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Abstract—A fully adaptive radar framework has been pro-
posed in recent publications, and this paper will implement the
framework in an adaptive update rate application for a tracking
radar. A cost function is developed to balance the radar resource
usage with the track error. The method is illustrated with a
simulated example to show how the radar could operate in a
simple scenario. Using a cognitive radar experimental testbed,
a similar scenario to the simulation is tested to show how a
cognitive radar acts in a real world environment. The method
enables the radar to operate using minimum resources when the
target acts predictably. Conversely, the resource usage increases
when the target maneuvers or track error increases.

I. INTRODUCTION

In a cognitive radar (CR), the radar forms a perception of the
environment by measuring it with electromagnetic radiation,
and the perception is then used as the basis for decision making
to support a goal or objective. The decision could be to use
a different waveform, or to adapt in any of the degrees of
freedom the radar has. Two strategies for this approach can
be found in [1] and [2].

CR adapts to the environment through feedback, normally
from the receiver to the transmitter which allow the radar
to operate in environments that would be considered diverse
and changing for a conventional radar. Ultimately, CR will
have the ability to learn, such that when similar situations are
encountered in the future, the optimal solution can be reached
rapidly.

Using attention, the CR can focus its perception, and
hence the most important parts of it’s resources towards
the most important parts of the environment. The radar has
finite resources available and often multiple objectives to
achieve, such as surveillance, tracking, weather monitoring,
weapon guidance etc. Most commonly, the radar time line is
regarded as the primary resource, however, other resources
such as bandwidth, transmit power and processing power
could be manged. Focusing attention on critical parts of the
radar’s perception, the limited resources can be shared between
multiple functions. CR has the potential to enable radars to
use resources more optimally, and that can therefore adapt to
changing environments.

This work will show how the track update interval can be
adapted using a CR framework for development of a cost
function that balances the use of radar resources against track
error. In comparison to the work in [3] where the pulse

repetition frequency (PRF) is adapted, this work focuses solely
on the update interval and keeps all other parameters fixed.

The algorithm developed, based on solving the cost function
as an optimization problem, was implemented in a simulator
and on a CR experimental testbed. The final part of this work
show results from both simulation and experimental data.

II. COGNITIVE RADAR RESEARCH

A CR uses ideas and principles derived in cognitive psy-
chology that emulate functions of the brain. CR is a relatively
new field of radar research, initially outlined in the paper of
Haykin [1] and book by Guerci [4]. Haykin’s description of
CR is based on the work of neuropsychologist Fuster [5], who
describes a mechanism he calls the perception-action cycle.
In the cycle, actions are selected based upon the perception.
The actions will result in changes to the perception over time
leading to selection of new actions, and hence the process
continues indefinitely. The cycle is based on reaching some
goal or end-state, and actions are made such that the goal is
reached in an as optimal fashion as possible with as low cost as
possible. Haykin [6] describes the perception-action cycle in
the brain as a feedback system between the perceptor, which
can be seen as the receiver part of a radar system, and the
actuator, which can be seen as the transmitter part.

Although Haykin’s description of CR is largely based on
the work of Fuster and cognitive psychology, there has been
a great deal of work published on knowledge aided radar
systems [4], [7] in a CR context. This work has been more
focused on using knowledge together with adaptive radar
and waveform diversity to optimize radar performance in
applications such as Space Time Adaptive Processing (STAP).
A large body of work in the waveform diversity and adaptive
radar community [8], [9] has enabled the development of CR
using many of the techniques for waveform selection and
adaptation.

Research into biologically inspired methods is also con-
sidered to support the idea of a CR. [10], [11] show how
methods originating in the biological understanding of bats
can be used for guidance and control of a radar equipped robot
in a maze. This research helps to demonstrate that a CR can
be responsible for more than just adapting its waveform. The
actions it selects can be steering commands for the platform
that carries it. Under these situations, it is the change in
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platform position that results in the perception change of the
perception-action cycle.

Further work on CR is demonstrated in [12] where antici-
pation is used to find some optimal distribution of the tasks
the radar must accomplish when there are known obstructions
to these tasks, such as the need to dedicate a large amount of
the radar time line to a specific objective like SAR imaging.

Bell et al. [13] showed a general CR framework, which can
be instantiated for different tasks. Examples are given for a
single target tracking problem and for resource management
in a network of sensors.

III. FULLY ADAPTIVE RADAR FRAMEWORK FOR
UPDATE-INTERVAL CONTROL

An important parameter for resource allocation in a multi-
target tracking radar is the update-interval of each track. When
the update-interval is short, too much resources may be used
maintaining the track, while long intervals can save resource,
but could result in large errors, or even a broken track. Work
has been done on update-interval selection in phased array
tracking radars [14]–[17] where a steady state approximate
solution to the predicted error should not exceed the beam
width in azimuth and elevation. Van Keuk introduced the
criterion in [18], and used it in an example where the update-
interval is calculated based on a steady state solution to the
Kalman filter model, described by Singer in [19].

A fully adaptive radar (FAR) framework for CR was de-
veloped in [13] for general tracking systems to simplify the
development of CR systems. The framework introduces a
feedback model between the processor and transmitter for
optimal waveform selection based on minimizing the inverse
of the Fisher information matrix (FIM), weighted against the
processor cost function. Bell investigated the implementation
of the framework on an software defined radar (SDR) where
the PRF was the adapted parameter [3]. In this case, the
number of pulses integrated was kept constant, and hence the
PRF were a measure of both the Doppler resolution and the
update interval.

In a multi-target tracking system, the update interval for a
given track is an important parameter because it is a measure
of the number of tracks that can be maintained.

A. Tracking model

The tracking model of maneuvering targets from [19] is
implemented using the FAR framework with the adjustable
parameter being the update interval of the track. Both the
motion model and the expressions for covariance matrices
are given for a single spatial dimension assuming a set of
parameters for an allowed acceleration accompanied with
probabilities. The spatial dimension used in this work is the
target range measured by the radar, combined with the range
rate calculated using the measured Doppler shift. A linear
Kalman filter is used for state estimation and filtering in
accordance with [19].

B. FAR framework and tracker model

The FAR framework was implemented using the Singer
tracker model as a state-space representation of a moving
target and yields

xk+1 = φk(Tk)xk +wk (1)
zk = Hxk + vk (2)

where wk ∼N(0,Qk(Tk)), vk ∼N(0,Rk(∆rk,∆vk)) and
Tk is the update interval. The motion model Qk is given in
[19] and the measurement accuracy Rk is given using the
accuracy model found in [20, pp. 689-699]. It states that the
lower bound for accuracy is

σR ≥
∆R√
SNR

(3)

σV ≥
√

3

π

c

f0

∆v√
SNR

(4)

The state space consists of range, velocity, acceleration,
azimuth and SNR. The upper block of φk is the same as the
transition matrix shown [19], and the lower block is a simple
identity matrix stating that the change is only due to white
Gaussian process noise.

The Kalman filter recursion shown in [19] is used for mo-
tion and information update, where the predicted covariance
matrix from the information update is equal to the predicted
information matrix (PIM) [13] for a Gaussian density. The
predicted conditional Cramér-Rao lower bound (PC-CRLB) is
defined as the inverse of the predicted conditional Bayesian
information matrix (PC-BIM) where the PC-BIM is equal to
the sum of PIM and expected value of the FIM. The expected
value of the FIM is defined as

J−k (θk|Zk−1,Θk−1) = Ek {Jx(x; θk)} (5)

where θk = Tk and Jx̄ is the FIM which is defined as

Jx̄(x; θk) = −E
{
∇x[∇T

x [ln f(zk|xk; θk)]]
}

(6)

The pdf f(zk|xk; θk) is a multivariate Gaussian distribution
with covariance Rk and zero mean. The FIM can be shown
to be

Jx(xk; θk) = E
{
HTR−1

k H
}

(7)

The FIM is not a function of xk, zk or θk, and the expected
FIM is therefore equal to the FIM. The PC-BIM is therefore
given as

B↑k(θk|Zk−1;Θk−1) = Σk(θk)−1 +HTR−1
k H (8)

where Σk is the predicted posterior covariance calculated from
the Kalman filter. The PC-BIM has the property [3]

R↑C(θk|Zk−1;Θk−1) ≥ tr
{
B↑k(θk|Zk−1;Θk−1)−1

}
(9)

A cost function for the CR should balance the resources a track
update require and the PC-BIM. The resource requirement for
a track update could be defined as an inverse relationship
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Figure 1. Simulation of target range, velocity and SNR with time

of the update interval, to emulate the increased cost when
the update interval is smaller. Hence, the cost function for
this FAR system could be defined as a balance between the
PC-BIM and an inverse function of the update interval.

LC,Θ(θk|Zk−1;Θk−1) =
R↑C(θk|Zk−1;Θk−1)

tr {B0}
+
θ0

θk
(10)

The constant factor B0 is a weighting factor, where a large
trace value would emphasize radar resource usage. The factor
θ0 is a weighting factor, where a small value emphasize the
size of the PC-BIM. The factors could be pulled together in
the weighting factor K = B0θ0. For each iteration, the radar
would then solve the minimization problem

θk = arg min
θ

[
tr
{(

Σk(θ)−1 +HTR−1
k H

)−1
}

+
K

θ

]
(11)

The cost function from the minimization problem is balancing
between radar resource usage and the size of the PC-BIM to
find a compromise.

IV. RESULTS

A. Simulation results

A simulator has been built in Matlab to test applications
using the FAR framework. The radar parameters were selected
to resemble the experimental radar system built at Norwegian

Figure 2. Simulation of target track parameters with FAR

defense research establishment (FFI) [21] for testing of CR
applications. A simulated target moving away from the radar
on a straight line, offset from the antenna boresight, with
constant velocity is depicted in figure 1, with range on top,
velocity in the middle and signal to noise ratio (SNR) at the
bottom.

For the radar to sustain track quality when the target maneu-
vers or the distance to the radar increases, a natural solution
would be to decrease the revisit interval of the track. Using
the balancing cost function shown in (11), the solution of the
minimization problem is to reduce the update interval for the
next iteration. Figure 2 shows the target tracker covariance,
for range and velocity in the top two subplots, and update
interval on the bottom subplot. The covariances increases as
the target range increase due to the coupling of SNR and
range/velocity accuracy given in (3) and (4), and the Kalman
update dependent on SNR and accuracy. The trend of the
update interval is decreasing as the covariance increase and
the SNR decreases. The solution of the minimization problem
ensures a balance between resource usage and track quality
given by the cost function.

After approximately 50 seconds, the radar start to loose
detections as the SNR fluctuates below the detection threshold.
The covariance increases since there has been no track update,
and hence the update interval decreases to the lowest threshold.
The method therefore decreases the possibility of a lost track
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Figure 3. Experimental data of target position with FAR

since it increases the update interval until a stable track is
regained.

B. Experimental results

A similar scenario to the simulation was tested on the CR
testbed developed at FFI [21]. Target range, velocity and SNR
are shown in figure 3, where a target is detected and tracked
as it moves away from the radar at an approxemately constant
rate. The SNR does not behave according to an inverse range
to the fourth power rule, as might be expected when moving
away from the radar, and the reason for this was attributed to
propagation mechanisms in the scene and the target’s motion
through the radar beam pattern. The target moves into the
center of the beam as it moves away from the radar, and hence
the loss of SNR is not as great as expected.

Figure 4 shows how the target track covariance and update
interval evolved over time. There is a connection between
increased covariance and shorter update intervals. When the
target accelerates or decelerates, the covariance increases and
the update interval decreases accordingly. The target moves
away from the radar, and the SNR decreases as time evolves.
Just as for changes in acceleration, the update interval de-
creases as the SNR decreases because a falling SNR also tends
to increase the track covariance. Being able to compensate for
these two effects should enable the target tracker to maintain
a track longer during maneuvers and at increased detection
ranges.

Figure 4. Experimental data of target track parameters with FAR

V. CONCLUSION

The FAR framework has been demonstrated as capable
of controlling the track update rate for CR undertaking
single target tracking. A cost function for this application
was developed. A simulation and and experiment using a
CR testbed showed that the update interval were selected
in a balanced manner weighing radar resource usage against
track covariance. Decreasing the update interval in situations
where the covariance increases enabled the radar system to
maintain track of maneuvering targets and distant targets when
the SNR decreased. The balancing between track error and
radar resource usage enables the radar to operate in a more
efficient manner, using less resources when the target acts in
a predictive way, and intensifying the resource usage when
the target is less predictive. Using a cost function and solving
an optimization problem instead of a set of heuristic rules for
update interval selection, enables the radar to handle a larger
variety of situations.

This work focused on single target tracking, but implement-
ing several solvers of the optimization problem for each track
in a multi-target tracking system, can allow the methodology to
be transferred to a multi-target tracking system. Each solver
will produce an optimum update interval for it’s respective
track, and can then be used in the track update policy based
on the radar system architecture.

Further work should look into how the FAR solution is
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compared to other adaptive tracking radar methods for update
interval control. More complex scenarios should be investi-
gated to look into how the radar operates when exposed to less
predictive targets. Introducing more features from CR such as
learning and intelligence should be considered to improve the
flexibility and performance.
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