: The theoretical von Mises stress during indentation as a function of the scaled 
distance from the surface of the indenter. 
 

 
Figure 4.12: The theoretical radial stress as a function of the scaled distance. 
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Figure 4.13: The theoretical circumferential stress as a function of the scaled distance. 
 

 
Figure 4.14: The theoretical pressure as a function of scaled distance. 
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Figure 4.15: The theoretical fraction (von Mises stress/pressure) as a function of scaled 
distance. 
 
The theoretical hardness is the radial stress at r/S=1, i.e. 17.0 GPa. This value is higher than 
the experimental value of 14.6 GPa for the pyramidal indenter and 14.0 GPa for the conical 
indenter.  The reason for the discrepancy is uncertain but we believe that some changes have to 
be performed on the cavity theory.  

5 HARDNESS TEST OF ARMOX 370 STEEL 

The 20 mm Armox 370 was cut and a tension test was performed on the specimen.  It was 
found  
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The hardness was measured to be approximately 4.0 GPa for the pyramidal indenter and 3.8 
GPa for the conical indenter, while the equation set in (2.19) gives 4.7 GPa. Again the cavity 
theory overestimates the hardness (approximately 20% for both the Wolfram Carbide and the 
armor steel).  
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Armox 370 - 22 mm
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● Conical (120°) indenter  ■ Pyramide (136°) indenter  ♦ Pyramide (90°) indenter 
Figure 4.1: The measured hardness for Armox 370 with plate thickness of 22 mm. 
 

Armox 370 - 40 mm
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● Conical (120°) indenter  ■ Pyramide (136°) indenter  ♦ Pyramide (90°) indenter 
Figure 4.2: The measured hardness for Armox 370 with plate thickness of 40 mm. 
 
We generally find the same kind of relations as for the Wolfram Carbide. The theoretical value 
of the hardness is larger than the experimental value, and the hardness are found 
experimentally to be dependent of the form of the indenter. 
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6 HARDNESS TEST OF THE HUMAN SKULL 

A piece of the skull from a human being was examined to find material properties. The 
hardness was measured. Figure 6.1 shows the results. A clear lowering of the hardness with the 
force was found. We have so far not found any good explanation for this phenomenon. 
 

Human skull - average values
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Figure 6.1: The hardness of the human skull. Pyramidal indenter (136°). 

7 HARDNESS TEST OF JACKETS OF PROJECTILES 

The hardness of jackets of 12.7 mm projectiles was studied. Figure 7.1 shows the jacket and 
where the hardness tests were conducted. Hardness test was made with a conical indenter 
(Rockwell) and a load of 30 kg. 
 

 
Figure 7.1: The jacket of a 12.7 mm projectile. 
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No. Diameter [µm] Force/Area [N/m^2]
1 566 1.17E+09
2 547 1.25E+09
3 541 1.28E+09
4 531 1.33E+09
5 545 1.26E+09
6 543 1.27E+09
7 530 1.33E+09
8 541 1.28E+09
9 558 1.20E+09
10 545 1.26E+09

Mean 545 1.26E+09
Std. Dev. 11 4.99E+07

FN
No. Diameter [µm] Force/Area [N/m^2]
1 545 1.26E+09
2 545 1.26E+09
3 543 1.27E+09
4 549 1.24E+09
5 541 1.28E+09
6 551 1.23E+09
7 541 1.28E+09
8 551 1.23E+09
9 552 1.23E+09
10 545 1.26E+09

Mean 546 1.26E+09
Std. Dev. 4 1.91E+07

P98

Table 7.1a: The hardness of the FN jacket. Table 7.1b: The hardness of the P98 jacket. 

No. Diameter [µm] Force/Area [N/m^2]
1 547 1.25E+09
2 549 1.24E+09
3 549 1.24E+09
4 551 1.23E+09
5 547 1.25E+09
6 537 1.30E+09
7 535 1.31E+09
8 534 1.31E+09
9 541 1.28E+09

10 549 1.24E+09
Mean 544 1.27E+09

Std. Dev. 7 3.06E+07

P53

Table 7.1c: The hardness of the P53 jacket. 
 
In addition the hardness of the tip of the projectiles was measured. Here a Vickers indenter 
(pyramidal (136° ))  was used with a load of 0.3 kg. 
 

 
Figure 7.2: The cross-section of the tip of the jacket where the hardness tests was performed. 
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P98 
  Force/Area [N/m^2]
1 1.53E+09 
2 1.56E+09 
3 1.48E+09 

Mean 1.52E+09 
Std.dev. 3.72E+07 
Table 7.2a: Hardness measurements of the tip of the jacket. 
 

FN 
  Force/Area [N/m^2]
1 1.64E+09 
2 1.48E+09 
3 1.58E+09 

Mean 1.57E+09 
Std.dev. 7.71E+07 
Table 7.2b: Hardness measurements of the tip of the jacket. 
 

P53 
  Force/Area [N/m^2]
1 1.64E+09 
2 1.75E+09 
3 1.81E+09 

Mean 1.73E+09 
Std.dev. 8.96E+07 
Table 7.2c: Hardness measurements of the tip of the jacket. 
 
 
The difference in the hardness on the surface of the jackets was insignificant. For the tip region 
P98 and FN seems to have the same hardness. The hardness of the tip of P53 is somewhat 
larger. 

8 CONCLUSION/DISCUSSION  

In this report a study of the hardness of different materials is performed theoretically and 
experimentally. The main objective was to establish relations that can be used to construct 
constitutive material models. We apply the famous cavity theory for rigid penetration to the 
hardness test, and also expand the theory to include compressibility and strain hardening. For a 
conical indenter with a small spherical tip, we find that for small forces where the scale of the 
indentation dent is smaller or of the same order of magnitude as the radius of curvature the 
spherical tip, the cavity theory gives results far above the experimental values. For larger 
forces, where the scale of the indentation is much larger than the radius of curvature of the tip, 
the experimental results are in reasonably good agreement with the experimental results. But in 
general for large forces the theoretical hardness calculated by using the cavity theory 
overestimates the hardness with approximately 20% -30 % for our types of indenters. The 
reason for the discrepancy is uncertain. We can not completely rule out that the stress-strain 
curve used to calculate the theoretical hardness is somewhat too large, but we believe that 
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some changes have to be performed on the cavity theory even for large indentation forces. 
Finally, we find experimentally, and contrary to the cavity theory, that the hardness depends 
somewhat on the geometrical shape of the indenter. 
 
In general we find that the material data from hardness tests can be used as an important input 
to the construction of constitutive models. There is a unique mapping from the stress-strain 
curve during simple compression to the hardness, but not the opposite. The reason for this is 
that the hardness follows from the integral of the stress-strain curve.  
 
In further research we will study whether the hardness test and the fracture pattern around the 
indentation dent can be used for the construction of fracture models. 
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Appendix A 
 
Hardness measurements for the Wolfram Carbide hardcores in the 12,7 mm MP 
projectiles. 
 

G15 - Conical diamond indenter (60° half angle) –  
Polished surface (1 µm) 

  Load (N) 
  49 147 294 441 

  
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
1 75.5 10.9 116.2 13.9 166.6 13.5 196.3 14.6 
2 76.7 10.6 115.1 14.1 166.6 13.5 198.2 14.3 
3 76.3 10.7 115.4 14.1 164.7 13.8 198.9 14.2 
4 75.5 10.9 115.4 14.1 163.4 14.0 197.6 14.4 
5 75.7 10.9 115.3 14.1 164.0 13.9 198.9 14.2 

Average 75.9 10.8 115.5 14.0 165.1 13.7 198.0 14.3 
Std. Dev. 0.5 0.2 0.4 0.1 1.5 0.2 1.1 0.2 
 

G15 - Conical diamond indenter (60° half angle) - Cut surface 
  Load (N) 
  49 147 294 441 

  
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
1 73.4 11.6 116.8 13.7 166.5 13.5 201.5 13.8 
2 74.9 11.1 116.8 13.7 167.1 13.4 200.8 13.9 
3 71.3 12.3 117.6 13.5 165.8 13.6 202.8 13.7 
4 74.7 11.2 118.0 13.4 170.4 12.9 204.7 13.4 
5 77.2 10.5 115.7 14.0 167.8 13.3 205.4 13.3 

Average 74.3 11.3 117.0 13.7 167.5 13.3 203.0 13.6 
Std. Dev. 2.2 0.7 0.9 0.2 1.8 0.3 2.0 0.3 
 
G15 - Pyramidal diamond indenter (136° angle between faces) - Polished 

surface (1 µm) 
  Load (N) 
  49 147 294 441 

  Diagonal [µm] 
Hardness 

[GPa] 
Diagonal 

[µm] 
Hardness 

[GPa] 
Diagonal 

[µm] 
Hardness 

[GPa] 
Diagonal 

[µm] 
Hardness 

[GPa] 
1 82.6 14.4 142.5 14.5 202.6 14.3 247.4 14.4 
2 82.9 14.3 139.7 15.1 200.7 14.6 247.4 14.4 
3 81.2 14.9 140.9 14.8 201.4 14.5 246.8 14.5 
4 82.3 14.5 141.6 14.7 202.6 14.3 246.8 14.5 
5 81.6 14.7 142.8 14.4 200.7 14.6 246.2 14.6 

Average 82.1 14.5 141.5 14.7 201.6 14.5 246.9 14.5 
Std. Dev. 0.7 0.3 1.3 0.3 1.0 0.1 0.5 0.1 
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H10N - Conical diamond indenter (60° half angle) - Cut surface 

  Load (N) 
  49 147 294 441 

  
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
1 79.5 9.9 117.7 13.5 163.4 14.0 200.1 14.0 
2 78.0 10.3 118.5 13.3 165.3 13.7 198.2 14.3 
3 77.4 10.4 119.8 13.0 164.0 13.9 197.0 14.5 
4 77.2 10.5 118.4 13.4 165.3 13.7 193.8 14.9 
5 75.3 11.0 118.4 13.4 162.1 14.2 193.2 15.0 

Average 77.5 10.4 118.6 13.3 164.0 13.9 196.5 14.6 
Std. Dev. 1.5 0.4 0.8 0.2 1.4 0.2 2.9 0.4 
 

H10N - Conical diamond indenter (60° half angle) –  
Polished surface (1 µm) 

  Load (N) 
  49 147 294 441 

  
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
Diameter 

[µm] 
Hardness 

[GPa] 
1 75.8 10.9 121.5 12.7 165.9 13.6 195.7 14.7 
2 77.0 10.5 120.8 12.8 165.9 13.6 195.1 14.8 
3 76.2 10.7 121.3 12.7 164.7 13.8 195.7 14.7 
4 76.0 10.8 121.9 12.6 162.8 14.1 196.3 14.6 
5 76.2 10.7 121.3 12.7 164.4 13.9 198.9 14.2 

Average 76.2 10.7 121.4 12.7 164.7 13.8 196.3 14.6 
Std. Dev. 0.5 0.1 0.4 0.1 1.3 0.2 1.5 0.2 
 

H10N - Pyramidal diamond indenter (136° angle between faces) - Polished surface 
(1 µm) 

  Load (N) 
  1 10 49 147 294 441 

  
Diagonal 

[µm] 
Hardness 

[GPa] 
Diagonal 

[µm] 
Hardness 

[GPa] 
Diagonal 

[µm] 
Hardness 

[GPa] 
Diagonal 

[µm] 
Hardness 

[GPa] 
Diagonal 

[µm] 
Hardness 

[GPa] 
Diagonal 

[µm] 
Hardness 

[GPa] 
1 11.6 14.9 37.5 14.2 83.2 14.2 146.3 13.7 205.8 13.9 248.1 14.3 
2 12.1 13.7 37.9 13.9 84.0 13.9 146.0 13.8 205.8 13.9 250.6 14.0 
3 12.5 12.8 37.3 14.4 81.9 14.6 146.6 13.7 205.8 13.9 252.5 13.8 
4 12 13.9 37.1 14.5 82.1 14.5 145.0 14.0 205.1 14.0 250.6 14.0 
5 12.5 12.8 37.9 13.9 82.1 14.5 143.8 14.2 203.9 14.1 251.2 14.0 

Average 12.1 13.6 37.5 14.2 82.7 14.3 145.5 13.9 205.3 14.0 250.6 14.0 
Std. Dev. 0.4 0.9 0.4 0.3 0.9 0.3 1.1 0.2 0.8 0.1 1.6 0.2 
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Hardness measurements on bones from the human skull. 
 
Vickers diamond indentation - 20 N 

  Diagonal [µm] HV20 
Force/Area 

[N/m^2] 
1 255,7 58 6,12E+08 
2 258,9 56 5,97E+08 
3 259,5 56 5,94E+08 

Average 258,0 57 6,01E+08 
Std.dev. 2,0 1 9,57E+06 

 
 
Vickers diamond indentation - 40 N 

  Diagonal [µm] HV20 
Force/Area 

[N/m^2] 
1 387,7 50 5,32E+08 
2 370 55 5,84E+08 
3 372,5 54 5,77E+08 

Average 376,7 53 5,64E+08 
Std.dev. 9,6 3 2,81E+07 

 
Vickers diamond indentation - 60 N 

  Diagonal [µm] HV20 
Force/Area 

[N/m^2] 
1 451,2 56 5,89E+08 
2 487,2 48 5,06E+08 
3 473,9 51 5,34E+08 

Average 470,8 51 5,43E+08 
Std.dev. 18,2 4 4,26E+07 
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Hardness measurements on armor steel plates. 
 

Armox 370 - 22 mm - Conical diamond indenter 
  Load (N) 
  9.8 98 294 441 981 

  
Diameter 

[µm] 
Force/Area 

[GPa] 
Diameter 

[µm] 
Force/Area 

[GPa] 
Diameter 

[µm] 
Force/Area 

[GPa] 
Diameter 

[µm] 
Force/Area 

[GPa] 
Diameter 

[µm] 
Force/Area 

[GPa] 
1 60.5 3.41 182.6 3.75 316 3.74 380 3.89 580 3.72 
2 62.4 3.21 182.2 3.76 315 3.77 384 3.82 581 3.70 
3 61.3 3.32 181.5 3.79 310 3.91 383 3.84 576 3.77 

Average 61.4 3.31 182.1 3.77 313.7 3.80 381.9 3.85 578.9 3.73 
Std. Dev. 1.0 0.10 0.6 0.02 3.6 0.09 2.0 0.04 2.9 0.04 
 

Armox 370 - 22 mm - Pyramidal indenter (136°) 
  Load (N) 
  10 294 441 785 

  
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
1 70.9 3.98 389 3.89 471 3.99 635 3.90 
2 71.6 3.90 383 4.02 472 3.97 633 3.92 
3 70.3 4.05 384 3.98 466 4.07 634 3.91 

Average 70.9 3.98 385 3.97 469 4.01 634 3.91 
Std. Dev. 0.7 0.07 3 0.07 3 0.05 1 0.01 
 

Armox 370 - 22 mm - Pyramidal indenter (90°) 
  Load (N) 
  49 98 294 441 785 

  
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal

[µm] 
Force/Area 

[GPa] 
Diagonal

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
1 156 4.05 215 4.25 369 4.33 451 4.34 603 4.32 
2 158 3.95 217 4.18 371 4.28 446 4.44 605 4.28 
3 153 4.17 218 4.14 368 4.35 454 4.28 607 4.27 
4 154 4.14     374 4.22 455 4.27    

Average 156 4.06 216 4.19 369 4.32 450 4.35 605 4.29 
Std. Dev. 2 0.11 1 0.06 1 0.03 4 0.08 2 0.03 
 

Armox 370 - 40 mm - Pyramidal indenter (136°) 
  Load (N) 
  9.81 49 294 441 

  
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
1 71.7 3.82 163 3.70 401 3.66 487 3.72 
2 69.9 4.02 163 3.70 401 3.66 485 3.76 
3 72.1 3.77 164 3.65 401 3.67 495 3.61 

Average 71.2 3.87 163 3.68 401 3.66 489 3.70 
Std. Dev. 1.2 0.13 1 0.03 0 0.00 5 0.08 
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Armox 370 - 40 mm - Pyramidal indenter (90°) 

  Load (N) 
  9.81 49 294 441 

  
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
Diagonal 

[µm] 
Force/Area 

[GPa] 
1 71.4 3.85 156 4.03 385 3.98 469 4.02 
2 70.3 3.97 156 4.05 381 4.05 470 4.00 
3 70.5 3.95 159 3.89 390 3.87 472 3.97 

Average 70.7 3.92 156.9 3.99 385.3 3.97 470.0 4.00 
Std. Dev. 0.6 0.06 1.8 0.09 4.6 0.09 1.4 0.02 
 

Armox 370 - 40 mm - Conical diamond indenter 
  Load (N) 
  9.8 49 294 441 

  
Diameter 

[µm] 
Force/Area 

[GPa] 
Diameter 

[µm] 
Force/Area 

[GPa] 
Diameter 

[µm] 
Force/Area 

[GPa] 
Diameter 

[µm] 
Force/Area 

[GPa] 

1 64.5 3.00 126 3.93 323 3.59 402 3.47 
2 63.4 3.26 134 3.50 326 3.51 399 3.54 
3 65.6 2.90 133 3.52 328 3.47 400 3.51 

Average 64.5 3.06 130.9 3.65 325.8 3.53 400.2 3.51 
Std. Dev. 1.1 0.19 4.2 0.24 2.8 0.06 1.9 0.03 
 
 

Appendix B 
 
Assume as an example that the material is elastic/plastic. It follows that 
 

( ) ( )( ) ( )
( )

( ) ( ) ( )
( )

3 3

2 1 2 1 2
(1/ 3) 2

6 (1 ) 2 1

1 2 2 ( ) /( )2 1 ( ) / ,
3 3 1
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r r r r r
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e

G G

YLn S t G Yr
e Ln S t r

G

θ
θ

σ σ ν
ε ε ε ε ε

ν
ν ν

ν
ν

+ − −
= − + = − = +

+ +

−
= − − −

+

 (B.1) 

 
where we have inserted the pressure p from the incompressible solution. Solving for the elastic/plastic 
interface relation gives that 
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